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Optimal, safe and robust scheduling, and planning of electric energy distribution networks are very im-
portant considering such networks as one of the most important components of electrical networks. Elec-
tric vehicles are one of the major elements of the future electricity distribution systems. In this study, an
optimal robust model is presented for short-term operational scheduling of distribution network in pres-
ence of uncertainties to minimize the cost of network operation. The robust optimization (RO) concept
is employed in this research to address the uncertainty of power market price. To investigate the pro-
posed method, a 33-bus IEEE-standard system has been applied, which contains distributed renewable
generation units and non-renewable energy sources. The obtained results indicate the effectiveness of
the presented model in network scheduling in the presence of uncertainties. Also, the impact of electric
vehicle parking as an energy storage technology on the functional cost of the distribution system is dis-
cussed, which shows high performance and convenient operation of the proposed model on scheduling
of electric distribution networks.
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1. INTRODUCTION

A. Problem definition and literature review

In recent years, the movement towards the use of less polluting
technologies has increased at all levels of production and energy
consumption. Many countries have put their policies on the
utilizing renewable energy resources such as wind units and
solar units. Also, electric vehicles will be the best alternative for
gasoline cars, which will be able to participate as energy stor-
age system in distribution systems. In addition, load response
programs have attracted a lot of attention as one of the ways
to reduce energy consumption and enable consumers to partic-
ipate in providing the required network power [1]. Demand
response (DR) programs are a set of programs that are intro-
duced by the network operator to reduce energy consumption
or transfer of consumption to other hours. The basis of the pro-
cess of these programs is to encourage consumers to cooperate
in these programs by increasing the price of electricity during

hours of high consumption or rewarding for the consumption
of low-consumption hours. At the same time, the simultaneous
presence of renewable and non-renewable energy sources along
with the participation of consumers in DR programs complicates
the distribution network scheduling [2]. Also, the uncertainty
in power distribution networks, including the uncertainty as-
sociated with renewable resources and the upstream price, will
double the complexity of network scheduling.

Remarkable efforts have been made in the operation of elec-
tric energy distribution networks using various methods for
network scheduling in the presence of uncertainties. In this
case, various concepts including Monte Carlo simulation con-
cept [3], point estimate approach [4, 5], fuzzy method [6, 7],
robust optimization (RO) method [8], scenario-based modeling
approach [9] and possibilistic–probabilistic-based method [10]
are utilized for handling the uncertainties of distribution net-
works. Deterministic methods take only one particular mode,
which obtains the optimal scheduling for that state, and cannot
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be accepted in general and in other possible conditions of the
network. Probabilistic methods also depend on the amount,
accuracy and quality of available information. Accordingly, in
the absence or inaccuracy of sufficient information, probabilistic
scheduling will not be correct. Studies on distribution network
scheduling have addressed this issue in some ways. For example,
a study is conducted in [11] exploring the impact of the presence
of energy storage sources on energy distribution networks. The
authors explored the optimal design of various energy sources
in the presence of cooling and heating systems connected to
power distribution networks in [12]. A linear scheduling frame-
work is presented in the presence of scattered energy resources
and flexible loads in [13]. In [14], multi-purpose short-term
scheduling is presented through the contribution of price re-
sponsive loads, which seeks to find out how best to propose
load response programs. The authors of [15] have created an
energy storage system for optimizing the distribution network,
where the fuel cell is intended. In this paper, the loss and air
pollution are also considered in the objective function. In [16], a
multi-objective environmental economic scheduling is proposed
to optimize the distribution network in the presence of wind tur-
bines. In [17], the effect of load response programs on the perfor-
mance of distribution networks has been studied. In this paper,
two types of load response programs, called real-time schedules
and emergency loading plans, have been investigated. In [18],
a multi-objective operational scheduling based on augmented
e-constraint concept is presented for charging and discharging
of EVs in a distribution network, aims at minimizing the total
operational costs and emissions. In addition, EVs participated in
supplying the required energy of distribution networks in [19],
where their effectiveness in short-term operational costs is ana-
lyzed. In [20], a novel method based on RO concept is utilized
to address the uncertainties of demand and wind units produc-
tion. In [21], an optimal day-ahead management of distribution
network is analyzed considering fuel cell and as storage technol-
ogy, where the emission function and power transmission loss
are considered. A stochastic-based method which studied the
optimal scheduling of distribution networks include scenario-
based modeling is presented in [22]. A risk based optimization
model is introduced in [23] taking into consideration risk level
for distribution systems operation considering wind power.

B. Innovations of study
According to the authors’ information, the impact of electric vehi-
cle parking as an energy storage system has not been considered
through the day-ahead optimization of distribution network
considering the uncertainties related to power market price us-
ing the RO method. So far, this system has not been utilized to
modify the performance of distribution systems and reduce the
operation cost of such networks. This study proposed an opti-
mization framework based on the RO method that can address
the problems of both deterministic and random methods. So,
this method models random variables with uncertain distribu-
tion and free of limitations, which can find optimal solutions
against the worst conditions of safe uncertainty. Compared to
stochastic optimization, the proposed model has various advan-
tages. First, this method only needs the predicted values of the
upper limit and the lower limit of random variables that are
easier to obtain from historical data. Second, unlike random
methods that use probabilistic guarantees to satisfy the con-
straints, the proposed method is followed by optimal solutions
that are safe for all variables in the random variables. In this
paper, the scheduling of distribution network in the presence

of renewable energy sources is based on a mixed integer opti-
mization. The proposed model defines the short-term operation
of the network, including the amount of exchange with the up-
stream network and the generation of distributed resources in
a way that minimizes the cost of network operation. In order
to provide a model for future distribution networks, the pres-
ence of diesel generators and renewable sources including wind
turbines and parking of electric vehicles as an energy storage
system as well as responsive loads have been considered. The
aim of the proposed model is to minimize the overall cost of the
smart distribution network with respect to the predicted values
of wind power generation and consumption while ensuring that
the scheduled energy and reserve of the next day remain reliable
through changing the uncertain variables of the distribution net-
work. Also, in order to demonstrate the effect of the presence
of electric vehicle parking as an energy storage system, two dif-
ferent case studies for the network are considered in this paper.
These two case studies are as follows:
Case 1: In this case, the next day scheduling of the distribution
network takes place without the presence of electric vehicles
parking as an energy storage system, and the cost of system
operation is reported.
Case 2: In this case, the next day scheduling of the distribution
network takes place in the presence of electric vehicle parking
as an energy storage system, and the cost of system operation is
reported.

C. Paper structure
The organization of the article is as follows. In Section 2, math-
ematical modeling including target function and problem con-
straints are presented. The RO method for the uncertainty model-
ing is described in section 3. Information about the test network
is provided in Section 4. The statistical results and charts related
to the achievements of this study are presented in Section 5. A
summary of the work is presented at the end of the article.

2. MATHEMATICAL MODELING

A complete mathematical model for day-ahead optimal energy
management of the smart distribution network, containing ob-
jective function and problem constraints, is presented in this
section. Also, modeling for renewable energy sources including
wind turbines, load response programs, electric vehicle parking
and distribution network is provided in this section.

A. The objective function
Scheduling the power of distribution networks by the indepen-
dent operator of the system takes place with the goal of mini-
mizing the costs of the network over a 24-hour period.

Min
24
∑

t=1
{Pgrid(t)× pE

g (t)}+
NDG

∑
j=1
{CEDG(j, t) + CSDG(j, t)}

+
NDRP

∑
d=1
{CEDRP(d, t)}

(1)
The proposed objective function includes two parts. The

first part is the cost of providing power and exchange with the
upstream network, which is the product of the hourly power
purchased from the upstream network (Pgrid) at the hourly price

of the upstream power supply (pE
g ). The second part relates to

the costs of the DGs, including the cost of performance (CEDG)
and the start-up cost (CSDG), which are subsequently introduced
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by (5) and (6) respectively. The third part relates to the costs
associated with the suppliers of DR programs, including energy
costs (CEDRP). The index t = 1, ..., NT denotes the time, the
index j = 1, ..., NDG represents the DG units, the index d =
1, ..., NDRP is related to DR programs.

B. Constraints
The constraints of day-ahead scheduling including equal and
unequal constraints, are presented in this section.

B.1. Distribution Network Constraints

In order to ensure safe and correct operation of the distribution
network, constraints (2) and (3) is considered. Equation (2)
ensures that the voltage remains within an acceptable range.
The feeder current range is also considered by Equation (3) [24].

Vmin(n) ≤ v(n, t) ≤ Vmax(n) ∀n, t (2)

I(m, n, t) ≤ Imax(m, n) ∀m, n, t (3)

where, Vmin , Vmax and v are the minimum, maximum and
hourly values of the bus voltages, respectively. Also, Imax and I
are the maximum flow capacity and the hourly flow rate of the
feeder between the m and n buses, respectively.

B.2. Power balance constraints

The reliable performance of distribution networks requires a
constant balance between power generation and load demand.
For this purpose, constraint (4) is intended to establish a balance
between the distribution network power with the demanded
network load in each bus n and at each hour t [25].

Pgrid(t) + ∑
j∈n

PDG(j, t) + ∑
w∈n

PWind(w, t)−∑
v

Pch(t, v) + ∑
v

Pdis(t, v)

+ ∑
d∈n

(1− DR).load0(d, t) + ldr(d, t)− Pload(n, t)

= Vi,h ∑
j

Vj,h(Gij cos δi,h + Bij sin δj,h)

(4)
PLoad is the load power of each bus, PDG is the hourly power

of each DG unit, PWind is the production capacity of each wind
turbine, Pch and Pdis are the active power charged and dis-
charged by electric vehicle parking as an energy storage system
and Pgrid is the power input from the upstream network.

B.3. Constraints of DG Units

In this section, the constraints relating to the operation of the
DGs have been fully incorporated [26]. The cost of performance
of non-renewable DG units is modeled in function of its power
production according to Equation (5). The start-up cost of the
DG is modeled by Equation (6).

CEDG(j, t) = aj × u(j, t) + bj × PDG(j, t) + Cj × PDG
2(j, t); ∀j, t

(5)

CSDG(j, t) = SUC(j)× (u(j, t)− u(j, t− 1)); ∀j, t (6)

Constraint (7) ensures that the DG unit’s point of view consid-
ers technical constraints including the minimum and maximum
production capacity.

PDG
min(j)× u(j, t) ≤ PDG(j, t) ≤ PDG

max(j)× u(j, t) ∀j, t
(7)

The amount of increase or decrease in generation capacity by
DG units cannot exceed the specified value at any time. Equa-
tions (8) and (9) limit the rate of increase and decrease in DG
unit production.

PDG(j, t)− PDG(j, t− 1) ≤ UR(j)× (1− y(j, t)) + PDG
min(j)× y(j, t) ∀j, t

(8)
PDG(j, t− 1)− PDG(j, t) ≤ DR(j)× (1− z(j, t)) + PDG

min(j)× z(j, t) ∀j, t
(9)

Each DG unit should remain on for a few hours after it is
turned on. Also, each DG unit must remain off after shutdown.
The constraints (10) and (11) refer to the minimum up-time and
minimum down-time.

t+UT(j)−1
∑

h=t
u(j, h) ≥ UT(j)× y(j, t) ∀j, t (10)

t+DT(j)−1
∑

h=t
(1− u(j, h) ≥ DT(j)× z(j, t) ∀j, t (11)

B.4. Wind turbine modeling

Recent technological advances have led to a reduction in the
cost of energy produced by wind turbines, and this technology
has been able to compete with other energies. Equation (12)
calculates the amount of power produces by the wind turbine
depending on the wind speeds.

Pw(v) =


Pr × (v−vci)

(vr−vci)
vci ≤ v ≤ v

Pr vr ≤ v ≤ vco

0 otherwise

(12)

In this equation, v is the instantaneous wind speed, vci is the
cut-in speed, vco is cut-out speed and vr is the rated wind turbine
rated. Cut-in speed is the minimum wind speed after which the
wind turbine begins to produce electrical energy. In addition,
cut-out speed is the maximum speed that after it turbine will
be stopped to protect the turbine safety and prevent its reversal.
Nominal speed is the average wind speed, if wind turbine winds
up, the power output will be the nominal power of turbine.

B.5. Modeling electric vehicles parking lot as an energy storage sys-
tem

The electric vehicle has three charging, discharging and idle
modes. The electric vehicles parking scheduling is modeled by
equations (13) to (18) [27]. Equation (13) determines the charge
of an electric vehicle that depends on its initial charge. Equation
(14) defines the range of electric vehicle charging. Equation (15)
calculates the energy required to travel after leaving the parking
lot. By equations (16) and (17), the charging and discharge rates
are limited to the maximum and minimum values. Equation (18)
ensures parking at any time in only one of the states of charge
or discharge.

SOC(t, v) = SOC(t− 1, v) + ηch
v Pch(t, v)− Pdis(t, v)

ηdis
v

− Ptra(t, v)

(13)
SOCv

min ≤ SOC(t, v) ≤ SOCv
max (14)
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Fig. 1. Load modeling with DR programs

Ptra(t, v) = ∆D(t, v)×Ωv (15)

Pch ×Uch(t, v) ≤ Pch(t, v) ≤ Pch ×Uch(t, v) (16)

Pdis ×Udis(t, v) ≤ Pdis(t, v) ≤ Pdis ×Udis(t, v) (17)

Uch(t, v) + Udis(t, v) ≤ 1 (18)

B.6. Modeling DR programs

DR programs as defined by American Federal Energy Regula-
tory Committee (FERC) are programs that change energy prices
to change the amount of consumption of subscribers or transfer
this consumption from on-peak hours (i.e., high prices) to off-
peak hours (i.e., low prices). In electricity markets, DR programs
have been used to reduce market prices and operating costs.
Therefore, considering DR programs, the distribution network
can shift its load from peak times to other times to reduce its sup-
ply costs. It should be noted that according to [28] consumers
participate in TOU DR programs. It is worth noting that the
maximum transfer capacity is limited. Therefore, in this article,
this amount is about 15% of the courier’s intake. The TOU DR
program can be modeled as shown in Fig. 1. As shown in Fig. 1,
the hatched part does not participate in DR programs, but the
other part is able to move from one time to another. In addition
the amount of transferred load is dependent on the market price.
Therefore, Fig. 1 is mathematically modeled as follows:

PDR
load(n, t) = Pload(n, t) + ldr(n, t) (19)

ldr(n, t) = DR(n, t)× Pload(n, t) (20)
T

∑
t=1

ldr(n, t) = 0 (21)

DRmin(n, t) ≤ DR(n, t) ≤ DRmax(n, t) (22)

3. THE PROPOSED METHOD

RO method is a novel method for problems that are faced with
the uncertainty of input parameters. This method is especially
suitable for issues that do not provide complete information
about the nature of uncertain parameters. The initial idea of RO
is to consider the worst possible scenario and optimization based
on the worst-case scenario [29]. In RO, the worst case that may
occur for that constraint due to the change in the coefficients is
considered and the optimization is based on that state [30].

A. RO method

Assume a function as z = f (X, y) non-linear in y and linear in X.
The values of X are uncertain and the values of y are known. It is
assumed in RO that the probability distribution function of the
variable X is not available. The uncertainty of X is modeled by an
interval that X takes its values from interval U(X). Minimizing
z = f (X, y) is formulated as:

max z= f (X,y) ; X∈U(X)
y (23)

Given the linearity of z relative to X, the equation is rewritten
as follows:

max z
y

s.t


z ≤ f (X̂, y)

h(X̂, y) = A(y) ∗ X̂ + g(y)

X̂ ∈ U(X) =
{

X
∣∣∣∣X− X

∣∣ ≤ X̂
}


(24)

That X̂, X̄, X̃ is the non-deterministic value, the forecasted
amount, and the maximum value of the variation X from X̄.
A RO method not only searches for a solution to the objective
function of the problem, but also ensures that in the event of an
error in the predicted values of the variable X, with an extremely
high probability, the objective function remains optimal. For this
purpose, a robust counterpart of the problem has been created
and solved, which can be written as:

max z
y

z ≤ f (X̂, y)
∑
i

Wi ≤ Γ

0 ≤ Wi ≤ 1

f (X, y) = A(y) ∗ X̄ + g(y)−max
wi

∑
i

ai(y) ∗ X̄i ∗Wi


(25)

Based on (24), two nesting problems should be studied. Based
on Wi, (25) is linear and its dual form is as:

min
[

Γβ + ∑
i

ξi

]
β + ξi ≥ ai(y) ∗ x̂i

(26)

By placing (26) in (25) we have:

max
y,β,ξi

z

z ≤ f (X, y)
f (X, y) = A(y) ∗ X̄ + g(y)− Γβ−∑

i
ξi

β + ξi ≥ A(y) ∗ X̄i


(27)

B. The presented RO-based scheduling model

After providing the definition of the RO method, the presented
model for optimal robust management of distribution networks
considering uncertainties related to up-grid market price is
stated in the following [29]:
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Fig. 2. The studied IEEE 33-bus network

Min
24
∑

t=1
{Pgrid(t)× pE

g (t)}+
NDG

∑
j=1
{CEDG(j, t) + CSDG(j, t)}+

NDRP

∑
d=1
{CEDRP(d, t)}+

24
∑

t=1
ξt

1 + Γβ

subjectto : (2)− (22)

ξt
1 + β ≥ dev.× pE

g (t)× Pgrid(t)

ξt
1 ≥ 0

β ≥ 0
(28)

where, Γ is robust budget related to the proposed robust schedul-
ing model. dev. Is variation of up-grid price from the predicted
values during the scheduling time horizon. ξt

1 and β are dual
variables of the proposed robust model.

4. CASE STUDY

The IEEE 33-bus distribution network has been adopted for
evaluating the performance of the introduced model [30]. The
studied system in shown in Fig. 2. The studied system contains
three wind turbines connected to buses 14, 16 and 31, which are
adopted from [31]. The nominal power of the wind units is 3
MW and the cut-in, cut-out and rated speed of the turbines are
3, 25 and 13 m/s, respectively. The forecasted wind speed for
the 24-hours scheduling time horizon are demonstrated in Fig.
3 [32].

Four diesel generators are installed in the studied test system,
which are installed to buses 8, 13, 16 and 25. Table 1 provides the
cost coefficients of diesel generators. Also, the minimum and
maximum power production, increase/decrease power rates
and minimum up-time and minimum down-time of the plants
are prepared in Table 2, which are adopted from [33]. The fore-
casted load demand during 24-hours time interval is depicted in
Fig. 4 [34]. Table 3 reported the pattern of five EV parked at the
parking.

The forecasted up-grid market price during the 24-hours
interval is shown in Fig. 5 [28].

Fig. 3. Forecasted wind speed for the 24-hours scheduling
time horizon

Table 1. Cost coefficients of diesel generators

Plant ai($) bi($/MWh) ci($/MWh2)

DG 1 26 81 0.184

DG 2 27 87 0.0025

DG 3 28 92 0.0035

DG 4 25 87 0.0035

Table 2. Characteristics of diesel generators
Plant SUT ($) MUT/MDT (h) RU/ RD (MW/h) Pmax(MW) Pmin(MW)

DG 1 26 2 1.8 4.1 1

DG 2 28 1 1.5 3 0.75

DG 3 25 1 1.5 3 0.75

DG 4 15 2 1.8 3.5 1

Fig. 4. Forecasted load demand for the 24-hours scheduling
time horizon

5. SIMULATION RESULTS

The proposed model obtains an optimal energy management of
the distribution network in presence of DR programs and EVs
considering a 15% variation of up-grid market price with the
forecasted values and a robust budget of 7.
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Table 3. The pattern of five EV parked at the parking
Time (h) V1 V2 V3 V4 V5 Time (h) V1 V2 V3 V4 V5

T1 0 0 0 4.6 0 T13 0 0 0 0 2

T2 0 3.6 0 1.8 0 T14 0 0 0 0 3

T3 0 5 0 0 0 T15 0 0 0 0 0

T4 0 0 0 0 3.6 T16 3.6 0 0 4.6 0

T5 2.4 0 0 0 1.8 T17 0 0 3.6 0 1.6

T6 0 4.8 0 0 1.4 T18 0 0 0 4 0

T7 0 0 0 0 1.6 T19 0 0 4 0 2.2

T8 4.8 0 1 2 0 T20 0 0 0 0 3

T9 0 0 0 0 1.2 T21 0 0 4.8 3.8 0

T10 0 2.4 0 4 0 T22 0 0 0 0 3.8

T11 0 0 0 4.6 2.4 T23 0 4.8 0 0 0

T12 4 0 0 0 4.2 T24 0 0 0 0 2.2

Fig. 5. The forecasted power market price

Fig. 6. Power generation scheduling of DGs

A. Case study 1: Non-presence of EV parking as storage unit

The optimal scheduling of DGs are demonstrated in Fig. 6 for
this case study. Considering the obtained solution for this case
study, DG units have participated in power generation when the
power market price is higher than operation cost of DG units.
Accordingly, the power purchased form the upper network is
decreased in this time interval. In addition, wind turbines have
provided power in their maximum capacity considering ignor-
able power production of such units. Moreover, the DRP has
been effective in time intervals with on-peak condition and high
market price, where the load has been shifted to off-peak hours.
In addition, the required reserve for this case has been provided
by DRP, which is shown in Fig. 7.

Fig. 7. Power provided by employing DRP

Fig. 8. Total generation of DGs in two studied cases

B. Case study 2: Presence of EV parking as storage unit

In this case study, the application of EVs has been studied in
optimal operation of distribution networks. In this condition, the
parking will charge the EVs in time intervals with lower market
prices. On the other hand, the parking will transfer the power
to the distribution network in time on-peak hours with high
power market price to minimize its operation cost. In addition,
the presence of such units in supplying the required reserve
will be effective to attain free capacity of DGs and accordingly
their participation in providing the nergy of the network. The
result of such situation is decreasing the operation cost of the
distribution network. The generated power of DGs in two case
studies are shown in Fig. 8, which shows that the capacity of
DGs is free and such units have generated more power with
respect to case 1.

In addition, it is obvious from Fig. 9 that in presence of EVs as
storage units, they have been charged in t=3, 4 and 5, where the
market price is low. Accordingly, the power purchase from the
main grid has been increased as shown in Fig. 10. On the other
hand, at t=7, 8 and 9, when the EVs are operated, the power
discharge has been increased. Such pattern has been repeated
during the day.

As mentioned before, considering the ignorable power gen-
eration cost of wind turbine, such units have produced power
in their maximum capacity as shown in Fig. 11. The schedul-
ing for day-ahead energy providing of distribution network is
presented in Figure 12. In this figure, the amount of hourly
contribution of each resource is shown.
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Fig. 9. Charge/discharge of the EVs during scheduling time
interval

Fig. 10. Power purchased from the up-stream network

Fig. 11. Energy production of wind turbines

The operation cost of the network has been reported in Table
4, which proves the cost has been decreased employing the park-
ing of EVs as energy storage unit for the distribution network.

The sensitivity analysis of the operation cost considering
different values for robust budget and variations of the up-grid
market price from the predicted values is accomplished. Figure
13 shows the operation cost considering the impact of different
robust budgets and deviations of the up-grid market price. As
seen in this figure, for same robust budget, the operation cost

Fig. 12. Scheduling for day-ahead energy providing of distri-
bution network

Table 4. Operation cost of the network

Case study Operation cost ($) Run time (S)

Non-presence of EVs 65478 36.2

Presence of EVs 58745 68.7

Fig. 13. Sensitivity analysis of robust budget and deviation of
the power market price

is increased by growth in the variation of up-grid market price.
In addition, for the same deviation of up-grid market price, the
costs of distribution network operation is increased by growth
the robust budget.

6. CONCLUSION

Recently, considerable efforts have been accomplished on opti-
mal energy management of distribution networks in presence
of price responsive loads and renewable based sources. In this
article, the effect of uncertainties associated with power mar-
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ket prices is investigated in optimal scheduling of distribution
networks considering electric vehicles parking as storage unit,
renewable sources and DR programs. The introduced model has
been employed on IEEE 33-bus network to assess the operation
of the model, and RO method is utilized to model the uncertain
parameter. The obtained solution proved that the electric vehi-
cles parking has charged the electrical energy during of-peak
hours, where the price of power market is low. On the other
hand, the parking has discharged power during the on-peak
hours to supply the load demand of the network. A 15% devia-
tion of grid market price with the forecasted values and a robust
budget of 7 to optimize the proposed robust scheduling model
in the worst-case condition. The obtained results of day-ahead
scheduling of the distribution system can be address the worst
conditions of safe uncertainty, which only requires the predicted
values of the minimum and maximum power market price. In
addition, the proposed model provides the optimal solutions
safe for all variables in the random variables. The operation
cost of the studied network without considering electric vehicles
parking was $65478, which decreased to $58745 in the presence
of electric vehicles parking. Future works will pay attention on
the uncertainty modeling related to behaviors of drivers of EVs
in smart distribution networks and proposing a hybrid stochas-
tic robust model to cover the uncertainties associated with other
parameters.
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