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The main aim of this paper is to emphasize on the significant role of data pre-processing phase in improving the 

short-term load demand forecasting. Different transformation approaches including normalization, Zscore and 

Box-Cox methods are applied and various input selection methods including forward selection, backward 

selection, stepwise regression and principle component analysis are used to see how the combination of these pre-

processing techniques will influence the performance of different parametric (ARIMA, ARIMAX, MLR) and 

non-parametric (NAR, NARX, SVR, ANFIS) predictors. The data has been collected from the daily load demand 

of Ottawa, Canada. It has been observed that the Box-Cox transformation significantly improved the 

performance of all predictors and the findings have demonstrated the superior role of exogenous variables in 

accuracy improvement of all predictors. In terms of MAPE, the value of 2.27% for ARIMA model improved to 

1.75% with ARIMAX using temperature, and it decreased from 1.46% to 1.334% by means of NARX model 

using normalized PCA which is applied to normalized data. In an overall view, the non-parametric algorithms 

have had a considerable gain over parametric models and NARX network has the highest accuracy among all of 

the predictors.  

Keywords: Short-term load-demand forecasting, Pre-processing, Box-Cox transformation, NARX. 
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1. Introduction 

Electricity demand forecasting is known as one of the most 
important issues in energy management which plays an essential role 
in economic growth and development of countries. Since the 
operation of a wide range of industries and urban consumers mostly 
depend on the proper supply of electrical power, it is strictly required 
for every country to have an effective plan for the most reliable 
supplement with least costs. Load forecasting is divided into three 
main categories based on the time interval of the prediction: long 
term load forecasting (LTLF), medium term load forecasting 
(MTLF) and short-term load forecasting (STLF). In comparison with 
the first two categories, STLF is more considered in literature of load 
demand prediction due to its essential role in efficient daily planning 
and the operation cost reduction of power systems [1]. An accurate 
load forecast can conveniently carry the main power system 
operations such as maintenance scheduling, tariff rates adjustments 
and contract evaluations [2]. Moreover, it will improve the efficiency 
of the decisions made by energy managers and policy makers for 
having the most reliable energy system in future [3,4]. For STLF, the 

existing techniques are mainly categorized into two groups [5]. 
Parametric techniques such as time series techniques [4, 6, 7], linear 
regression [8], autoregressive moving average (ARMA) [9, 10] and 
stochastic time series [4, 11] and Non-parametric techniques such as 
artificial neural networks (ANNs) [12-17]. 

1.1. Related works 

There are some review papers on the most commonly used 
techniques for STLF [18, 19]. Among forecasting models, statistical 
methods such as autoregressive moving average (ARMA) [9], time 
series techniques [6], linear regression [8] are known as strong 
predictors. However, if the behavior of the input data deviates from its 
normal condition (such as sudden accidents and deviations in 
exogenous variables), these methods aren’t capable enough to quickly 
identify and support such abruptions. Nevertheless, they are still known 
as powerful forecasting tools. Vaghefi [20] proposed a model in which 
a multiple linear regression and a seasonal autoregressive moving 
average model are combined, so that it was possible to take advantage 
of two parametric methods simultaneously to forecast the short-term 
load demand. Kavousi-fard [21] established a hybrid model by 

http://dx.doi.org/10.22109/jemt.2018.126045.1077
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combining ARIMA models with AI based algorithms. Bennette [12] 
developed a hybrid model of ARIMA and ANN based techniques 
which resulted in improvement in the forecasting of total energy 
consumption of the next day and determining demand.  

For non-parametric forecasting studies, Lin [22] developed an 
ensemble model of Variational Mode Decomposition (VMD) and 
extreme learning machine (ELM) which were optimized by 
differential evolution (DE) algorithm. The results displayed a 
significant improvement in one-step and multi-step ahead 
forecasting of load demand. Zheng [23] established a hybrid model 
of similar day (SD) selection, empirical mode decomposition (EMD) 
and long short-term memory (LSTM) neural networks for prediction. 
The achievements revealed proper improvements in load forecasting. 
Buitrago [24] developed a hybrid model of open and closed-loop 
form of non-linear autoregressive neural network with exogenous 
variables (NARX) models. In terms of average error, the proposed 
model achieved an improvement of 30% in comparison with the 
feed-forward ANNs and ARMAX model. 

The idea of support vector machine (SVM) was first created by 
Vapnik in 1996 [25]. Among related works, Pellegrini [26] proposed 
a SVR model for the nonlinear dynamic behavior of customer load 
demand without any assumption for the stationary nature of the input 
data. Chen et al. [27] used the SVR to forecast the load demand in 
which the use of temperature as input variable could significantly 
improve the accuracy. 

Adaptive Neuro-Fuzzy interface System (ANFIS) method was 
first introduced by Jang [28] who took advantage of both ANNs and 
FL systems to establish a strong prediction tool with minimum error. 
Among ANFIS papers, Yang et al. [29] proposed a hybrid model 
based on ANFIS and an improved neural network algorithm which 
could deal with linearity, nonlinearity and seasonality problems in 
STLF. Chevik and Chunkas [30] have developed an ANFIS model 
to forecast hourly load demand of Turkey in a one-year horizon and 
the historical load and temperature have been used as input data. 

The capability and efficiency of both categories in forecasting 
are eminent [31]. However, recent studies reveal that the artificial 
intelligence algorithms have shown more eminent performance in 
forecasting [32], especially in cases that the normal conditions are 
affected by sudden abruptions (human impacts, social events and 
meteorological changes) [33]. Yet in some cases, the parametric 
models, such as ARIMA, have represented an impressive 
performance in predicting the load consumption because of their 
dynamic structure [34].  

In addition to developing the most efficient predictors, two 
aspects are also of importance in establishing an accurate prediction: 
Considering all of the factors which are effective on load demand 
variations (endogenous and exogenous) and improving the quality of 
the input data by using appropriate pre-processing methods. Input 
selection can significantly improve the prediction accuracy. Among 

exogenous variables, Weather factors (temperature, humidity, wind 
speed) and historical data are mostly considered in load demand 
forecasting [12, 35]. In addition to well-known input selection 
techniques, in some cases, this procedure is done based on trial and 
error [36, 37]. The effective factors are those in which a significant 
correlation between their values and the load consumption is 
investigated.  Bennett [12] used SR method for selecting the 
variables for STLF. Massana [38] applied a heuristic method in 
which the whole space of features is searched and the redundant 
variables are removed. Zheng [23] applied an Xgboost algorithm to 
evaluate the importance of exogenous features and selected 
temperature and next-day pick load as the most effective variables. 

In addition to Input selection, the quality of the input data also 
plays an essential role in achieving a precise prediction model and 
has a remarkable effect on the performance of the predictors. Pre-

processing techniques not only improve the accuracy of the prediction, 
but also are appropriate for the characteristics of the experimental 
model [39]. In time series prediction, covariance stationary assumption 
guaranties that the mean and covariance of the process is finite and time 
invariant. The non-stationary characteristics of load demand series can 
be removed by pre-processing step which can significantly improve the 
quality of input data. Although data-preprocessing methods are strictly 
considered in some literature, but, in some cases, using covariance 
stationary methods are ignored [34, 20, 40, 41] or the regular 
normalization technique with discrete uniform distribution is applied 
[42-44]. However, there are other powerful transformation methods 
which should be taken into account. 

This paper first investigates the significant effects of different data 
pre-processing methods on the performance of algorithms from both 
parametric and non-parametric categories. Second, the effects of a 
group of input selection techniques on the performance of the 
predictors are considered to see how various selection techniques 
influence the performance of algorithms and the accuracy of the 
prediction. The aim is to compare the performance of various 
algorithms with different data pre-processing and input selection 
methods and confirm that this simple but essential step cannot be 
ignored in forecasting problems. In summary, the contribution of the 
paper is given as below: 

• Applying various data pre-processing methods to develop precise 

STLF models. 

• Using different input selection methods to involve the most 

effective factors in load demand prediction. 

• Investigating the effects of different data pre-processing and 

input selection techniques on both parametric and non-parametric 

predictors. 

• Considering the mutual effects of data pre-processing and input 

selection methods to identify the best combination for 

forecasting. 

The rest of the paper is organized as follows: the theory of the 
parametric and non-parametric algorithms is brought in section 2. In 
section 3, the data pre-processing techniques are discussed. In section 
4, the input selection approaches are introduced. Next, design of the 
experiment is given in section 5. The prediction results are brought in 
section 6, and the related discussions are presented in section 7. A brief 
conclusion is provided in section 8 and finally some future directions 
are given in section 8.  

2. Applied statistical and artificial methods  

In this paper, some of the parametric algorithms are selected from 
a group of ARMA-based models including ARIMA and ARIMAX and 
the multivariate linear regression (MLR). The non-parametric 
algorithms are chosen from MLP-based methods including Support 
Vector Regression (SVR), Nonlinear AutoRegressive model with 
Exogenous variables (NARX) and Nonlinear AutoRegressive model 
(NAR). The NAR networks are designed to see how the performance 
of the model will change without the exogenous variables. 

2.1. Adaptive neuro-fuzzy interface system (ANFIS) 

In addition to the abovementioned non-parametric algorithms, an 
Adaptive Neuro-Fuzzy Interface System (ANFIS) model is developed 
to take advantage of fuzzy logic and ANN combination and see how it 
works with various scenarios of input selection and data pre-
processing. 

Suppose that there are two inputs x1 and x2 and one output Y. Based 
on the first-order Sugeno fuzzy model, the common fuzzy rules with 
two if-then expressions are determined as given below: 

R1: If x1 is α1 and x2 is β1, then y1=p1x1+q1x2+r1 
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R2: If x1 is α2 and x2 is β2, then y2=p2x1+q2x2+r2 

where αi and βi (i=1,2) are the fuzzy sets with membership 
functions μαi and μβi. Figure 1 displays the structure of the equivalent 
ANFIS function with two inputs. Each layer proceeds with the 
following evaluations: 
A. Rule premises evaluation 

1 2( ) ( )i i iw x x =  1, 2i =  (1) 

B. Implication evaluation and final output 

1 1 2 2
1 2

1 2

( , )
w y w y

Y x x
w w

+
=

+

 
(2) 

which can be rewritten as: 

1 2 1 1 2 2( , )Y x x w y w y= +  (3) 

where 

1 2

i
i

w
w

w w
=

+
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Fig 1: ANFIS structure with two inputs and one output 

3. Data pre-processing 

In this study, the dataset of daily electricity demand from Ottawa, 
Canada is used and the records are gathered from January 1, 2013 to 
January 7, 2016, as illustrated in Figure 2. 

The histogram and the statistics of the actual load demand are 
given in Figure 3 and Table 1 which show a positive skewness (far 
different from zero) and kurtosis (higher than 3). It indicates an 
asymmetric distribution for the raw data and thus, the actual data is 
not normally distributed and requires to be normalized. 

 

Fig. 2. The actual load in Ottawa from Jan. 1, 2013 to Jan. 7, 2013 

In addition to historical demand, six exogenous variables 
including average daily temperature (T), humidity (H), dew point 
(DP), visibility (V), sea level pressure (SLP) and wind speed (WS) 
are gathered to use for multivariate forecasting methods. Fortunately, 
the dataset is complete and no information is missed. The outlier 
issues are supposed to be ignored, that is, the odd data points (sudden 
increase/decrease) are kept in the dataset to evaluate the performance 
of the predictors in facing such abruptions. 

Fig. 3. Histogram of actual load demand 

Table 1. Summary statistics of the actual load demand dataset  

Parameter Value 

Average 21974.82 

Median 20997.5 

Maximum 35432 

Minimum 9934 

Std. Dev. 4222.287 

Skewness 0.93 

Kurtosis 3.51 

1st Quartile 18932.5 

3rd Quartile 24033.75 

3.1. Stationary process and data transformation 

Before developing the predictor models, data pre-processing step 
is essential to improve the precision of the prediction. A covariance 
stationary time series is one of the main initial assumptions for 
applying ARIMA models. A covariance stationary process in Box-
Jenkins model [45] is defined as a series in which the mean and 
variance do not change over the time. For a non-stationary process, a 
number of techniques are suggested to stabilize the mean and variance 
such as differencing and Box-Cox transformation [46]. In this study, 
various data normalization methods including Max-Min normalization, 
Zscore, first difference and Box-Cox are applied to stabilize the mean 
and variance of the process and evaluate the performance of predictors 
with various transformed data. In the following, these methods are 
briefly explained. 

• Min-Max normalization 

Assume that the transformed data is going to be in the interval [

min max,x x  ]. Then the normalized data is achieved as displayed in Eq. 

(5), 

min
max min min

max min

( )( )old
new

x x
x x x x

x x

−
   = − +

−

 
(5) 

• Zscore normalization 

In this method given in Eq. (6), the mean and standard deviation of 
the transformed data are zero and one, respectively: 

old old
new

old

x mean
x

std

−
=  

 (6) 

• First difference method 

In Box-Jenkins model, differencing is used to obtain a stationary 
process. Differencing can be applied in various orders to obtain a stable 
process. The first difference is given in Eq. (7). 

1t t tx x x −
 = −  (7) 

•  Box-Cox transformation 
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In addition to mean, the variance stationary time series is 
required for time series prediction. In this regard, Box-Cox 
transformation, given in (8), is suggested to stabilize the variance of 

the process [40]: 

( ) 1
,

( )

log( ),

t

t

t

x

x

x



 

 −


 = 



 if   λ≠0 

(8) 

if   λ=0 

The values of 0, 0.5 and 1

3
 are widely used which the last two 

transformed values are called as square and cubic roots. 

4. Input selection 

For multivariate predictions, input selection can significantly 
improve the performance of predictors. Identification of the most 
influencing factors facilitates the data gathering, especially for long 

period predictions which helps to collect fewer data. Among different 
techniques for data reduction, in this research, forward selection (FS), 
backward selection (BS), stepwise regression (SR) and principal 
component analysis (PCA) are the methods applied for input selection 
and their performance are compared to see how they work with 

parametric and non-parametric predictors.   

FS, BS and SR are regression-based models which consider the 
correlation between the input and dependent variables. PCA is known 
as a technique for reducing/removing inefficient variables from the 
original dataset [47] (Azadeh and Ebrahimipour, 2004). PCA 
investigates for a new set of variables (principal components) which 
are defined as an uncorrelated linear combination of the original input 
variables. It is expected that the performance of PCA improves when 
the initial exogenous variables have least variance. In this case, the 
PCA is applied on exogenous variables in two forms: Raw and 
normalized values of exogenous input data. In summary, Figure 4 

illustrates the overall methodology of the paper. 
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Fig. 4. Graphical abstract of the overall methodology 
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5. Design of experiment 

To design the experiment, the daily historical load demand and 
average weather data are collected. The total number of instances is 
1102 covering the data from January 1, 2013 to January 7, 2016. The 
original load demand data are obtained from the Independent 
Electricity System Operator (IESO) website of the Ontario’s power 
system (http://www.ieso.ca). All prediction models are tested for a 

7-day-ahead period.  

5.1. Pre-processing 

ACF and PACF plots are useful tools indicating whether the 
process is covariance stationary or not. Figure 5 displays the ACF 
and PACF of raw data. 

 

Fig. 5. ACF and PACF of raw data before pre-processing 

If ACF plot decays slowly and PACF displays a sudden cut off, 
it is a sign of non-stationary process. To cope with it, differencing is 
a well-known method to alleviate the variations in the process and 
make it stationary.  Figure 6 displays the series of differenced raw 
data and Figure 7 shows how differencing effects on the ACF and 
PACF plots. 

 

Fig. 6. The trend of differenced load demand in Ottawa from Jan. 1, 
2013 to Jan. 7, 2016 

 

Fig. 7. ACF and PACF of differenced data 

5.2. Input selection 

In prediction, it is common to select those variables which have 
the highest correlation with the response variable. Figure 8 illustrates 
the correlation of exogenous weather variables with the daily load 

demand. 

Based on the given correlation coefficients, T and DP have the 
highest correlation with load demand. The rest of the input selection 
methods have selected various combinations; T and H are selected by 
FS and SR methods and H and DP are chosen by BS technique. For 
PCA approach, three PCAs are considered which are able to cover at 
least 88.7% of the variance between exogenous variables. The results 
further indicate how these various techniques will behave with 
different algorithms. 

5.3. Parameters Setting for SVR 

SVR uses kernel functions to transform the data into a new feature 
space and then performs a linear regression as given in (9): 

*

1

( ) ( ) ( , )
n

i i i

i

f x k x x b 
=

= − +  (9) 

where 
i

 and *

i  are the Lagrangian multipliers, ( , )ik x x  is the 

kernel function. 

There are several kernel functions with various characteristics such 
as radial basis, linear, polykernel and Pearson VII universal kernel 
(PUK) functions. Among all, PUK is the most suitable function for 
mapping and generalizing the data points with the form given in (10): 

1
( ) 12

2

1
( , )

[1 (2 2 / ) ]

i j

i j

K x x

x x  
−

=

+ −

  

(10) 

The related parameters of ω and σ in PUK and parameter C for 
SVR should be specified. Parameter C plays as a controller which 
penalizes the mis-classified cases. Although there’s not a proved theory 
for C specifications, but one reasonable idea is to set it around the range 
of output values [38].  

In order to set the parameters of the SVR model, grid search (GS) 
is used as a simple and fast method which is appropriate for the size of 
the problem of this paper. Grid search explores among pairs of 
parameters until it finds the best. By using of GS, the values of 0.4 and 
14 are specified as ω and σ. Since the output data is pre-processed and 
transformed with different methods of normalization, its value varies 
in different cases as given in Table (2): 

Table 2. The parameters estimated for SVR model 
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Fig. 8. The correlation scatter plot for six exogenous variables 
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6. Prediction results 

The performance quality is quantified by means of mean 
absolute percentage error (MAPE) metric to be compared with the 
conventional studies. The MAPE is calculated as follows: 

1

1 n
i i

i i

A F
MAPE

n A=

−
=   

(11) 

where Ai and Fi stand for actual and forecast value, respectively. 

6.1. Prediction without Exogenous Variables 

Table 3 and Table 4 present the performance of ARIMA (1,1,1) 
and NAR network in terms of MAPE percentage. Generally, NAR 
has shown a better performance over ARIMA. For both predictors, 
the Box-Cox is the best transformation method in which the lower 
value for parameter λ leads to a better precision. Zscore technique, 

on the other hand, had displayed the weakest performance in 
comparison with the rest of the pre-processing approaches. 

Table 3. The value of MAPE(%) for ARIMA (1,1,1) 

 Data Transformation Method 

 Raw 

Data 

Normalization 

[0,1] 
Zscore 

Box-Cox 

Transformation 

 λ=0 λ=0.33 λ=0.5 

ARIMA 

(1,1,1) 
11.50 27.56 64.78 2.27 5.35 7.23 

Table 4. The value of MAPE(%) for NAR network 

 Data Transformation Method 

 Raw 

Data 

Normalization 

[0,1] 
Zscore 

Box-Cox Transformation 

 λ=0 λ=0.33 λ=0.5 

NAR 5.98 11.71 29.59 1.46 2.53 3.12 

6.2. Prediction with Exogenous Variables 

The results of the predictions which consider the exogenous 

variables for parametric and non-parametric algorithms are given in 

Tables 5 to 9. The results reveal that those exogenous variables with 

higher correlation coefficient are more capable of improving the 

prediction accuracy rather than using all variables. In addition, the 

variables selected by FS, BS, SR and PCAs are not the best ones in 

comparison with T and DP. 

Table 5. The value of MAPE(%) for ARIMAX (1,1,1) 

  Data Transformation Method 

  
Raw 

Data 

Normalization 

[0,1] 
Zscore 

Box-Cox Transformation 

  λ=0 
λ= 

0.33 

λ= 

0.5 

E
x
o

g
en

o
u

s 
V

ar
ia

b
le

(s
) All 7.58 17.05 36.53 2.08 3.88 5.10 

T 7.73 14.00 28.68 1.75 3.48 4.50 

T,DP 6.41 13.92 28.57 2.56 6.26 8.51 

T,H* 14.89 14.18 29.42 2.61 6.41 8.70 

H,DP**  14.80 13.94 28.85 2.61 6.43 8.73 

PCA 7.66 15.83 33.46 1.83 3.75 4.89 

PCA*** 7.62 15.74 33.25 1.82 3.73 4.87 

* Forward Selection, Stepwise Regression 

** Backward Selection 

*** Normalized PCA 

 

Unlike ARIMAX model, the results given in Table 6 reveal that 
the MLR requires all exogenous variables to improve its 
performance.  

 

Table 6. The value of MAPE(%) for MLR 

  Data Transformation Method 

  
Raw 

Data 

Normalized 

[0,1] 
Zscore 

Box-Cox Transformation 

  λ=0 
λ= 

0.33 

λ= 

0.5 

E
x
o

g
en

o
u

s 
V

ar
ia

b
le

(s
) All 5.94 15.05 43.77 1.46 2.77 3.68 

T 6.70 16.75 47.94 1.57 3.08 4.12 

T,DP 6.74 16.84 48.21 1.57 3.08 4.12 

T,H* 6.75 16.87 48.36 1.57 3.09 4.13 

H,DP** 6.78 16.77 47.47 1.59 3.17 4.21 

PCA 6.80 17.01 47.41 1.56 3.11 4.16 

PCA*** 6.79 16.95 47.16 1.56 3.10 4.15 

* Forward Selection, Stepwise Regression 

** Backward Selection 

*** Normalized PCA 

Table 7 gives the final results for SVR model in which Temperature 
as input variable and Box-Cox method as normalization data resulted 
in the best prediction accuracy. In Table 8, the achievements reveal that 
the ANFIS model has the best performance with Temperature and Dew 
point as the variables with highest correlation with load data. 

Table 7. The value of MAPE (%) for SVR 

  Data Transformation Method 

  
Raw 

Data 

Normalized 

[0,1] 
Zscore 

Box-Cox Transformation 

  λ=0 
λ= 

0.33 

λ= 

0.5 

E
x
o

g
en

o
u

s 
V

ar
ia

b
le

(s
) 

All 5.81 15.02 26.53 1.84 3.05 4.02 

T 4.72 13.08 15.34 1.44 2.53 3.59 

T,DP 5.17 13.94 16.25 1.47 2.59 3.61 

T,H* 5.33 14.27 16.93 1.49 2.61 3.62 

H,DP** 5.39 14.36 17.52 1.52 2.63 3.65 

PCA 5.64 14.63 21.64 1.75 2.84 3.77 

PCA*** 5.56 14.42 18.71 1.61 2.75 3.72 

* Forward Selection, Stepwise Regression 

** Backward Selection 

*** Normalized PCA 

 

Table 8. The value of MAPE (%) for ANFIS 

  Data Transformation Method 

  
Raw 

Data 

Normalized 

[0,1] 
Zscore 

Box-Cox Transformation 

  λ=0 
λ= 

0.33 

λ= 

0.5 

E
x
o

g
en

o
u

s 
V

ar
ia

b
le

(s
) 

All 5.35 11.02 24.49 1.51 3.45 3.81 

T 4.23 8.94 11.98 1.46 2.39 3.44 

T,DP 4.03 8.61 11.62 1.41 2.16 3.26 

T,H* 4.52 10.44 23.53 1.49 2.67 3.55 

H,DP** 4.31 9.27 18.61 1.48 2.54 3.46 

PCA 5.41 11.74 24.87 1.53 3.76 3.97 

PCA*** 5.16 10.51 24.12 1.50 3.23 3.64 

* Forward Selection, Stepwise Regression 

** Backward Selection 

*** Normalized PCA 

Finally, the performance of NARX, as given in Table 9, displays a 

high superiority over the rest of the algorithms. The combination of 

Normalized PCAs as input variables and Box-Cox transformation of 

raw data have resulted in the best prediction with highest accuracy. 
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Figure 9 illustrates the performance of the abovementioned NARX 

model in some period (250 days) in the dataset. 

 

Fig 9. NARX network performance with Box-Cox Transformation 
and Normalized PCA 

Table 9. The value of MAPE(%) for NARX network 

  Data Transformation Method 

  Raw 

Data 

Normalized 

[0,1] 
Zscore 

Box-Cox Transformation 

  λ=0 λ=0.33 λ=0.5 

E
x
o

g
en

o
u

s 
V

ar
ia

b
le

(s
) 

All 3.71 7.56 22.09 1.36 1.86 2.50 

T 4.22 9.46 20.88 1.35 2.11 2.71 

T,DP 4.98 10.37 10.56 1.39 2.26 2.71 

T,H* 3.87 8.06 22.20 1.338 1.86 2.70 

H,DP** 4.69 10.18 15.95 1.41 2.36 3.09 

PCA 4.23 9.14 22.58 1.38 1.61 2.67 

PCA*** 3.49 7.44 9.95 1.334 1.46 2.43 

* Forward Selection, Stepwise Regression 

** Backward Selection 

*** Normalized PCA 

7. Discussion 

A comparison of the findings presented in Tables 5 to 9 shows 
the significant role of applying Box-Cox as a transformation method 
on accuracy improvement in daily load demand prediction especially 
for λ=0. The nonlinear transform of the raw data leads to a 
covariance stationary process in which the minimum value of λ 
results in more precision. Figure 10 illustrates how the Box-Cox 
transformation behaves with positive inputs and different values of 
parameter λ (Lambda). The Box-Cox function displays an almost 
linear behavior with lower values of Lambda and it is preferred to 
predict values with least variation.  

In a different point of view, the achievements in Table 10 reveal 
how the Box-Cox method could better make the distribution of the 
dataset close to normal. Although the normalization approach has 
significantly reduced the kurtosis close to zero, but the skewness is 
still too high. The histograms of the transformed data by Box-Cox 
and normalization methods are displayed respectively in Figure 11 
and Figure 12. 

 

Fig 10. The Box-Cox transformation function with various values 
of Lambda 

Table 10. Summary statistics of the actual and transferred 

load demand dataset 

Parameter 
Raw 

data 
Normalized Zscore 

Box-Cox 

λ=0 
λ= 

0.33 

λ= 

0.5 

Average 21974 -0.2344 3E-16 4.33 80.70 293.18 

Median 20997 -0.2797 -0.24 4.32 79.76 287.81 

Maximum 35432 1 3.17 4.54 95.53 374.46 

Minimum 9934 -1 -2.63 3.99 61.49 197.33 

Std. Dev. 4222 0.4380 0.99 0.07 5.18 27.65 

Skewness 0.93 0.72 0.96 0.43 0.61 0.69 

Excess 

Kurtosis 
0.51 0.04 0.51 0.23 0.21 0.25 

1st Quartile 18932 -0.5672 -0.72 4.27 76.95 273.19 

3rd Quartile 24033 0.0011 0.46 4.38 83.57 308.05 

 

 

Fig 11. Histogram of transformed load demand by Box-Cox method 

 

Fig 12. Histogram of transformed load demand by normalization 

method 

Based on the findings in Tables 5 to 9, the performance of all 
predictors has improved with normalized PCA in comparison with the 
PCA on raw data. When the data is normalized, the variance within 
variables decreases and the components cover a higher portion of total 

variance. However, PCA has not been successful in improving the 
accuracy of ARIMAX and MLR. The reason may be the linear nature 
of these regression methods which are not compatible with the 
principal components as inputs. Since the MLR only uses exogenous 
variables, its performance enhanced with all input variables. On the 
contrary, ARIMAX performed accurate with one or two variables 
which have high correlation with the response variable. 

The performance of SVR displayed an improvement with T as the 
variable with highest correlation with load demand and the PCA 
approach has not been successful in decreasing the prediction accuracy. 
The function of SVR model requires transforming the data into a new 
feature space, in this case, the components of PCA which are already 
the transformed form of original input data may not be capable to be 
retransformed and used as a representative regression variable and 
temperature which could better improve the accuracy of the model. 
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Similarly, PCA approach has not been appropriate for ANFIS 
which best improved with T and DP. Although its performance has 
been better than SVR and NAR, but its prediction accuracy has not 
been accurate as NARX. In comparison with NARX performance in 
Figure 9, the performance of ANFIS model for a period of 250 days, 
given in Figure 13, is less accurate than NARX network. The reason 
may be that the fuzzy variables and membership functions are not 
capable tools for modeling the complex relationship existing 
between the input data and load demand pattern. 

 

Fig 13. ANFIS performance with Box-Cox Transformation, T and 

DP as input variables 

In general, two aspects are of importance in improving the 
performance of the predictors. First, the part of algorithms which 
uses the historical values of load demand and second, the part in 
which the exogenous variables are included. The first part requires a 
suitable method of transformation which makes the process 
covariance stationary, such as Box-Cox method which displayed a 
great improvement in prediction accuracy. For the second part, the 
input selection depends on the algorithm. For parametric algorithms, 
it is better to pay more attention to the correlation of the inputs with 
response variable and mostly apply such variables with their original 
value. For non-parametric algorithms such as neural networks, the 
ability of learning the behavior of the response variable enables them 
to take advantage of all the information hidden in the inputs. In the 
other words, such algorithms are capable of identifying very complex 
relationships existing among the input and response variable. As a 
result, principal components which carry a piece of information can 
be more capable in improving the performance of intelligent 
prediction algorithms. 

The results show that the application of exogenous variables has 
led to more accurate prediction, but this is not necessarily always 
true. For instance, in comparison with the ARIMA, the accuracy of 
ARIMAX has improved in all conditions except for some few cases 
that the variables are selected by FS and BS. Comparing NARX and 
NAR results, the performance of NARX is far better than NAR, 
especially for the Zscore which has improved its MAPE from 29.59 
to 9.95. The reason for such improvement may be the nature of AI 
algorithms in which the learning process improves when the inputs 
carry a set of useful information about the output variable.  

Superior performance of MLR over ARIMAX and ARIMA 
reveals that the exogenous variables can add a great deal of helpful 
information to the process of prediction. It should be noted that in 
dealing with parametric and regression methods, the input variables 
should be wisely selected. In such models, the correlation of 
variables plays the most important role in input selection and 
redundant inputs can negatively affect the accuracy of the prediction. 

The superiority of artificial intelligence algorithms over the 
parametric and regression models has been proved in many 
conventional studies of load demand prediction. The achievements 
of this paper again show that AI algorithms performed much better 
than ARIMA models in all cases (with/without exogenous variables). 
The reason for this superiority may be the complex nature of such 
time series which requires a powerful tool for recognition and 

learning of the sophisticated behavior of the input and output variables. 

Finally, comparing the performance of transformation methods for 
all algorithms, the capability of Box-Cox transformation is prominent 
in all cases. Among the rest, Zscore displays the weakest performance 
in accuracy improvement. The reason may be the complex stochastic 
nature of the load demand which is not suitable for being transformed 
in a simple normal distribution form. In addition, though the 
normalization is better than the Zscore method, but it has not been so 
successful in making improvements in prediction accuracy. 

8. Conclusion 

The aim of this paper is to emphasize on the significant role of data 
pre-processing step in STLF. Five transformation methods are applied 
on the response variable and various input selection approaches 
including FS, BS, SR and PCA have been used to see how the 
combination of such pre-processing techniques would effect on the 
performance of the predictors. seven different kinds of predictors 
including parametric (ARIMA, ARIMAX and MLR) and non-
parametric (NAR, SVR, ANFIS and NARX) models have been used to 
evaluate their performance in various conditions. 

The experiment has been tested on dataset of daily load demand of 
Ottawa in Canada and the experimental results revealed that the Box-
Cox transformation method extremely improved the accuracy of the 
prediction than normalization and Zscore methods which are widely 
used in conventional studies. The lower value of parameter λ also leads 
to a more constant, covariance stationary process and accurate 
predictions. 

In addition, the performance of parametric algorithms has been 
improved with those exogenous variables which are highly correlated 
with the load demand.. The superior performance of MLR over 
ARIMA model proved that the exogenous variables also carry 
important information for predicting the behavior of the load demand. 
The findings showed that the PCA will result in better achievements if 
it is applied on normalized data than the raw ones and NARX model 
could outperform all the rest. Additionally, the performance of non-
parametric algorithms has been far better than the parametric ones in 
load demand prediction which is supposed to be among the complex 
problems of time series prediction.  

To summarize the achievements of this paper, the pre-processing, 
data transformation and input selection steps for time series prediction 
are the simplest but very essential activities which should be highly 
considered in analyzing sophisticated time series such as daily load 
demands. Table 11 gives a brief comparison between some recent 
conventional studies with the current paper and proves how the 
achievements of this paper are superior to some of previous studies. 

Table 11. Comparison results of MAPE in some recent 

conventional researches 
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9. Future directions 

For future directions, the effects of further pre-processing 
techniques such as wavelet techniques and heuristic algorithm on 
various prediction algorithms can be investigated. Moreover, using 
various datasets from different geographical zones may reveal how 
weather variables have influence on the quality of forecasting of 
different kinds of predictors. 
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