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Paint cure oven as one of the most important instruments in production lines involves with many key
parameters like curing rate and energy consumption. Radiation paint cure ovens usually have smaller
amount of energy consumption besides to providing better curing conditions and as a result, attracts at-
tentions of many manufacturers. Designing this type of ovens for curing paint of complicated geometries
or thermally-sensitive materials is often a great inverse problem. Providing thermal conditions for the cur-
ing body to experience uniform cure all over its geometry without any zone of over-cured or under-cured
is the most complicated part of the problem. Based upon previous works accomplished by the authors,
in this study an optimization-based design method is presented in which the applied objective function
is introduced based on equivalent isothermal temperature. It will be shown in this study that type and
form of the objective function are the most principal issues in effectiveness and rate of the design process.
Step sizes and direction vectors like other effective parameters in optimization process are studied in this
article. Finally, the efficient method in designing curing ovens is employed for a typical geometry and
evaluated. It will be shown that among the various considered methods, the Quasi-Newtonian method
has halved the number of convergence steps and the differential step size has led to placement of more
design points in the center of the cure window. © 2018 Journal of Energy Management and Technology
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NOMENCLATURE

A. Parameters:
b Height of the oven (m)

CT Curing Time (s)

CTL Curing Time Level (s)

C0 Constant thermo-physical property in Eq.(1)

Ci Total heat capacity of the element i (J/K)

Ek
b,i Emissivity power of element i at time level k (W/m2)

EIT Equivalent Isothermal Time (s)

Fi−j Radiation Shape factor between elements i and j

F(Φ) objective function

H̃ The Hessian Matrix

L Length of the oven (m)

n Number of element on the body and the oven

NCP Nominal Cure Point

PCO Paint Cure Oven

PCW Paint Cure Window

pi penalty term

pr Search direction at iteration number r

Qi,rad Net radiation from the element i (W)

Qi,g Net heat transfer rate into the element i from an external
thermal reservoir (W)

tc Curing time (s)

Ti(t) Temperature of element i (K)

Tr Nominal curing temperature (K)

TH Temperature History
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TT Transformed Temperature (K)

v Number of design variables

B. Greek Symbols
αr Step size

εi Emissivity of element i

σ Stefan–Boltzmann constant (W/m2.K4)

`r Vector of design variables at the iteration r

Φt arg et NCP

Φi Equivalent isothermal time of element i

C. Subscripts
B Body

E East boundary

i&j Element number

i, r Element i in iteration number r

H Heater

N North boundary

r Counter of Optimization iteration

S South boundary

t Time

W West boundary

k Time level

1. INTRODUCTION

Curing ovens from the view-points of curing rate and amounts
of energy consumption has been of great attentions in most in-
dustries; in this regard attention is being restricted to radiation
cure ovens because of providing suitable curing conditions as
well as consuming less amount of energy compared to other
types of ovens. Designing this type of ovens for curing paint on
complicated geometries or thermally-sensitive materials is often
a great deal. Complications in design are usually due to pro-
viding circumstances for the curing body to experience uniform
cure all over its geometry without any zone of over-cured or pre-
cured area. Among radiational paint cure ovens, the continuous
type is significant from standpoints of both energy and curing
rate. Commonly, the widely used paint on automobile bodies
consists of 5 layers: 1. Phosphate layer 2. Electro deposition
layer 3. Base coat layer 4. Top coat layer, and 5. Clear-coat layer.
Fig. 1 demonstrates the paint coating process and arrangement
of different layers in automotive industry.

Any step of paint coating on the automobile body is pro-
ceeded by curing in the continuous radiation oven to solidify
paint particles and make the layer ready to embrace next layer [1].
Continuous oven is often in form of a long tunnel of rectangular
section with a rail within; to transfer the curing body along the
oven in the predefined thermal condition, and to be completely
cured as a result. Works of [2] and [3] can be pointed out in
field of 3-dimensional simulation of ovens of this kind. The most
challenging problem in designing ovens of this kind is to achieve

Fig. 1. Paint coating process and sequence of different layers
in automotive industry.

desired cure all over the curing body by suitable arrangement of
thermal sources in the oven.

Designing procedures are usually accompanied by consider-
able numerical costs; these costs in addition to the computation
costs due to heat transfer simulations deteriorate the conditions
for design problems. Therefore, proposing a fast precise ap-
proach for designing ovens is of great importance and as a result
has been considered among many researchers from different
points of view. Numerical simulation of the radiation heat trans-
fer in ovens with stationary curing bodies has been discussed by
many researchers. The zonal method [4], the network model [5]
and the finite element method [6–9] are the most commonly used
numerical methods which provide a discrete algebraic model for
the problem. Simulating the heat exchanged between the radia-
tion panels and a moving circular cylinder in a two-dimensional
oven using the finite element method has been discussed by
Mehdipour et al. [10].

The radiation exchange in enclosures is a classical topic dis-
cussed in many references [e.g. 11]. Computational methods
applicable in the analysis of transient radiation enclosures are
discussed in [12]. In most of the radiation oven applications,
the assumptions of diffuse gray surfaces and non-participating
medium are employed to simplify the problem.

Inverse method has widely been employed in conduction
heat transfer problems. Complication of heat equations in con-
duction heat transfer problems usually accompanied by ill-posed
solution matrices. About inverse methods works of [13–15] can
be noted. Three principle sections can be defined for the op-
timization loop: determination of the state or field variables,
evaluation of the convergence and modification of the design pa-
rameter. The latter is known as the optimizer. For the optimiza-
tion stage, there are basically two classes of methods available.
In a group of approaches, evolutionary methods are employed
to use the objective function evaluations to update the design
parameter [16, 17]. Other groups commonly apply the classical
gradient-based optimization techniques [7].

Daun et al. [7, 8, 13] compared the relative merits of linear in-
verse and nonlinear programming methods to determine heater
settings that result in prescribed conditions over a spatially fixed
product surface. Yang et al. [18] used neural network model to
optimize the heater settings to achieve the best possible temper-
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ature during the production process of the polyethylene tereph-
thalate bottles. Yu [19] employed computational fluid dynamic
(CFD) to simulate automotive paint curing process in an oven.
He solved a well-posed problem as the heater settings in the
oven were defined.

Optimum thermal design of radiation ovens with moving
loads, as a sub-class of dynamic optimization problems, is com-
putationally demanding in general. Federov et al. [20] provide
a design example in which the radiation panels are thermally
designed to provide a target temperature history curve on a
moving flat plate. In this reference, many aspects of dynamic
thermal optimization of radiation ovens are discussed in the
context of a material processing example.

Dynamic optimization of paint cure problems can scarcely be
found in the literature. Xiao et al. report the application of an
embedded ant colony system-based optimization method to deal
with this problem [16]. Zettle and Hitzmann [21] proposed an ef-
ficient method for the optimization of production parameters for
baking bread rolls. The oven was predefined in their work and
the robust problem of setting optimum thermal conditions was
carried out during their work. Nimsuwan et al [22] simulated
the temperature distribution and the flow pattern in the paint
curing oven by CFD the oven as well as the heaters settings was
predefined in their work. Burlon et al. [23] developed a transient
model for a professional oven. They divided the whole compu-
tational domain into two thermal zones, i.e. the power zone and
the cooking zone, and developed a lumped capacitance model
the entire domain. Inverse methods in radiation problems have
also been applied in medical treatments like radiation therapy
or in tumor diagnosing [24, 25] or in image processing [26].

In this study, a new approach for designing continuous paint
cure ovens is proposed. In this method, the heaters are thermally
set and located to achieve a proper cure all over the curing body.
Decreasing design stages has been one of the most objectives
of the authors in most of their previous researches [10, 27–29]
as well as the present research. In Ref. [10] a design approach
based on employing cure window criterion is described and the
method of defining the objective function in the design proce-
dure is comprehensively discussed. In this study, influences of
the objective function on convergence of the solution and also
on the solution procedure are investigated. Before, in Ref. [27] it
had been demonstrated that proper definition of the objective
function decreases the solution steps while increases probabil-
ity of achieving the solution. In that work, a criterion named
equivalent isothermal temperature was introduced to decrease
numbers of optimization steps. Decrement in numerical costs
by employing the equivalent isothermal time criterion is studied
in Ref. [28]. In that reference, combination of neural network
and finite element method improved the approach abilities and
made it capable of modelling complicated geometries with high
rates. In this study, according to applying hybrid optimization
method as well as some simplifications of the principle model,
simulation and designing rate is increased. This design method
can be applied for all geometries of any complication (this issue
is investigated in Ref. [29] for a 2-dimensional geometry).

In order to solve the problem numerically it is necessary to
employ some regularization methods. Importance and effects of
regularization in inverse problems have been comprehensively
discussed in [30]. Significance and influence of step size in
optimization problems have been studied in [31].

Regarding the accomplished studies, employing optimiza-
tion methods for designing continuous ovens requires proper
definition of step size and search direction. This issue influences

Fig. 2. A two dimensional radiation oven.

solution rates and convergence. In the present study to further
develop previous works, different methods for proper definition
of step size and search direction is investigated and evaluated.
Some innovative methods are proposed for defining step size
and performances of these methods are compared and evalu-
ated in a sample problem of low dimensions. The approved
method is then employed for designing a paint cure oven with
10 heaters.

Here we narrowly focus on the appropriate definition of the
objective function in dynamic optimization of a radiation paint
cure oven. With applications in auto-industry in mind, a simple
circular geometry is discussed and an Arrhenius type model
is used for the paint drying as suggested by Turie [8] and by
use of finding the best method of search direction and step size,
achieving the answer is assured.

2. PROBLEM DESCRIPTION

In the present study different methods of optimization are com-
pared to evaluate the best approach for designing radiation
ovens. In this regard a simple geometry as shown in Fig. 2 is
considered. The oven geometry as well as the curing body and
ten installed heaters at the oven ceiling are demonstrated in Fig.
2. The curing body enters into the oven from the left and leaves
it at the right end. Designing radiation oven consists of finding
the heaters temperatures and thermal arrangement of heaters in
a way that, thermal conditions in the oven leads to the desired
curing for the considered body.

A. Cure criterion

The temperature level and the heating duration are the two
major influential factors in any baking or curing process, paint
producers conduct a number of experiments in which a painted
surface is cured in an isothermal environment for different du-
rations. Based on the experimental results and theoretical con-
siderations, a paint cure window (PCW), shown in Fig. 3, is
derived that specifies the allowable curing time, CT, at different
temperature levels [10]. The factory-provided PCW, therefore,
defines the design domain in the temperature-curing time (T-CT)
diagram shown in Fig. 3.

In continuous ovens regarding the transient thermal condi-
tions, employing the mentioned criterion is accompanied by
some difficulties. To overcome such a trouble, Xiao [32] sug-
gested to use the parameter of equivalent isothermal time (EIT)
in the curing window. The method is completely explained
in [10]. In the method presented by Turrie [32] the equivalent
curing time of transient condition is substituted with a reference
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Fig. 3. TH curves for arbitrary body points A and B (a), and
corresponding EITs (b).

temperature and employed in the modelling procedure. The
mentioned criterion is presented as:

dΦi = exp[C0(
Ti(t)−Tr
Ti(t)Tr

)]∆t

C0 = E
R

(1)

Φi = EITi|Tr =
∫ tc

0
exp

[
C0(

Ti(t)− Tr

Ti(t)Tr
)

]
∆t (2)

where Tr is the reference temperature; The parameters E and R
are paint activation energy and the gas constant, respectively.
Based on this definition, if the equivalent isothermal time lies
in the curing window, the desired curing is achieved. In this
study evaluation of the curing is accomplished by employing
the equivalent isothermal time criterion. For the critical regions
of the curing body this criterion is computed and compared with
the curing window criterion.

As can be observed in Fig. 3, two distinct temperature profiles
can have similar equivalent isothermal time (point X in Fig. 3b).
Therefore, applying the equivalent isothermal time criterion
leads to considering more probable solutions [10].

According to what mentioned above, a suitable objective
function can be defined in the following form:

.

Favg(θ) =
1

nB

nB

∑
i=1

a1
[
Φi(θ)−Φt arg et

]2
+ Pi(θ)

Pi(`) ≡ a2[Φmax −Φi(θ)]
2H [Φmax −Φi(θ)]

+a3[Φi(θ)−Φmin]
2H [Φi(θ)−Φmin]

(3)

where Φi is the Turrie criterion for the ith element while Φ1, Φ2
and Φt arg et denote the curing time needed in constant tempera-
ture condition for points 4,3 and X in Fig. 2b. a1, a2 and a3 are
weight factors and H(Φ) is representative of step function.

After achieving temperature profile of each point as a func-
tion of time, employing equation (2) will result in determination
of equivalent curing time (Φi). The first term becomes mini-
mum when the equivalent curing time of the considered element
equals to the time at the center of the curing window (NCP). This
condition is associated with the optimum curing. The term Pi is
the penalty term and acts when some points lie out of the curing
window. At such conditions, this term will result in intensive
increase in the objective function. The objective function, in
the above-mentioned form, increases the possibility of having
solution since it is not restricted to a specific temperature profile
and has a well-posed matrix.

3. MODELING

A. Heat transfer analysis in the oven
Energy balance for each gray-diffuse element is written as:

Ci
dTi(t)

dt
= Qi,g −Qi,rad (4)

where Ci is the total heat capacity of element i, Ti(t) is the temper-
ature of element i, Qi,rad denotes radiation heat transfer leaving
the body and results in temperature reduction. in the above cor-
relation accounts for the energy generated in the element which
is zero except for elements including heaters. Heat balance for
each element in the oven is written as:

Qi,rad =
N

∑
j=1

[Eb,i Ai −Qi,rad
1− εi

εi
− Eb,j Ai + Qj,rad

(1− ε j)Ai

ε j Aj
]Fij

(5)
Shape factor is calculated employing the correlation of finite

elements [9]. Simulation of curing body motion has a specific
effect on calculation of heat transfer. Curing body motion is
descritized to specified intervals at each of which the heat trans-
fer conditions are assumed in quasi-equilibrium condition. For
instance, at kth interval, the energy balance for an element after
linearization is of the following form:

Qk
i,rad −

N

∑
j=1

[σ(Tk,old
i )3Tk

i Ak
i − σ(Tk,old

j )3Tk
j Ak

i−

(Qk
i,rad

1−ε i
ε i
−Qk

j,rad
(1−ε j)Ak

i
ε j Ak

j
)]Fk

ij

= 0 (6)

The index ‘old’ in the above equation represents matrix so-
lution at the iteration before linearization. Two variants are
considered unknown for each node as: 1- the element temper-
ature and 2- the absorbed radiation heat. Writing the above
equation for each node forms a set of N equations. In order to be
able to solve the equation system, N other equations are needed
that are generated by applying known boundary conditions or
equation (4). This method is comprehensively described in [10].

B. Sensibility matrix calculation
In all of the optimization methods in this study sensibility vector
or first derivation of objective function is needed:

g̃i(~θr) =
[

∂F(Φi(~θr))
∂θ1,r

∂F(Φi(~θr))
∂θ2,r

· · · ∂F(Φi(~θr))
∂θv,r

]T
=[

gi1(~θr) gi2(~θr) · · · giv(~θr)
]T (7)

where ~θr, the design parameter is heaters’ temperatures. For
calculation of g̃i(~θr), the following equation is applied:

gi1(~θr) =
∂F(Φi(~θr))

∂θ1,r
= 2a1(Φi −Φt arg et)

∂Φi
∂θ1,r

+

2a2H(Φ1 −Φi)(Φi −Φ1)
∂Φi
∂θ1,r

+a2δ(Φ1 −Φi)(Φi −Φ1)
2 + 2a3H(Φ2 −Φi)(Φi −Φ2)

∂Φi
∂θ1,r

+a3δ(Φ2 −Φi)(Φi −Φ2)
2

(8)
where ∂Φi

∂θ1,r
are partial derivatives of the objective function; Due

to the suggested cure window this term is computed as:

∂Φi
∂θ1,r

=
∫ tc

t=0
exp

[
C0(

Ti(t)− Tr

Ti(t)Tr
)

C0

Ti
2 (

∂Ti(t)
∂(θ1,r)

)

]
∆t (9)

where ∂Ti(t)
∂(θ1,r)

is obtained through implementing some algebraic
calculations on equations (4), (5) and also exerting boundary
conditions for all nodes. The above equations are employed in a
solution algorithm demonstrated in Fig. 4.
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Fig. 4. The design algorithm.

4. OPTIMIZATION ALGORITHM

The employed approach for calculation of the design problem
in this study is the derivation-based optimization method. In
derivative approach, design parameters are corrected at each
iteration, based on the following correlation:

~θr+1 = ~θr + αrp̃r (10)

where p̃r and αr stand for search direction and step size, respec-
tively. Computation of search direction and step size provides
the conditions for modification of heaters temperatures at the
next iteration of optimization.

There are various methods proposed in different references
for calculation of search direction. Some of these methods are:

1 steepest-descent

2 Fletcher-Reeves conjugate gradient method (FR-CGM)

3 Polak-Ribiere conjugate gradient method (PR-CGM)

4 Stiefel-Hestens conjugate gradient method (SH-CGM)

5 First order -Quasi-Newton

6 Davidon Fletcher Powell Quasi-Newton (-DFP- QN)

7 Broyden Fletcher Goldfarb Shanno Quasi-Newton (BFGS -
QN)

8 Marquardt method

For instance, the BFGS-implementation of the quasi-Newton
method calculates the search direction according to

~Pr = −H̃−1
r ~gr (11)

where the Hessian is approximated by:

H̃r = H̃r−1 + M̃r−1 + Ñr−1 r = 1, 2, ...

H̃0 = I

M̃r−1 =

(
1+yτ

r−1 H̃r−1yr−1

yT
r−1Pr−1

)
~Pr−1~PT

r−1
~PT

r−1~y
τ
r−1

Nr−1 = −
~Pr−1~yT

r−1 H̃r−1+H̃r−1~yr−1
~Pr−1

~Pr−1~yT
r−1

~yr−1 = ~gr −~gr−1

(12)

The elements of the gradient vector correspond to the objec-
tive function sensitivities with respect to the design parameters
(heater panel temperatures):

gi(~θr) =
[

∂ fi(~θr)
∂θ1,r

∂ fi(~θr)
∂θ2,r

... ∂ fi(~θr)
∂θv,r

]
= [gi1(~θr) gi(~θr) ... gi(~θr)]

(13)

In the process of obtaining the sensitivity vector, depending
on the definition of the objective function, the magnitude of
∂Ti(t)/∂(θ1,r) should be calculated.

After finding the sensitivity matrix, gi(~θr), is obtained. The
Hessian matrix, step size and vector of variations are calcu-
lated applying equations (13), (11), and (12), respectively. Then
Equ. (10) can be applied to compute the heaters temperature
for achieving better curing. The optimization procedure will
be continued until reaching a minimum value of the objective
function which is equal to approaching in to the center of cure
window.

The design procedure based on optimization method, can be
divided into 3 major stages. First stage is basically a thermal
analysis routine in which the field or state variables are updated.
At the second stage, the objective function is simply evaluated
and checked against a convergence criterion. Finally, at the third
stage, the design variables are updated to ultimately nullify
the objective function, up to a convergence criterion. Fig. 4
demonstrates calculation procedure and optimization.

5. SIGNIFICANCE OF STEP SIZE ON THE DESIGN PRO-
CEDURE

In different gradient methods, a function is predicted to be curve-
fitted on the objective function at each step of the optimization
procedure; this function is named as minimizer (Fig. 5). Since
the curve-fitted function (i.e. minimizer) is usually of simple
forms, its minimum point can be found easily and be a good
instruction to the minimum point of the objective function. At
the next step (if any) again the previously employed function
is curve-fitted on the objective function at the new instructed
point and the procedure goes on. These methods are more
efficient in the points that the objective function is of similar
order to the minimizer function. For instance, in the steepest
descent method, the first derivation of objective function due
to design parameter is employed. This issue is shown in Fig.
5.a. If the objective function in a 2-variant problem is of x2

1 + x2
2

form, direction and the magnitude of search direction can be
computed exactly and the minimum point can be calculated
in a single step. However, if the picked-out objective function
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is of different form to what pointed above, diminishing the
magnitude of the objective function is only assured. Zigzag
procedure is usually observed in these cases. The mentioned
condition is demonstrated in Fig. 5(a) for an elliptical second
order function.

In Newtonian method as well as quasi-Newtonian, first and
second derivation of the objective function due to design pa-
rameter is applied and a function of second order is curve-fitted
on the current points (Fig. 5.a). It is expected that this method
because of using higher order derivatives of a point, is more
efficient than the steepest descent rate method. In Newtonian
method the second derivation of the objective function due to
design parameter (Hessian matrix) is applied that results in high
numerical costs and in some cases impossible conditions for
calculation of Hessian Matrix. This problem is fixed in quasi-
Newtonian method since the Hessian Matrix is guessed from the
first derivative of the objective function and therefore amount
of calculations in this method is similar to lower order methods.
Less numerical costs along with approximately same precision
to Newtonian method has made the quasi-Newtonian method
widely adopted among researchers.

It should be noted that because of using more approximations,
Quasi-Newtonian method is considerably sensible to the starting
point of optimization as well as the style of variation of objective
function. This sensitivity urges the first guess to be near enough
to the minimum point to assure the convergence in solution [33].

Some criterions for evaluation of quasi-Newtonian method
are eigenvalues and condition number of Hessian matrix. A
negative eigenvalue points out a saddle point, since it does not
simulate the condition for minimum nor maximum point. Cal-
culating the search direction for such points in Newtonian meth-
ods are often encountered with a problem. In quasi-Newtonian
methods, condition number of Hessian matrix denotes the devi-
ation of the objective function from treatment of a second-order
function.

When the first guess is far from the minimum point, the
above-mentioned methods are not efficient enough and use of
steepest descent is more recommended. Then as the optimizing
procedure approaches to the minimum point, the Newtonian
method performs better. Combination of these two methods
results in a new method named Marquardt Method, with further
capabilities in comparison with each method individually [34].

It should be noted that for all functions except those of sec-
ond order type, the performance of optimization methods de-
creases [34]. In such cases, to improve efficiency of optimization
procedure, it is recommended to apply the step size to modify
the magnitude of search direction. When the objective function
follows the second order form, there is no need to use the step
size, otherwise applying the step size is essential and signifi-
cantly influences convergence rate and procedure [34]. There
are 5 types of step sizes explained in the following:

A. Descent step size
This type of step size is calculated using the following correla-
tion:

αr = α0/ra (14)

B. Cross step size
Cross step size is calculated by the following relation:

αr = (
α0
ra )(

1

( r
c )

(br−2)
+ 1) (15)

Fig. 5. Employing a) gradient method, b) steepest descent
method in an elliptical form problem

C. Relative step size
This kind of step size is defined as:

αr+1 =

1
v

v
∑

l=1
(

Il,r+1
Il,r+1−Il,r

)

−
v
∑

l=1
(Il,r+1)

2
(F(~θr+1)− F(~θr))

Il,r = (gl(~θ))r = ( ∂F
∂θl

)r

(16)

As can be found, definition of above constants doesn’t con-
cern the problem type nor the designer experience. It should
be noted that the above relation is obtained based on steepest
descent method. The step size computed from equation (16)
varies for different optimization methods.

D. Vectorial relative step size
In the previous method the step size was a scalar quantity. De-
sign parameters were obtained by achieving the best step size
in direction of search direction. Vectorial relative step size αr, is
defined in vectorial form introduced in equation (17):

θl,r+1 = θl,r + pl,rαl,r (17)

Present approach for finding the step size is similar to the
previous method with a single distinction; in this method, each
terms of step size denotes the modified value for each of design
parameters. The present step size is defined in the following
form:

αl,r+1 =

1
v

v
∑

l=1
(

Il,r+1
Il,r+1−Il,r

)

−(Il,r+1)
2 (F(~θr+1)− F(~θr)) (18)

E. Differential-based step size
In this method the desired value of step size is calculated by
differentiating the objective function via the step size.

∂ f (~θr + ~prαr)

∂αr
= 0 (19)

Note that the second to forth methods are the innovative
approaches proposed in this study.

6. OBJECTIVE FUNCTION TREATMENT

It has been found in the solution procedure that in order to ob-
tain characteristics of employed heaters individually, different
methods of optimization without a proper step size may not
achieve in desirable convergence. Some of optimization meth-
ods were not efficient in defining heaters characteristics. In this
part behavior of the objective function against alteration of de-
sign parameter is evaluated. In this regard preference of some
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Fig. 6. Variation of the objective function against design vari-
ables.

optimization methods in comparison with others can be found
(These methods are different in methods of calculating search
direction/step size).

In the present problem ten parameters are involved as design
parameters (ten heaters have been applied). However, variation
of the objective function against the design parameter can be es-
timated as a ten-dimensional surface. This issue hardens demon-
stration of the objective function due to design parameters. In
such cases behavior of the objective function is demonstrated
using one of the following approaches:

1 A pre-set for heaters is assumed and a single variant (tem-
perature of a specified heater) may be changed to study the
variations of the objective function against the mentioned
heater. This approach is same as studying the sensibility
matrix.

2 In a pre-set, heaters temperatures are assumed to be~θc and
then temperatures of heaters changes about a specified di-
rection “~θb”. It is obvious that the minimum of the objective
function lays in a range from under-cured to over-cured
conditions. Variations of the design parameter satisfies the
following relation, to reveal the objective function treatment
at each step.

~θ = ~θc +~θb 400 ≤
∣∣∣~θb

∣∣∣ ≤ 1400 (20)

3 Two arrangements for heaters temperatures defined as
(~θ1,~θ2) are assumed. Applying different values for in equa-
tion (21) result in finding other possible arrangements of
heaters between the two specified. Shifting in thermal levels
of the obtained arrangements is then possible with choosing
any value for θb. In this case two-dimensional region (be-
cause of appointing two arrangements) with more possible
arrangements can be studied. This method applies some
diagrams of second method with different primary settings
together, to provide a two-dimensional curve. Heaters tem-
perature in this approach is calculated employing following
relation:

~θ = αθ1 + (1− α)~θ2 +~θbJ (21)

Treatment of the objective function is demonstrated in Fig. 6
using second and third method, where J is representative of a
single column identity matrix.

4 Based on this method the principal problem changes in to
a problem with two design parameters. Computational
domain can be completely displayed in this case. Imple-
mentation of this approach on the present problem is of fol-
lowing form: temperature of first five heaters varies jointly
while temperatures of other heaters change together. This

Fig. 7. Variations of the objective function based on a similar
problem with two design parameters.

issue provides the condition to study behavior of the ob-
jective function in lower dimensions. Fig. 7 demonstrates
this approach. The two-variant technique is more appro-
priate for evaluating different optimization methods as in
this technique the computational domain can completely be
shown. The procedure to achieve the minimum point can
be studied in detail. First the whole computational domain
is discretized. Every point in this domain representing a
heater arrangement is modelled and the magnitude of the
objective function is calculated. Finally, variation of the
objective function in the computational domain is achieved
(Fig. 7). The X axis denotes temperatures of first five heaters
while the Y axis is demonstrative of the rest five heaters.
Fig. 7(a) shows that line A is the local minimum of the
computational domain and intensive alteration around this
line is noticed. Little variation on this line with intensive
variations in other zones hardens finding the minimum.

Although the above-mentioned approaches do not reveal the
behavior of objective function generally, they are informative
enough to apply. It can be observed from Fig. 6 that the ob-
jective function variations against ~θb does not follow a second
order function treatment but its variation can be mentioned in
3 different zones demonstrated in Fig. 6. As observed in the
Fig., there is no remarkable variation in zone A; therefore, the
objective function does not notably take affect from alteration
in heaters temperatures. Contrary to zone A, there is zone C
with intensive variations of objective function relative to heaters
temperatures (note that the diagram is in logarithmic form). The
minimum point of this curve for the present problem lies in zone
B. Behavior of the objective function from left to right of Fig. 6
can be described as:
1. Small slope region (zone A) 2. Intensive slope zone (region
between zone A and B) 3. Minimum point (at the center of zone
B) 4. Intensive slope (Zone C and the region between C and B)

This issue becomes more evident since the search directions
at the middle of zones A and C ignoring step size obtained
about and respectively (obtained by steepest descent method).
Existence of local minimum on line A is shown in Fig. 8. It is
obvious that applying step size as the most key parameters in
optimization performance is essential.

Following are some reasons for employing an efficient step
size:

1 Deviation of this function from behavior of second order
function

2 Having the maximum slope in region B and C.

3 Existence of some local minimums on line D.



Research Article Journal of Energy Management and Technology (JEMT) Vol. 2, Issue 2 49

Fig. 8. Local minimums in the solution domain.

7. EVALUATION OF DIFFERENT METHODS OF DESIGN

At this part of the study, efficiency of the design method is
evaluated. In order to evaluate different methods of design, a
reference problem described in Fig. 1 is considered [10]. Cure
window criterion employed in ref. [10] along with equivalent
curing time criterion [32] are applied to assure that the problem
has a solution. It is expected that a proper method, independent
of what initial guesses are, can obtain heaters temperatures in a
way that all target points situated in the cure window far from
its boundaries.

Before studying the principle problem, it is necessary to pro-
pose methods of defining step size and search direction. Since
studying this issue is much simpler in 2 dimensions, all methods
are investigated in fourth methods of section 7.

Magnitude of the objective function for each point in the two-
dimensional solution domain is evaluated as an illustrative of
curing extent. The solution domain is demonstrated in Fig. 7. In
order to find minimum point of the objective function represent-
ing optimum heaters arrangement, different gradient methods
have been implemented on the present problem and their per-
formance has been weighed up. Two different initial conditions
of uniform temperature of 400K and 900K for each heater are
considered. To assess performance of different methods men-
tioned for search directions, each method is implemented on the
model and at last results are analyzed. (In this section step size
is computed applying gradient method). Each solution is coded
and tabulated in Table 1.

Fig. 9 demonstrates the variation procedure in various gra-
dient methods. Lots of data along with intensive fluctuations
causes some ambiguity in this Figure. Fig. 10 demonstrates
performance of two methods of optimization individually.

As can be observed in Fig. 9, variations at the first step move
toward the minimum line of A (Fig. 7). This motion follows the
path B for the initial conditions of 900K and path D for initial
conditions of 400K as shown in Fig.9. After approaching line,
A, all methods move toward zone E. it should be noted that
because of smooth variations around the point (400,400) during
the motion in path D search direction toward the final minimum
is defined properly and directly converges to zone E. Probable

Table 1. Defining characteristic codes for the proposed meth-
ods

Code Methods of defining search direction Methods of defining step size

K111 Steepest descent rate Descending step size

K112 Steepest descent rate Hybrid step size

K113 Steepest descent rate Relative step size

K114 Steepest descent rate Vectorial relative step size

K115 Steepest descent rate Differential step size

K315 FR-CGM Differential step size

K325 PR-CGM Differential step size

K335 SH-CGM Differential step size

K415 Quasi-Newtonian (first order correction) Differential step size

K425 DFP- QN Differential step size

K435 BFGS – QN Differential step size

K433 BFGS – QN Relative step size

Fig. 9. Performance of different gradient methods in the solu-
tion domain.

Fig. 10. a) Magnification of minimum point, b) Performance of
steepest descent method (K115), c) Magnification of minimum
point, d) Performance of DFP QN (K425).

convergence to different solution can be related to existence of
local minimums shown in Fig. 8.

Heaters arrangement and equivalent isothermal time for each
of four demonstrated points in Fig. 2 implementing all methods
of design are shown in Fig. 11a and Fig. 11b, respectively. Varia-
tion of the objective function at each iteration is displayed in Fig.
12. It can be concluded that there is no significant distinction
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Fig. 11. a) Magnitude of design parameter (heaters temper-
ature) at the end of design procedure b) Situation of chosen
equivalent time due to the cure window.

Fig. 12. Variations of magnitude of objective function against
each step of optimization for different gradient methods.

between the mentioned methods. This fact reveals that proper
definition of step size is more important than search direction.

Various methods are compared from the viewpoints of some
criteria like: simple implementation, convergence adjacent to
minimum point and convergence far from the minimum point.

Conclusion remarks as well as comparison between different
methods for defining search direction are explained in Table
2. The second order quasi-Newtonian method (BFGS) together
with differential step size brings about the best convergence pro-
cedure. The quasi-Newtonian method has halved the number of
convergence steps in the problem.

Methods for determination of step size were studied above
and a brief comparison for these methods is listed in Table. 3.

Table 2. Defining characteristic codes for the proposed meth-
ods

From the view

-point of

simplification

of use

From the view-

point of

convergence rate

far from the

minimum point

From the view-point

of

convergence rate

adjacent to minimum

point

prominence

At the end

of optimization procedure

At the first of

optimization procedure

K115 K415, K115, K325, K315 K435, K315 K435, K325, K315 1

K325, K315 K433 K115, K325 K433, 2

K435, K433, K415 K435, K433 K115 3

K415 K415 4

Table 3. Comparison between performances of different meth-
ods for calculation of step size in the current problem

Prominence

From the view-point

of simple

implementation

From the view-point

of convergence far

from the

minimum point

From the view-point

of convergence

adjacent to minimum

point

1

Differential-based

step size

Descent step size

and Cross step size

Differential-based step

size and relative step size

2

Relative step size

and Vectorial relative

step size

Differential-based

step size

Vectorial relative

step size

3 Cross step size

Relative step

size and vectorial

relative step size

Descent step

size and

Cross step size

4 Descent step size

Fig. 13. Cure window criterion at the end of design procedure
for different methods of step size.

Fig. 14. Heaters temperature at the end of design applying
differential optimization methods.

In this part search direction has been achieved employing the
method of steepest descent rate. Cure criterion for the demon-
strated elements of Fig. 2 are shown in Fig. 13. All points are
well compatible with the criterion as can be observed in Fig.
13. As can be found from the figure, the differential step size
has led to placement of more design points in the center of the
cooking window. The criterion of the defined objective function
improves from 10−5 to 10−6.

Based on evaluation of methods available in Table 3, it has
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been revealed that the second order Quasi-Newtonian method
(BFGS) applying differential step size has shown the most ap-
propriate performance among other approaches. Number of
heaters as well as their temperature variations, are factors repre-
sentative of curing condition. Although by increasing number of
individual heaters numerical costs enlarges, possibilities become
available for better curing consequence. The above mentioned
approach has been implemented on the geometry of Fig. 2 with
10 individual heaters and the designed heaters arrangement is
demonstrated in Fig. 14.

8. CONCLUDING REMARKS

In this paper, the procedure for designing heaters in a contin-
uous radiation oven is assessed. Effects of the step size and
the search direction in optimization procedure are investigated.
Some different approaches are presented for determination of
step size and direction vector; at last performances of these
methods together with optimization procedure are evaluated.

Influences of 5 different methods for computation of step size
on the solution procedure is evaluated in this study and the most
efficient method from the view-point of solution is the Quasi-
Newtonian method (BFGS) with differential step size. Among
the considered methods, two of them are new and claimed to be
an innovation for the present work. It has been revealed in this
paper that proper definition of step size prominently influences
the solution procedure.

The "Quasi-Newtonian method (BFGS) applying differential
step size", as the most appropriate method among all other con-
sidered methods is employed at last to design a 10-heater cure
oven. Then maximum number of heaters that can be imple-
mented on the present computational model is discussed.

The Quasi-Newtonian method has halved the number of
convergence steps. It is found that the differential step size
has led to placement of more design points in the center of the
cooking window. The criterion of the defined objective function
was improved from 10−5 to 10−6.

Evaluation of optimization procedure and design in this
paper has provided the background for making the consid-
ered methods applicable for complicated geometries with high
amounts of computations.
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