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The transmission network expansion planning is necessary for supplying the future needs, considering
load growth. Furthermore, in restructured environments, transmission lines provide the required infras-
tructure for creating a competitive environment. In recent years, there has been a significant advancement
in storage technologies. This advancement leads to using energy storage systems to postpone the construc-
tion or replacement of transmission lines. Therefore, in this paper, the problems of transmission expan-
sion planning and energy storage systems deployment are investigated simultaneously. Considering the
presence of storage devices and their effect on network operation cost, in this paper, the operation cost
is modeled as an independent objective function along with investment cost. Moreover, the problems of
transmission and storage expansion planning are modeled as a tri-objective optimization problem with
the objectives of reducing costs and increasing the social welfare index in the power market. The multi-
objective shuffled frog leaping evolutionary algorithm is used to solve these problems. The presented
model for expansion planning is implemented and analyzed on IEEE 24-bus test system in the presence
and absence of energy storage systems, and the effect of change in the price of energy storage systems is
studied. The results of this research show that as the technology advances and the storage costs decrease,
energy storage systems can play a pivotal role in reducing expansion planning costs of the power network
and improving market-based indices in the restructured environment. © 2019 Journal of Energy Management and
Technology
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NOMENCLATURE 71; Maximum allowed number of lines at each corridor

Set Pdis Maximum power discharge rate of ESS (MW)
ets

B Set of network buses Ph Maximum power charge rate of ESS (MW)

Prss Rated power of an ESS unit (MW)

WEgs Rated energy of an ESS unit (MW)

Cp Investment cost of ESS per MW ($/ MW)

Cw Investment cost of ESS per MWh ($/ MWh)

Cgss Construction cost of an ESS unit with certain rated power

G Set of network power plants

LC Set of candidate corridors for constructing lines

E Set of energy storage systems (ESSs) of the network
T Set of time intervals

and energy ($)
Parameters n, Number of buses
Cl,y Cost of constructing a line at corridor y ($/mile) ng Number of generators
r Annual interest rate w;, Importance weight coefficient of bus b
LT, Lifetime of energy storage systems (year) S(I) Indicator of the sending bus of Transmission line /
LT; Lifetime of transmission lines (year) r(l) Indicator of the receiving bus of Transmission line /

1 Maximum allowed number of ESSs at each bus 7Y(1) Susceptance of line /
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]71 Maximum power flow in transmission line I (MW)

a; 1, b;y Bidding coefficients of generator i during time interval ¢
AT Duration of time interval ¢ (1)

@,G Minimum and maximum output of generator i (MW)
FDT Full-power capacity discharge time of ESS (h)

Variable

1, Number of ESS units installed at bus b
n;,, Number of lines constructed at corridor y

EHy; Energy of the available ESS at bus b at the end of time
interval £ (MWHh)

Pgdf Discharged power of ESS e, at the end of time interval ¢
(MW)

Pf}t’ Charged power of ESS ¢, at the end of time interval t (MW)

LMP;, Locational marginal price of bus b ($/ MWh)

LMP Average locational marginal price of buses b ($/ MWh)

g»i Power generation of bus i at peak load time (MW)

dp; Load of bus i at peak load time (MW)

Pg’f Discharged power of the ESSs at bus b and time interval ¢
(MW)

gi+ Output of generator i during time interval ¢ (MW)

Plf}; Charged power of the ESSs at bus b and time interval ¢
(M)

1. INTRODUCTION

Optimal transmission expansion planning (TEP) has always
been one of the most important issues in power system planning.
In TEP, the objective is to expand the existing power system to
serve the growing demand in the future and it has a vital role in
the new electricity market because it should provide a nondis-
criminatory environment for all market participants. Recent
advances in material science make the large-scale deployment of
electrochemical energy storage systems (ESS) in the transmission
system a technically feasible option [1]. ESSs can have differ-
ent applications in generation, transmission, and distribution
sections of the power network. They can improve the perfor-
mance of stressed power systems or systems with intermittent
and unpredictable sources [2]. These systems can be helpful in
load shifting [3], peak shaving [4], reducing operation and losses
costs [5], power quality improvement and increasing reliability,
network stability and penetration of renewable energy power
plants, as well as voltage and frequency control [6, 7]. More-
over, large-scale energy storage systems can play a key role in
decreasing or deferring the costs of network development and
construction of new equipment [8]. Therefore, the TEP problem
in the presence of ESS can change decision variables in a way
that installing ESS can be an appropriate alternative for the con-
struction or reinforcement of transmission lines to supply the
future load. The most important obstacle in utilizing ESSs in
the network is their high price, which will certainly decrease in
the forthcoming years. Due to the increase in network needs,
the growing penetration of renewable energy sources and the
progress in the manufacturing technologies of ESSs, the penetra-
tion of ESSs in the network will increase [9]. In fact, it is expected
that ESSs will play a key role as grid assets in the near future
Energy storage systems studied in existing literature can be
divided into two categories: short term planning and long term
planning. Most of the papers published on these topics focus on

short term planning that integrated a dynamic response of ESSs
and found the state of charge/discharge period of the predeter-
mined storage unit [10-12]. Due to the load-displacement effect
of ESSs, operation cost reduction is the main goal of these papers.
On the other hand, long-term planning of ESS in the power net-
work is much more complex because, in addition to operating
costs and short-term studies, investment costs and long-term
studies must also be considered [20]. Therefore, literature deals
with transmission expansion planning in the presence of ESSs
are very rare. Next, we review some of the related works.

Some papers have studied network expansion in the presence
of ESSs in the traditional environment without taking network
restructuring conditions into consideration [3, 13, 14]. In this
researches, the main objective is to minimize investment and
operation costs. In [3], transmission expansion planning is car-
ried out in three steps, so the location, capacity, and the way
of utilization of ESS are determined. In [13], renewable power
plants are considered in the network and the effect of ESSs is in-
vestigated. In [14], only the investment cost is taken into account
and TEP problem is only studied for peak load. Because of the
uncoordinated optimization of system investments and opera-
tions, this planning is likely to lead to suboptimal transmission
expansion plans.

Transmission expansion planning in the presence of energy
storage systems in the power market environment is presented
with the objectives of increasing revenue, increasing social wel-
fare, and decreasing congestion of lines [9]. Ref. [12] have shown
that the gain from using ESSs depends on their ownership, given
the different incentives of each market player. Authors in [15]
study the advantage of ESS from the independent system oper-
ator’s and ESS owner’s points of view. They show that if ESS
placement is carried out simultaneously with network expan-
sion, it can be economically beneficial for ESS owners. In [16],
assume that ESSs are to be built and operated by transmission
service providers and propose a mixed-integer linear program-
ming (MILP) model integrating both investment and operation
costs of lines and ESSs. In this model, the charging process of
ESSs is not considered assumes that total energy capacity is con-
siderably small and ESSs are always possible to be fully charged
in off-peak hours.

In [17], a two-stage MILP model has been proposed to co-
optimize investment and operation costs of lines and ESSs, using
an hourly DC OPF formulation and show the benefit of having
ESSs distributed throughout the network instead of having all
of them concentrated in just a single node. In [18], ancillary
markets make decisions on ESS placement in TEP to maximize
their revenue, and it is shown that although investment cost of
ESSs is high, their presence can increase social welfare. Further-
more, it is shown that since constructing a line can be very time-
consuming and many problems can emerge during construction,
using ESS can be very helpful in delaying the expansion of lines
and decreasing investment costs. In [19], the economic and
market-oriented effects of ESS are studied in network expan-
sion problem in the presence of renewable energy sources and
related uncertainties. In this paper, storage units are operated
by a network planner and has been shown that the locational
marginal price (LMP) significantly influences the optimal size
and location of ESS.

In the existing literature, the issue of transmission and ESS
expansion planning is modeled as single-objective problem and
the objective function is usually minimizing the sum of invest-
ment and operation costs, but in the restructured power network,
Given the important role of locational marginal prices in obtain-
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ing the optimal solution of line and ESS expansion planning, the
effect of this index should be modeled as separate goal in the
different objective function. For this reason, this paper proposes
multi-objective modeling of the problem that simultaneously
addresses economic and market-oriented goals.

In this paper, a practical model of the network power market
is presented based on LMP and a new index is introduced to
evaluate the level of social welfare. In contrast to the previously
published papers, in this paper, to practically model the net-
work and to provide the possibility of selecting an appropriate
final solution, the problems of network expansion planning and
ESS placement are modeled as a multi-objective problem, and
the final solution is determined using fuzzy decision making
approach.

A. Proposed methodology and contribution

This paper addresses the problem of network expansion in the
power market environment. The proposed model is based on
LMP in which at each network bus, the LMP determines the
price of energy exchange at that particular bus. In previous stud-
ies, ESS owners” have had different positions, which could have
different effects from the market participants’ point of view. In
the market model considered in this paper, a governmental or-
ganization (known as Tavanir) makes decisions on transmission
and sub-transmission networks. This organization owns ESSs
and is responsible for making a decision about them. In this
paper, in addition to economic objectives, the market-oriented
criterion is also considered as well as a new index is introduced
to evaluate the level of social welfare.

Moreover, in contrast to performed studies in the past in
which the problem of transmission expansion planning in the
presence of ESS has been modeled as a single-objective prob-
lem, in this paper, the problem is modeled as a multi-objective
problem and each objective is optimized separately and inde-
pendently. Due to the presence of ESSs in the TEP problem and
its effect on operation cost, in this paper, network operation cost
is also taken into account in modeling in addition to investment
cost. Considering the different variation ranges and scales of
operation and investment costs, in papers that take the operation
cost into account, a scaling coefficient is used to add this cost
to the network cost function [21]. However, in this paper, in
order to accurately model ESSs and to further investigate their
role, operation cost is considered as an independent objective.
Therefore, the proposed model consists of three objectives, i.e.,
decreasing investment cost, decreasing operation cost, and in-
creasing the social welfare index. Considering the proposed
modeling approach, the most appropriate method for solving
the problem is to use multi-objective optimization algorithms. In
this approach, a set of non-dominated solutions is presented as
the Pareto-optimal front and based on the planer’s opinion, each
of the solutions of this set can be selected as the final solution
of the problem. In this paper, the problem of interest is studied
on the standard 24-bus IEEE test system and the multi-objective
shuffled frog leaping algorithm is used to solve the problem.
Finally, the best-compromised solution is obtained using a fuzzy
decision making approach.

The most important contributions of this paper are as follows:

¢ Unlike in [3, 13, 14] that joint transmission and ESS expan-
sion planning in the conventional environment, this paper
model the problem in the LMP-based power market.

¢ ESSs have the potential to reduce energy and so reduce
power system operation costs. Given the different incen-

tives of each market player, Using ESS can be beneficial
for their owners or not. Consumers benefit from energy
price reductions, but generation firms (GenCos) reduce
their profits if prices drop. [12] Shows that a combination of
ownership for ESSs between GenCos and consumers may
maximize social welfare in decentralized markets. So this
paper defines a new index to evaluate the level of social
welfare and because of its significant effect on the optimal
solution, a separate objective function is considered for it.

¢ Considering the different variation ranges and scales of
operation and investment costs, in this paper, in order to
accurately model ESSs and to further investigate their role,
operation cost and investment cost are considered as sepa-
rate objective functions.

¢ [12-20] study the issue of transmission and ESS expansion
planning in power market and consider only single objec-
tive function that usually minimize the sum of investment
and operation costs but in this paper, given the important
effect of market indices on final solution, a multi-objective
modeling of the problem that simultaneously addresses
economic and market-oriented goals in different objective
function is presented.

* The presented multi-objective modeling is solved using an
appropriate multi-objective optimization method. The pro-
posed multi-objective algorithm has superiority in terms
of accuracy and speed in comparison with other evolution-
ary algorithms. This is because of the parallel structure
and memory-based mechanism of the algorithm [23] that is
explained at the following.

B. Paper structure

This paper is structured as follows. In Section 2, mathematical
model of the problem is presented. In Section 3, the optimization
algorithm for solving the problem is introduced. In Section 4,
simulation results of the problem are obtained and analyzed
for different cases and to evaluate the validation of results, they
compared with NSGA output. Finally, Section 5 concludes the

paper.

2. MODELING THE PROBLEM

A. Energy storage systems and their costs

Energy storage systems can have different applications in a net-
work; depending on these applications, they can have different
types, technologies, technical specifications, and different costs.
The investment cost of an energy storage system depends on
its power capacity (Pggs) and energy capacity (Wgss), and it is
calculated using the following equation [22].

CEss = Cp X Pgss + Cyy X WEss »

In this equation, Cp depends on the cost of power converter
system and the cost of connecting the unit to the network. More-
over, Cyy is the investment cost for storing one MWHh of energy
in $/ MWh. Considering rated full-power capacity discharge
time (FDT), the relationship between power and energy capacity
is obtained as follows:

WESS = FDT x PESS 2)

Thus, the investment cost of an ESS unit with rated power of
PEgs is calculated using the following equation:
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Cess = (Cp + Cw x FDT) x Pggg + (Cp + Cpc) X Pgss  (3)

Depending on the type of energy storage and its manufactur-
ing technology, the values of Cp, Cpc and Cyy may be different.

B. Modeling objective function
B.1. Investment cost

Based on the discussion presented earlier in this paper, the cost
of any transmission expansion planning can consist of two parts;
investment cost of constructing a new line and ESS installation
cost. Since the lifetimes of line and ESS are usually different, the
sum of annualized costs is used to calculate the investment cost.
The investment cost objective function is as follows [13]:

minf; =Ky ) (Cl,y X n;,y> +Ke ) Cpss X1, (4
yeLC beB

where Cggg is a function of the rated power and energy of the
device, K; and K, are the coefficients that convert the investment
costs of line and ESS into per year values, which are calculated
using the following equation:

(14 r)th
(14 r)LTL’
Ke = (1+1)LTe —1 ©

B.2. Operation cost

The perspective presented for solving the problem is a long-term
planning horizon, however, considering the presence of ESSs in
the network and their effect on the costs of short-term planning,
the network operation cost and the generation cost of power
plants are also modeled in the problem. Despite the fact that
operation and investment costs are of the same kind, due to their
different scales and variation ranges, considering them in one
single objective function causes the effect of one of the objective
functions (the objective with lower scale and variations) to be
weakened, and this results in an approximation in modeling the
problem. Therefore, in this paper, to achieve accurate modeling,
the operation cost is considered as an independent objective
function.

The operation cost of power plant units is a function of their
generation and bidding coefficients presented by power plants
owners. Under such conditions, the objective function of min-
imizing the network operation cost in a particular period (one
year) is calculated using the following equation:

T ng
minf2:<zzgltx( aztxgzt+bzt> (7)

t=1i

In order to include the effect of an ESS on network operation
cost, considering the model of the power market used, the power
generated by the ESS (discharge state) is subtracted from the
network load, and the consumed power (charge state) is added
to the network load.

B.3. Standard deviation of locational marginal prices

In nodal pricing, all the customers trade electricity at the loca-
tional marginal price of the bus at which they are located. To
create an environment in which all customers trade electricity
at the same price, node prices must be equalized. A smaller
difference between LMPs of buses results in lower discrimina-
tion encountered by the customers while trading electricity, and
consequently, results in a facilitated competition. To measure
the degree of competitiveness of the power market, a criterion
called “the standard deviation of locational marginal price” is
introduced. This index is defined as follows:

1
oLMp = \/n — Y. (LMP, — LMP)2 (8)
b beB

where LMP,, represents the Lagrange coefficients or the shadow
prices of load flow constraints at bus b, which is obtained from
the optimal power flow (OPF) for a certain level of load; LMP
is the average of LMP of buses, which is obtained using the
following equation:

LMP = — 2 LMP, )
M peB

The lower the standard deviation of LMP, the smaller the dif-
ference between the marginal prices of buses, and as a result, the
larger the competitiveness and social welfare level. Due to the
limitation in the budget of transmission expansion for a certain
budget, it is rational to provide a competitive environment for a
larger number of customers. Therefore, the weighted standard
deviation of the locational marginal price is proposed as one
of the objectives. The objective function of interest is given as
follows:

ny

min f3 = (LMP; — LMP)* (10)

=1

where W; represents the weight and importance of a bus, which
is equal to the sum of generated and consumed powers at that
bus.

Wi = gpi + dyi (11)

C. Constraints

TieGy, 8it — L(tls(t)=b) St T L(uir(y=p) fie + 1% x pii

12
doxpth =d,, Vb eB,teT 2
uh bt bt ’

fir=m (95(z)t - 9y(1>,t) =0 VIeLCteT (13)
Ifie] < fi, VIELCteT (14)

Gi<gu<GVieGteT (15)

24
Y ) (ﬂd‘s, P — prt) = (16)

beBt=1

nep <Ne,Ve €E,b€B 17)

n,, <o, vy € LC (18)
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0< P <Pdis, Ve € EteT (19)
0<Ph <PhVecEteT (20)

EHy, = B+ (1% i = giopi)) AT
VbeB,teT

(1)

Constraint 12 shows the power balance at each bus of the
network and includes the power injected by the power plant,
the ESS and adjacent transmission lines. Based on the DC load
flow model, Eq. 13 represents the power flowing through each
line during any time interval and Eq. 14 shows the maximum
allowed power of each line. Eq. 15 presents the constraints of
the power generated by power plant units of the network. Eq.
16 expresses the balance between charge and discharge powers
of each storage unit during a day. Eqgs. 17 and 18 represent the
maximum allowed number of ESS units at each bus and the
maximum allowed number of lines at each corridor, respectively.
Egs. 19 and 20 show the charge and discharge limitations of
each storage unit at tth time interval. Finally, Eq. 21 presents the
energy of storage unit at bus b and time interval ¢.

3. OPTIMIZATION ALGORITHM

A. Multi-objective shuffled frog leaping algorithm

Shuffled frog leaping algorithm (SFLA) is an optimization ap-
proach that is inspired by the group behavior of frogs in search
for finding the location with the maximum amount of food [15].
In this approach, the initial population is divided into several
separate groups with the same number of members. The mem-
bers of each group improve their locations in parallel through
exchanging information with each other or the best member of
the other groups.

Due to the classification mechanism of frogs and the paral-
lel movement of the members of each group towards the opti-
mum solution, a multi-objective shuffled frog leaping algorithm
(MOSFLA) can have appropriate efficiency and speed in solving
multi-objective optimization problems. In [23], this approach is
investigated and its superiority over other multi-objective op-
timization methods is shown. The main steps of MOSFLA are
described as follows:

a. Generating initial population: The initial population con-
sisting of p frogs is generated randomly. Each frog rep-
resents a solution of the problem and includes a set of new
ESSs. The ith frog is represented as X; = (x1,, X2, .., X47),
where d is the number of network buses (for ESS installa-
tion).

b. Classification: At this stage, first the value of fitness func-
tions is calculated for all members of the population, and a
non-dominated sorting algorithm is used to sort the mem-
bers [24]. Then, based on the sorted members, the popula-
tion is divided into m groups with equal number of mem-
bers in a way that each group consists of n frogs. Under
such conditions, p = m X n.

c. Archive mechanism: In the proposed optimization approach,
an archive mechanism is used to keep the best solutions at
each iteration. To do this, the solution that is not dominated
by other solutions at each iteration is placed in front 1, is
transferred to the archive and is then compared with the

archive members. The best solutions that are not dominated
by other existing solutions in the archive are kept and the
rest are eliminated from the archive.

d. Local search: In each group, a local search process is carried
out for a certain number of iterations. At each iteration, the
position of the worst frog can be improved based on the
position of the best frog in the group (X) and the best frog
of all groups (Xg). If no improvement is observed, a new
random position will be considered for the worst frog of
the group.

In a local search process, the following steps are carried out
at each iteration.

Step (1) the best and worst frogs in the group are deter-
mined and labeled as X and Xy, respectively.

Step (2) position of the worst frog of the group (Xy) varies
according to the position of the best one in the group (X;)
as follows:

DF = u.DF"! + crand.(X;, — Xo) (22)

X = X4 + D (23)

where DF is the leap size at the kth iteration of the algo-
rithm and depends on the leap size in the previous iteration.
Parameter u is the inertia weight that begins from an ini-
tial value and decreases gradually at each iteration of the
algorithm.

Umax — Umin <k (24)
Kmax

U = Umax —
In the equation above, .y and u,,;, are, respectively, the
initial and final inertia weights, and k is the iteration counter
of the algorithm; ky;;sx represents the maximum number of
iterations of the algorithm.

If the new solution dominates the previous one as expressed
by the concept of domination in multi-objective optimiza-
tion [24], the new frog replaces the previous one and the
process goes to Step (5), otherwise Step (3) is executed.

Step (3) the best solution of all groups, X, replaces X, in
Eq. 22, and then using Eq. 23, a new frog is obtained. If
an improvement is achieved in the solution, the new frog
replaces the previous one and the process goes to Step (5),
otherwise Step (4) is executed.

Step (4) a new frog is generated randomly, and replaces the
worst frog of the group.

Step (5) the existing frogs in each group are compared with
each other, are put in different fronts, and finally are sorted
based on the front number.

Step (6) Steps (1) to (5) are repeated for a certain number of
iterations (number of local search in each group).

e. Termination: Processes (b) to (d) are performed for a certain
number of iterations (maximum number of iterations of the
algorithm), and finally, the existing solutions in the archive
are selected as the points of Pareto-optimal front, i.e., the
set of final solutions of the problem.
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B. Selecting best compromised solution

The final solution of a multi-objective problem is a set of solu-
tions, which is called the Pareto-optimal front of the problem.
Based on the planner’s opinion, each one of the points of Pareto-
optimal front can be selected as the best-compromised solution
of the problem. In this paper, fuzzy decision making is used
to select a solution from the Pareto-optimal front. In this ap-
proach, considering a fuzzy membership function and taking
into account the desired values and importance level of each
problem objective, a fuzzy membership value is assigned to each
point of the Pareto front. Finally, the solution with the highest
fuzzy value is selected as the best compromised solution of the
problem [25].

C. Applying the proposed method for problem solving

This section describes the procedure of using the proposed opti-
mization method for solving the problem of transmission line
and ESS expansion planning. Fig. 1 shows the flowchart of the
proposed algorithm. To solve this problem, first, the initial pop-
ulation is randomly generated with a certain number of feasible
solutions (frogs). Then, for each frog, the objective functions
of investment cost, operating cost and standard deviation of
the LMP of buses are calculated. Next, with respect to the idea
of domination in multi-objective optimization [24], frogs are
compared with each other.

Frogs that are not dominated by any of other frogs (the best
solutions) are placed in front 1, the frogs that are only dominated
by the frogs of front 1 are placed in front 2, and this process con-
tinues till all frogs are apportioned to the fronts. Then, these
frogs are sorted in ascending order, according to the front num-
ber. In each iteration, the frogs in front 1 are transferred to the
archive and compared with the frogs there, and eventually, a
new set of non-dominated frogs is selected and archived. In the
next step, all frogs in each iteration (p), which are sorted based
on the front number, are divided into m groups each of which
contains n frogs, i.e., p = m x n. The strategy of apportioning
frogs to the groups is in such a way that the first frog is assigned
to the first group, the second frog to the second group and the
mth frog to the mth group. Moreover, (m+1)th frog is placed in
the first group, and this continues until all p frogs are assigned
to the m groups.

After classifying the solutions, local searches are performed in
parallel for all groups. Accordingly, in each group, the best and
the worst frog of the group is determined (according to the front
number), and using Eqs. 22 and 23, the worst frog of each group
moves toward the best frog. After this move, if the position of
the worst frog is improved, the new position will override the
current position; else, the same move will be repeated using the
best frog of all groups (randomly selected from the archive). If
the position of the worst frog does not improve, a random frog
will be replaced. A local search is performed for all groups with
a specified number of iterations, followed by an iteration of the
whole algorithm. The proposed algorithm is executed with a
specified number of iterations, and ultimately, the solutions in
the archive are considered as the set of Pareto-optimal solutions
of the problem. To choose the best-compromised solution of
the problem, a fuzzy decision making method is used, and the
process of problem solving is completed.

Generate the initial population (frogs) and calculate the

value of objective functions for each frog

Apply non-dominated sorting algorithm and determine the
front number of each frog

Sort all frogs based on the front number in an ascending
order

Move members of front 1 to the archive and update
archive using the strategy mentioned in section 3.1.(c)

Partition all frogs into a specified number of groups
(memeplexes)

Determine the best and the worst frogs in
the current memeplex (Xy, , X, )

Move the worst frog toward the best frog
using Equation 22 and 23

Select one of the archive members
randomly (xg) and recalculate new frog
by replacing X, with X in Equation 22

new frog dominate the
worst frog?

Generate a random solution to replace the
worst frog

¥

Replace the worst frog with the updated
frog

|l

Apply non-dominated sorting algorithm
and determine the front number of frogs at
current memeplex

s local search done fo
the predefined number at each
memeplex?

Is memtic evolution done for
all memeplexs?

No
Meet the maximum iteration?

UOIIN|OAS DIIWBIA

¢ Yes
Present archive solution as the optimal non-dominated set

Fuzzy decision making analysis

v

Fig. 1. Flowchart of the proposed algorithm.
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Fig. 2. IEEE 24-bus test system.

4. NUMERICAL RESULTS

A. Case study

The proposed model is implemented on the IEEE 24-bus test
system using MATLAB software. Fig. 2 shows the single-line
diagram of this network. Data of this network has been given
in detail in [26]. Simulation results are obtained in MATLAB
software environment using MATPOWER optimal power flow
function [27] on a server with 64-bit Windows operating system,
16 GB of RAM and 12 cores with a processing speed of 2.2GHz.

Other important data of the test are as follows:

¢ Simulation is carried out for a 10-year network expansion
planning, and the planning model is a static and single-step
one.

¢ Itis assumed that the system should be expanded for future
conditions with the generation and load demand increased
by 2.2 times their original values, i.e., load level of 6720
MW and generation level of 7490 MW. These conditions
correspond to load incremental rate of 8% per year with a
ten-year planning horizon [28].

¢ The capacity of each ESS unit is 20 MW and 80 MWh, and
a maximum of three units can be installed at each bus. If
batteries are used as storage systems, their investment cost
is considered to be 200,000 $/ MW and 25,000 $/ MWHh [29,
30]. Moreover, the charge and discharge efficiency of ESSs
are considered to be 0.9.

¢ The candidate corridors for transmission expansion plan-
ning include 34 existing corridors and seven new ones for
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Fig. 3. Daily load duration curve.

line construction, and a maximum of three lines are allowed
in each corridor. The data related to the transmission lines
has been presented in [31]. Construction costs of 138 and
230 kV transmission lines are between 200,000 and 2000,000
$/mile, respectively [32-34]. However, in this paper, the
construction cost of each line is considered to be 1000,000
$/mile [16].

e Lifetimes of ESSs and transmission lines are considered to
be 10 and 20 years, respectively.

¢ To calculate the annual operation cost, daily load duration
curves considered to be as depicted in Fig. 3.

e Parameters of the multi-objective shuffled frog leaping al-
gorithm (MOSFLA) are obtained by using other literature
data [23] and also trial and error method and they include:

— The initial population size is 10 times the number of
decision variables in each case.

— The number of members of each group is equal to 5.

— The number of local search processes performed in
each group is equal to 3.

— The initial and final inertia weights are considered to
be 0.9 and 0.4, respectively.

— Finally, the number of iterations of algorithm is con-
sidered to be 500.

B. Analyzing results

In this subsection, in order to investigate the effect of the ex-
istence of ESSs on the transmission expansion planning, the
results of studying the network are presented and compared
with each other in two different cases: (a) without considering
ESSs (b) with considering ESSs. Taking the conditions in the
previous subsection into account, the Pareto-optimal front in-
cludes 160 and 180 non-dominated solutions for cases (a) and (b),
respectively. It is worth noting that, since it is difficult to show
a set of non-dominated solutions in a 3D space, the numerical
results are presented as two-objective conflict graphs, which are
relative to each other. Therefore, in each graph, although the
presented solutions may seem dominated, considering the third
objective, which is not shown in the graph, it becomes clear that
these solutions are non-dominated.

In Fig. 4, the amount of variations of operation cost in com-
parison to investment costs are shown for cases (a) and (b). By
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the following results are obtained:

(3.1 M$).
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rate of operation cost decreases, so the slope of the linear
curve in the second part of cases (a) and (b) are equal to 0.81
and 1.83, respectively.

¢ Totally, Fig. 4 shows ESS can have a significant effect on
short term costs. That’s because, ESSs have the potential to
move energy from peak to off-peak periods. Accordingly,
power system operation costs can be reduced with an in-
tegrated operation of ESSs and power systems, where the
presence of ESSs allows for a reduction in the use of some
peaking units of the system.

Fig. 5 shows the variations of the total network cost versus
investment cost in cases (a) and (b). The total network cost
is in fact the sum of objective functions of operation cost and
investment cost. As seen in this figure, with the increase in
investment cost, the total network cost first decreases and then
increases. Variations of the total network cost are due to the
fact that, at first, with the increase in the investment cost, the
operation cost decreases dramatically, and consequently, the
total network cost decreases as well. Once the operation cost
approaches its minimum value, its variations with respect to
investment cost are insignificant. Therefore the total cost of
network expansion will increase with the increase in investment
cost. Furthermore, a comparison made between the two cases (a)
and (b), which shows that the presence of ESS makes it possible
to further decrease the total network expansion planning cost.

To investigate the effect of the presence of ESS on improving
market indices of the power network, standard deviations of
LMPs with respect to the amount of investment cost in two
cases are considered. These cases, i.e., (a) network expansion in
the absence of ESS, and (b), network expansion in the presence
of ESSs, are compared with each other in Fig. 6. As is clear
from this figure, in these cases, with the increase in investment
cost, standard deviations of LMPs decrease, and as a result, the
competitiveness of the network increases. However, since the
slopes of the approximate linear curve in cases (a) and (b) are,
respectively, 25.33 and 55.32, the decreasing variation rate of

Fig. 4. Trade-off between operation and investment costs: (a)
transmission expansion planning, and (b) transmission and
ESS expansion planning.

standard deviations of LMPs in case (a) is much lower than case
(b).

In fact, considering the approximated variations slope, for
each 1 M$ of investment in the network, the value of standard de-
viation of LMPs decreases either by 25.33 $/MWh in the absence
of ESS or by 55.32 $/MWh in the presence of ESS. Consequently,
with a certain investment cost, competitive environment and the
social welfare index increased in the presence of ESS. Moreover,
it can be seen in Fig. 6 that the required amount of investment
costs for network expansion with equal LPMs and a standard de-
viation of zero, in the presence and absence of ESS, are 29.53 M$
and 41.54 M$, respectively. Therefore, through the inclusion of
ESS in a network, the competitive environment can be improved
in the restructured environment with a lower investment cost.

The best solution for transmission expansion planning is se-
lected by using the fuzzy decision making approach. In this way,
all three objectives presented in this paper are taken into account
simultaneously and with the same level of importance. The re-
sults related to new lines and the required ESSs in both cases (a)
and (b) are shown in Table 1. A comparison between the results
reveals that the presence of ESS causes a decrease in the number
of lines requiring construction, and causes further improvement
in the objectives of transmission expansion planning, including
its total cost and standard deviation of LMPs, compared to the
case in which no ESS is used.

C. Investigating effect of ESS price

As was discussed in the previous section, ESSs can have an
effective role in transmission expansion planning. Despite all
the advantages of using ESSs in power networks, their devel-
opment and widespread application in the future are highly
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Table 1. Best compromised solution by using fuzzy decision making

Case a: Without ESS

Case b: With ESS

Corridor (number of added lines)

3-24(1), 6-10(1), 8-9(1), 9-11(1), 14-16(1),
15-21(1), 16-17(1), 20-23(1)

3-24(1), 8-9(1), 14-6(1), 15-21(1), 16-17(1)

ESSs (number of unit@node) -

2@3, 1@4,1@5, 3@6, 1@10, 1@11, 1@13,

1@15,2@19,1@24
Total costs (annualed investment cost plus operation cost) | 710.61 699.5
Standard deviation of LMP’s 10 0
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dependent on their investment cost. According to the forecasts
made in [29, 30], with the advances in technology, ESS price will
decrease to as low as 200,000 $/MW and 25,000 $/ MWh, until
2030. However, in this subsection, to take the uncertainty of ESS
price forecast into consideration, the problem of transmission
and ESS expansion planning is analyzed for different scale fac-
tors of ESS price. If the forecast price is obtained, the scale factor
is 1, while for the failure in obtaining the forecast price, the scale
factors 2 and 3 are taken into account. The obtained results of
transmission and ESS expansion planning are compared with
those of the TEP problem in which ESSs are not considered. To
investigate and analyze the results, the values of different points
of Pareto-optimal front are presented in Fig. 7. As can be seen
in Fig. 7(a), the minimum investment cost required for network
expansion varies with the increase in ESS price so that at lower
ESS prices, their contribution to network expansion is higher
and investment costs of network expansion are lower.

However, as the forecasted ESS price increases, their pene-
tration in the network decreases. Accordingly, when the scale
factor of ESS price is equal to 3, the minimum investment cost of
network expansion in the presence and absence of ESSs are the
same, i.e., in this case, due to the high price of ESSs, only lines
are used for network expansion.

Y:32

Investment Cost(MS)

Fig. 6. Trade-off between the standard deviation of LMPs and
investment cost: (a) transmission expansion planning and (b)
transmission and ESS expansion planning.

Moreover, network expansion results at the point with the
lowest value of the standard deviation of the LMPs are presented
in Fig. 7(b). As seen, the lowest value of the standard deviation
of LMP in network expansion is zero, and at this point, the
LMPs of all buses are equal. As can be seen in Fig. 7(b), with the
increase in ESS price, the investment cost required for reaching
this point has increased as well. However, the overall investment
cost in the presence of ESS is lower compared to the case in which
ESS is not present.

In Fig. 7(c), the points of the lowest operation costs are com-
pared at different prices. As seen, in the presence of ESS, the
lowest operation cost is 640 M$, showing that, with the increase
in ESS price, the optimal position and capacity of ESSs and lines
have not changed, and consequently, optimal operation cost
has not changed either. However, considering the increase in
ESS price, the investment cost required to reach the point of
minimum operation cost will be higher. In network expansion
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without considering ESSs, the operation cost increases and its
lowest value is 670 M$.

In Fig. 7(d), the variation of the total network expansion cost
(sum of investment and operation costs) with the increase in ESS
price is shown. It is observed that, as the ESS price increases,
the total network expansion cost increases as well, while it is
lower in comparison to the expansion cost of the network in
the absence of ESSs. Moreover, if the scale factor of ESS price
exceeds 3, ESS cannot contribute to the network expansion, and
the network expansion cost becomes equal to the case without
ESS.

D. Validation of the proposed results

In this section, in order to verify the validity of the obtained
solutions and to compare them with the results of another multi-
objective algorithm, the problem of transmission line and ESS
expansion planning is analyzed and solved for the IEEE 24-
bus network using the non-dominated sorting genetic algorithm
(NSGA). Required data of network and ESS are similar to section
A. In order to implement NSGA, some required data, such as the
initial population and the number of iterations of an algorithm
similar to the proposed algorithm and other required parameters
have been chosen from [24].

The results obtained using NSGA are shown in Fig. 8. As can
be seen in the obtained optimal front in which both objectives
are shown relative to each other, the lowest required investment
and operation costs are, respectively, 6.2 and 651.9 (M$), and the
smallest standard deviation of the LMP of buses is zero.
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Fig. 8. Result of NSGA for transmission and ESS expansion
planning problem.

To compare the results of NSGA and the proposed algorithm,
Tables 2-4 present the details of network expansion planning at
each minimum point of the objectives. As shown in the com-
parisons of these tables, the proposed algorithm has achieved
better results. Furthermore, with regard to the smallest standard
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Table 2. Minimum investment cost (M$) by using NSGA and

proposed algorithm
NSGA |
Corridor (number of added lines) - 20-23(1)
ESSs (number of unit@node) 3@6, 3@19,2@20 1@6
Minimum investment cost (M$) 6.216 3.183

deviation of LMP, both methods have reached zero. However,
by comparing Fig. 8 and Fig. 6(b), it is clear that the proposed
method has achieved these results with a lower investment cost.

In addition to accuracy, the computational speed is one of the
significant advantages of the proposed method over the NSGA
and similar multi-objective methods. This is because in the pro-
posed method, in all groups, local searches are performed in
parallel and simultaneously, and cores of the server can be en-
gaged in parallel. For this purpose, in the MATLAB software,
parfor-loop is executed instead of for-loop in the local search
of all groups, and this significantly increases the computational
speed. The execution time of the proposed algorithm for each
iteration is 42 seconds, while each iteration of NSGA takes 265
seconds. Therefore, according to the results, it seems that the pro-
posed algorithm can be superior to other evolutionary methods
in terms of accuracy and computational speed.

5. CONCLUSION AND FUTURE TRENDS

In this paper, the problem of ESS and transmission expansion
planning in the network was addressed in order to supply the
forecasted long-term demand. Network expansion planning
was performed in an LMP-based power market environment
to minimize the costs and to improve the social welfare index.
Due to the fundamentally different scale and variation range of
operation cost in comparison to the investment cost, in this paper,
operation and investment costs were considered as separate
objective functions, which results in more accurate and better
modeling of the problem.

Standard deviation of the LMP of network buses was mod-
eled as another objective function of the problem; minimization
of this problem can result in an improvement in the social wel-
fare index and competitiveness of the network. The problem
model was solved accurately and completely using the multi-
objective shuffled frog leaping algorithm. The results obtained
from transmission expansion planning with and without consid-
ering ESSs were presented and compared with each other. The
obtained results showed that if the price predictions are realized,
ESSs can play a very effective role in decreasing investment and
operation costs, increasing the level of competitiveness of the
network and improving competition environment in the power
market.

Considering the sensitivity analysis of ESS price, if the pre-
dicted price exceeds a certain level, the contribution of ESS in
network expansion planning is decreased. However, taking var-
ious technical and economic advantages of ESSs into account,
using them even with high prices might be justifiable, which
is an issue that needs to be investigated in future works. Fi-
nally, aimed at validating MOSFLA result, the NSGA applied to
solve the problem and showed that the proposed method had
superiority in terms of accuracy and computational speed.
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