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This paper shows an application of a scenario-based method for risk constrained stochastic optimal power
flow (RC-SOPF) problem in electricity utilities. A two-stage stochastic programming framework is devel-
oped for dealing with various uncertainties. Customers’ demand, wind power generation, and electricity
price are considered as the uncertain parameters in the proposed RC-SOPF problem. The aim is to min-
imize the energy procurement costs, while preserving an acceptable risk level. The energy procurement
cost consists of generators active power generation costs, cost of energy procurement from external net-
work (e.g. pool market or upstream network) and operation maintenance cost of wind farms. To control
the negative impacts of the uncertainties, variance and conditional value at risk (CVAR) are used as risk
measures. The proposed model is implemented on the 39-bus New England test system. The obtained re-
sults show that CVAR is suitable index for management of the risk associated with uncertain parameters
in comparison with variance. © 2017 Journal of Energy Management and Technology
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NOMENCLATURE

A. Sets:
SDC(i,t)SDC(i, t) SDC(i,t)SDC(i, t)

NB Set of system buses

NG Set of generating units

NP Set of buses connected to external network

NPQ Set of system PQ buses

NPV Set of system PV buses

NS Set of all scenarios

NW Set of wind farms

dn Number of demand scenarios

wn Number of wind scenarios

λn Number of electricity price scenarios

B. Indices:
b/j Index for system buses

i Index for conventional generators

s Index for scenarios

sl Index for slack bus

C. Parameters:
α Confidence level

β Weighting factor

ζw
b,s Percentage of realized wind power output at scenario s in

bus i

πλ Probability of demand scenario λ

πd Probability of demand scenario d

πs Probability of scenario s

πw Probability of wind power generation scenario w
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λD Demand price

λD,s Demand price in scenario s

λP Pool market cost

λP,s Pool market cost in scenario s

λW Operation& maintenance (OM) cost of the wind farm

λW,s OM cost of the wind farm in scenario

ai, bi, ci the quadratic cost coefficients of thermal unit i

cos(ϕlag,b/cos(ϕlead,b Lag/lead power factor limits of the wind
farms located at node b

(P)D
d,max/min Max/minimum active power consumption of load

at scenario d

(P/Q)D
d,max/min Max/minimum active/reactive power con-

sumption of load connected to bus b

(P/Q)G
d,max/min Max/minimum active/reactive power of gen-

erator i

(P/Q)P
d,max/min Max/minimum active/reactive power of pool

market to bus b

(P/Q)W
d,max/min Max/minimum active/reactive power of wind

power to bus b

PW
avl Available wind power generation

PW
b,r Wind farm rated capacity installed in bus b

PW
r Wind farm rated capacity

Vb,max/min Max/minimum value for voltage magnitude of the
b-th bus

vc
in/vc

out Cut-in/out speed of wind turbine in m/s

vrated Rated speed of wind turbine in m/s

Vw Wind speed in m/s

Sbj,max Maximum power flowing through the line

Ybj/γbj Admittance magnitude/angle of line

D. Variables:
∇s A continuous non-negative variable

CVaR Conditional value at risk (risk management index)

VaR Value at risk (risk management index)

Variance Variance (risk management index)

RP Resource problem

EEV Expected outcome of using the expected value

VSS Value of stochastic solution

PD
b,s/QD

b,s Active/reactive power consumption of load con-
nected to bus b in scenario s

PG
sl,s Active power production of slack bus in scenario s

PG
i,s/QG

i,s Active/reactive power production of generator ther-
mal unit i in scenario s

PP
b,s/QP

b,s Active/reactive power pool market to bus b in sce-
nario s

PW
b,s/QW

b,s Active/reactive wind power production injected to
bus b in scenario s

x̄ Vector of dependent variable

x̄s Vector of dependent variable in scenario

Ū Vector of control variable

Ūs Vector of control variable in scenario

Sbj Power flowing through the line

Vb/θb Voltage magnitude/angle of bus

Vb,s/θb,s Voltage magnitude/angle of bus in scenario

1. INTRODUCTION

A. Background and motivations
Utilization of renewable energy sources (RES) has significantly
grown worldwide, because of increasing energy consumption,
environmental concerns, and decreasing fossil fuel resources [1].
Due to the increasing usage of wind turbines, power systems
will surely face with risk, because wind power is a volatile and
intermittent source of RES.

Energy management in the presence of RES, includes eco-
nomic dispatch (ED), unit commitment (UC), and optimal power
flow (OPF) problem which have been extensively studied re-
cently [2]. The electricity market consists of different entities
which have different goals and motives for demand response
in each of them. Among different institutions, retailers have
highest interaction with electrical energy consumers. Therefore,
retailers role are to buy the electrical energy from wholesale mar-
kets and sell it to consumers. It is clear that the aim of a retailer
is to achieve maximum profit. Thus, the retailer should consider
the risk of profit reduction due to the uncertainty of demand
and wind power generation, as well as electricity prices. In this
paper, a risk constrained stochastic optimal power flow prob-
lems (RC-SOPF) is proposed to determine the optimal strategy
of energy procurement from various energy resources.

The wind power generation, energy price and demand un-
certainties make the operation of system difficult and risky task.
Cost calculation considering the associated risks has financial
benefits.

B. Literature review
The previous studies in OPF problem can be categorized as
follows.

• Deterministic OPF problem solved by heuristic algorithms
[3–8]

• Probabilistic OPF problem solved by probabilistic meth-
ods (stochastic programming [9–11], point estimate method
[12, 13], robust optimization [14], information gap decision
theory [15])

• Probabilistic risk-based OPF problem [22–24]



Research Article Journal of Energy Management and Technology (JEMT) 32

To solve this optimization problem some heuristic algorithms are
introduced in recent years, such as modified cuckoo search [3],
non-dominated sorting multi objective gravitational search algo-
rithm (NSMOGSA) [4], improved Group Search Optimization
(IGSO) [5], Multi-Objective Modified Imperialist Competitive Al-
gorithm (MOMICA) [6], chaotic artificial bee colony (CABC), par-
ticle swarm optimization with an aging leader and challengers
(ALC-PSO) [8]. Ref [16] proposed a multi-objective optimal
power flow model of multiple-energy system. This model helps
to achieve more comprehensive and efficient use of energy and
multiple-energy input to reduce costs and it is solved by non-
dominated sorting genetic algorithm (NSGA-II) and maximum
satisfaction method.

There are different methodologies for handling uncertainties
in OPF problem [17]. A stochastic multi-period OPF problem
which includes an offshore wind farm connected to the grid
by a line-commutated converter high-voltage dc link is pro-
posed in [9]. In [18] DC security constrained optimal power
flow (SCOPF) problem is formulated chance constraints and it
achieves a good tradeoff between security and cost. In ref [19],
the alternating current optimal power flow (ACOPF) problem is
formulated as a nonconvex quadratically-constrained quadratic
program (QCQP) with complex variables. A two-level hierar-
chical dynamic stochastic optimal power flow (DSOPF) con-
trol structure for scaling up the DSOPF control scheme for
large power systems is proposed in [10]. Stochastic security-
constrained optimal power flow (SSCOPF) problem is presented
and handled in [11] by considering uncertainties. Point estimate
method (PEM) [13], Quasi Monte Carlo simulation (QMCS) and
Latin hypercube sampling (LHS) [12], are used to compare the
solution of probabilistic OPF problem. An adjustable robust
optimization approach is presented in [14] to account for the
uncertainty of renewable energy sources (RES) in OPF prob-
lem. In [20],chance constrained optimal power flow (CC-OPF)
problem is formulated based on procure minimum cost energy,
generator reserves, and load reserves given uncertainty in re-
newable energy production, load consumption, and load reserve
capacities. In [15] information gap decision theory (IGDT) is uti-
lized for the uncertainties handling at the presence of offshore
wind farms. Authors in [21] reduced the inaccuracy of assuming
Gaussian distributions for wind forecast errors, based on RCC
OPF formulation. The RCC OPF formulation accounts for uncer-
tainty in the parameters of statistical models that describe the
deviations of wind generation from its forecast.

The chance constrained programming is modeled for solution
of risk-based OPF problem in [22] and [23]. Value at risk (VaR)
and conditional value at risk (CVaR) indices are utilized in [24]
for modeling risk in microgrid. In [25], wind farm and plug-in
electric vehicles (PEVs) are added to stochastic OPF problem
and Gbest guided artificial bee colony algorithm (GABC) is used
for dealing with the optimization problem.

In recent years, some new indices such as value at risk (VaR)
and conditional value at risk (CVaR) have been developed for
risk measuring in finance and economy fields. As indicated
in [26–28], the CVaR index is an appropriate choice for stochas-
tic programming. Therefore, it is applied to OPF problem for
minimization of total cost of energy hub in [29]. Also, VaR is
the maximum loss not exceeded with a given probability de-
fined as the confidence level [30]. In this study, variances and
CVaR indices are employed to deal with the economic risk due
to the uncertain behaviors of wind power generation, demand
of electrical power and price of energy.

Table 1. Comparison of different models in the literature with
the proposed RC-SOPF

Ref
OPF is solved? Uncertainty modeled in OPF?

WFs O&M cost considered? Stochastic programming?
Risk management is performed?

In transmission networks In microgrid Demand Wind power Price Variance? CVar?

[3–8] Y N N N N N N N N

[9, 10] Y N N Y N N Y N N

[11] Y N N N N N Y N N

[12–15] Y N N Y N N N N N

[22, 23] Y N N Y N N N N N

[24] N Y Y Y N N Y N N

[29] Y N Y Y Y N Y N Y

Proposed Y Y Y Y Y Y Y Y Y

For Doubly fed induction generators (DFIGs) and permanent
magnet synchronous generators (PMSGs) [31], [15] technologies,
the operation maintenance (OM) cost of wind farm is typically
around 20-25% of the total lifetime costs of the installation [32].
This amount of cost is really significant for system operators,
such that some utilities planned to reduce it until 2020 by 35%
[33–35]. Thu it is necessary to consider this component of wind
power generation cost in the network operator decision making
process.

C. Contributions

This paper is focused on solving RC-SOPF problem using con-
cept of risk management to achieve minimizing the energy pro-
curement costs. The cost is calculated at three different cases:
without considering risk management, considering risk man-
agement with variance index and considering risk management
with CVAR index. The RC-SOPF is modeled as a nonlinear pro-
gramming (NLP) optimization problem and solved using the
SNOPT solver [36] in GAMS environment [37]. The obtained
result is shown that considering risk management is suitable
method to achieve minimum costs with an acceptable level of
risk. Hence, the main contributions of this work are summarized
as follows:

1) Stochastic behavior of load demand, wind power genera-
tion and electricity price are considered in the RC-SOPF problem
via scenario based modeling approach.

2) To the best of the authors’ knowledge, no work in the
existing literature includes the OM cost of wind farms in the
RC-SOPF problem. In this work, the OM cost of wind power
generation is also considered in the proposed RC-SOPF problem
model.

3) Risk is measured via CVaR and variance indices in trans-
mission networks.

In summary, based on the aforementioned literature survey
and the above contributions, the knowledge gap covered in this
paper is given in Table 1.

D. Paper organization

This paper is organized as follows: the scenario based uncer-
tainty modeling is discussed in Section 2. In Sections 3 the
formulation of proposed RC-SOPF problem is presented. The
obtained results on the 39-bus New England system are given
and discussed in Section 4. Finally, Section5 summarizes the
findings and concludes the paper.

2. SCENARIO BASED UNCERTAINTY MODELING

A. Modeling of load uncertainty

Due to the stochastic nature of load, it is necessary to model the
load uncertainty in both planning and operation of power sys-
tems [38]. Generally, load uncertainly can be characterized via
normal or Gaussian probability density function (PDF) [39, 40].
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Table 2. Wind-load- electricity price scenarios and their proba-
bilities

Scenario

number
Load (%) λpool

Wind

(%)
πs

Load

scenarios
S1 0.97 44 1 0.003

Load (%) πd S2 0.97 44 0.5 0.024

d1 97 0.15 S3 0.97 44 0 0.003

d2 100 0.7 S4 0.97 46 1 0.009

d3 103 0.15 S5 0.97 46 0.5 0.072

S6 0.97 46 0 0.009

Wind

power generation scenarios
S7 0.97 50 1 0.003

Wind

(%)
πw S8 0.97 50 0.5 0.024

w1 0 0.1 S9 0.97 50 0 0.003

w2 50 0.8 S10 1 44 1 0.014

w3 100 0.1 S11 1 44 0.5 0.112

S12 1 44 0 0.014

Pool price S13 1 46 1 0.042

$λ_{p} $π_{λ}} S14 1 46 0.5 0.336

p1 44 0.2 S15 1 46 0 0.042

p2 46 0.6 S16 1 50 1 0.014

p3 50 0.2 S17 1 50 0.5 0.112

S18 1 50 0 0.014

S19 1.03 44 1 0.003

S20 1.03 44 0.5 0.024

S21 1.03 44 0 0.003

S22 1.03 46 1 0.009

S23 1.03 46 0.5 0.072

S24 1.03 46 0 0.009

S25 1.03 50 1 0.003

S26 1.03 50 0.5 0.024

S27 1.03 50 0 0.003

According to Fig.1, the values of mean and variance of the uncer-
tain parameter are needed in the normal PDF. In this paper, it is
assumed that the values of mean and standard deviation of the
load PDF, i.e. µD and σD are known. In scenario based approach,
the entire interval of load variations is divided into some distinct
subintervals as it can be seen from Fig. 1. For each subinterval,
proper mean and probability are calculated. In this paper, three
scenarios are considered for characterizing load uncertainty, and
hence the corresponding normal PDF is divided into 3 distinct
subintervals. The corresponding mean and probabilities of these
subintervals are calculated by (1) and (2). The index πd is used
for probability of d-th load scenario. Moreover, It is noticeable
that PD

d,min and PD
d,max are minimum and maximum boundaries

of d-th load subinterval respectively, as it is shown in Fig. 1.
The obtained load scenarios and corresponding probabilities are
given in Table 2.

πd =
∫ PD

d,max

PD
d,min

1
√

2πσ2
Dexp[− (PD − µD)

2

2σ2
D

dPD (1)

Fig. 1. The load PDF and load uncertainty scenario generation

PD
d =

1
πd
×
∫ PD

d,max

PD
d,min

[PD ×
1√

2πσ2
D

exp[− (PD − µD)
2

2σ2
D

]]dPD (2)

B. Wind power generation uncertainty modeling
Different methods have been used to deal with the wind speed
uncertainty, which are conformed to the Weibull PDF with diur-
nal pattern and autocorrelation factor [29, 39, 41]. The Rayleigh
PDF of the wind speed is one of these methods which can be
shown as follows.

PDF(v) = (
v
c2 )exp[−( v√

2c
)2] (3)

Figure 2 shows the Rayleigh PDF for c=11.28 [29]. In scenario
based modeling, the wind speed entire variation range is di-
vided into some intervals, which are called scenarios. Following
equations are used for calculation of probability of each scenario
w and corresponding mean value wind speed vw , respectively.

Fig. 2. A typical wind speed distribution expressed by
Rayleigh PDF

πw =
∫ v f ,w

vi,w

(
v
c2 )exp[−( v√

2c
)2]dv (4)

vw =
1

πw
×
∫ v f ,w

vi,w

(
v× (

v
c2 )exp

[
−( v√

2c
)

2
])

dv (5)
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Where, vw is the wind speed at -th wind scenario vi,w is the
starting point and v f ,w is ending points of wind speed’s interval
at -th scenario. Also, c is scaling parameter which is calculated
by recorded historical wind data. The characteristic curve of
a wind turbine shows the relation between the available wind
speed and the generated wind power. In this study, a linear
characteristic curve is used for modeling generated power from
wind turbine which is expressed by Fig. 3. From this curve,
the output power of wind turbine versus the wind speed is
formulated as follows.

Fig. 3. The power curve of a wind turbine

Pw
avl =


0 vw ≤ vc

in or vw ≥ vc
out

vw−vc
in

vrated−vc
in

Pw
r vc

in ≤ vw ≤ vrated

Pw
r vrated ≤ vw ≤ vc

out

(6)

C. Energy price uncertainty modeling
In the recent years, the electricity industry adopts a market
structure to respond to electricity demand with a high reliability
at minimum cost. Thus, producers are in competition with
each other for selling electric energy to consumers with huge
benefits [42].

The electricity market acts as an interface among the pro-
duction, transmission, distribution, and units’ control. So the
economic structure of the electricity industry is divided into
four parts: wholesaler, transmission, major shopping, and re-
tailer. In the wholesale market, owners of power plants provide
electricity in the market. The wholesale markets authorize trans-
actions among producers, retailers, and other intermediaries for
delivery of electricity in short time, or for the future delivery.
Therefore, retail market is as one part of the electric market al-
lows retailers to act as intermediaries to purchase consumers
electricity demand and provide their consumers. The market has
many customers which allows them to choose their electricity
supplier.

The pool market is defined as a concentrated market which
is prepared for purchaser and consumer. The retailers and con-
sumers order their amount of electrical power producer and
demand to pool market for exchanging the electricity of energy.
The pool price of a particular electricity market is a random
variable. According to the distribution of pool price which is ex-
pressed in [43], three scenarios are considered for pool price and
presented in Table 2. Besides ,the characteristics of three wind
power generation scenarios are summarized in Table 2 [39].

It is assumed that the individual scenarios of power demand,
electricity price, and wind power generation are independent.
Thus, these scenarios are combined to construct the whole set
of scenarios. Consequently, the probability of each combined
scenario is calculated as follows.

πs = πd × πλ × πw (7)

Where πd, πλ and πw are the probabilities of the d-th demand,
λ-th electricity prices and the w-th wind scenarios, respectively.
The total number of scenarios, i.e., , will be dn × λn ×wn , where
dn, λn, wn are the number of demand , electricity prices and wind
states.

D. Risk indices in the stochastic programming

Risk means the uncertainty to the future results [44]. IEEE de-
fines “risk” as the result of probability and consequence [44].
The risk management in the electricity market is an analysis tool
to participate in the electricity market process which provides
the decision preferences through risk identification, measure-
ment, analysis, and other aspects [44]. In the scenario-based
models, there are various methods for quantifying risk impacts,
such as variance, shortfall probability, expected shortage, value-
at-Risk (VaR), Conditional Value-at-Risk (CVaR) [44]. In this
paper, variance and CVaR indexes are used for measurement of
risk.

D.1. Variance

The variance index can be characterized by two parameters:
the expected return and the variance of this return [43]. By
considering the objective function with Probability for scenario
s, the variance is defined as follows:

Variance(x) = ∑
s

πs

[
f (x, s)−∑

s
πs f (x, s)

]2

(8)

D.2. CVaR

The CVaR is the expected value, not exceeding Value-at-risk
(VaR) [29]. The CVaR gives the frequency of extreme events and
the severity of losses in the case of undesired events, but the VaR
only gives the frequency of extreme events [29]. In optimization
problems where the objective function is minimized, the CVaR
is defined as follows.

CVaR = VaR +
∑ πs∆s

1− α
(9)

f (x, s)−VaR ≤ ∆s (10)

∆s ≥ 0 (11)

where CVaR is computed as the expected objective function
in the (1α)× 100% worst scenarios. α is indicating the upper tail
of the cost distribution in minimization problem.

3. PROBLEM FORMULATION

In this section the description of two stage stochastic optimiza-
tion model along with the considered objective functions and
the problem constraints are described.
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A. Two stage stochastic optimization framework
In this paper, a two-stage stochastic optimization model is devel-
oped. In this approach, the decision variables are divided into
two types. The first type variables are called “here and now” or
"first stage" control variable. These variables remain the same for
all possible scenarios. The second type are called “wait and see”
or "second stage" variables which are determined specifically for
each scenarios [29, 45].

The SOPF problem variables subsets can be stated as follows.

ū =



Vb , ∀b ∈ NG

PW
b,s , ∀b ∈ NW , ∀s

QW
b,s , ∀b ∈ NW , ∀s

PP
b,s , ∀b ∈ NP , ∀s

QP
b,s , ∀b ∈ NP , ∀s



x̄ =



Vb,s , ∀b ∈ NPQ , ∀s

θb,s , ∀b ∈ NB , ∀s

Sbj,s , ∀b ∈ NB , ∀s

QG
i,s , ∀i ∈ NG , ∀s

PG
i,s , ∀i ∈ sl , ∀s



(12)

where, Ū is the set of control variables, X̄ is the set of state
variables. As it is aforementioned, the set of control variables
is also divided into two distinct subsets, namely here and now
and wait and see decision variables. The set of here and now
decision variables (DHN) are as follows:

DHN =

 Vb , ∀b ∈ NG

PG
i,s , ∀b ∈ NG

 (13)

Also, the set of wait and see decision variable (DWS) are as
follows.

DWS =



PW
b,s , ∀b ∈ NW , ∀s

QW
b,s , ∀b ∈ NW , ∀s

PP
b,s , ∀b ∈ NP , ∀s

QP
b,s , ∀b ∈ NP , ∀s


(14)

B. Stochastic optimal power flow
B.1. Objective function

Account for uncertainties inherent to power systems, stochastic
techniques have been used since the early seventies, where the
uncertainty in system demand was first considered in a stan-
dard power flow problem [46]. Optimal Power Flow (OPF) is
a nonlinear optimization to determine the optimal amount of
electrical variables in a power system, with an objective function
and some constraints. These constraints are included power flow
equations, supply and demand bid limits, power transmission
limits (security limits), line thermal limits, reactive generator
limits and voltage limits. In this paper, the objective function
is to minimize the energy procurement costs. SOPF statistical
characteristics of the output variables, such as: bus voltages and
angles, active and reactive powers, and price that scenario-based
method is used to find the statistical characteristics of the output
variables.

In this study the loads, wind power generation, and the price
of energy exchange with pool market (or external network) are
considered as three uncertain parameters [46]. In this paper the
overall cost function is composed of three terms (i.e. system
generators cost, pool market cost and OM cost of wind farm).
The cost function in scenario s can be mathematically expressed
as follows:

cos t(ūs, x̄s) = GCs + PCs + WCs (15)

In (15), the generation cost of thermal units is defined as

GCs =
NG

∑
i=1

F(PG
i,s) (16)

where
F(PG

i,s) = ai(PG
i,s)

2 + biPG
i,s + ci (17)

The second term of (15) is pool market cost which defined as:

PCs =
NP

∑
b=1

λP,sPP
b,s (18)

Based on IRENA report [47], the OM cost of wind turbine is
expressed as follows:

WCs =
NW

∑
b=1

λW,sPW
b,s (19)

where, λwi is the OM cost of i-th wind farm. Therefore with
considering scenario probabilities, the expected objective func-
tion of proposed problem is calculated as follows.

F =
NS

∑
s=1

(πs × cos t(ūs, x̄s)) (20)

B.2. Problem constraints

Equality constraints
The obtained solution should satisfy the power balance con-

straints which are described mathematically as follows [48].

PG
b,s + PP

b,s + PW
b,s − PD

b,s = Vb,s

NB

∑
j=1

Vj,sYbj cos(θb,s − θj,s − γbj)

(21)

QG
b,s + QP

b,s + QW
b,s −QD

b,s = Vb,s

NB

∑
j=1

Vj,sYbj sin(θb,s − θj,s − γbj)

(22)
Inequality constraints
The active power, reactive power generation of the generators

and voltage of buses should be in the allowed range as follows:

PG
i,min ≤ PG

i,s ≤ PG
i,max , ∀i ∈ NG, ∀s (23)

QG
i,min ≤ QG

i,s ≤ QG
i,max , ∀i ∈ NG, ∀s (24)

Vb,min ≤ Vb,s ≤ Vb,max , ∀i ∈ NB, ∀s (25)

The power transmitted from the branches is constrained to its
maximum value as follows.

0 ≤ Sbj ≤ Sbj,max , ∀b ∈ NB, ∀s (26)
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The active/reactive power outputs of pool market are limited
as follows.

PP
b,min ≤ PP

b,s ≤ PP
b,max , ∀b ∈ NP, ∀s (27)

QP
b,min ≤ QP

b,s ≤ QP
b,max , ∀b ∈ NP, ∀s (28)

Also the following limits are considered for the available ac-
tive/reactive power of wind farms.

0 ≤ PW
b,s ≤ ζW

b,s × PW
b,r , ∀b ∈ NW, ∀s (29)

QW
b,min ≤ QW

b,s ≤ QW
b,max , ∀b ∈ NW, ∀s (30)

In this paper, the reactive power output of wind farms are
limited to the corresponding active power output as follows.

QW
b,max = tg(ϕlag)× PW

b,s (31)

QW
b,min = −tg(ϕlead)× P W

b,s (32)

C. Formulation of risk
SOPF problem can be solved to minimize the energy procure-
ment costs, by considering the risk level. Therefore in RC-SOPF,
risk level is considered as the second objective function. Vari-
ance and CVAR indices are utilized in this paper for modeling
risk.

The objective functions in scenario-based method for two
different cases are defined as follows:

• Objective function without risk management

OF = min((1− β)× F) (33)

• Objective function by considering risk management with
calculation of variance

OF = min {(1− β)×Variance(x) + β× F} (34)

• Objective function by considering risk management with
calculation of CVaR

OF = min {(1− β)× CVaR + β× F} (35)

The flowchart of the method proposed in this paper is show-
ing in Fig.4.

4. SIMULATION RESULTS

In this article, the proposed RC-SOPF problem is formulated as
nonlinear programing (NLP) problem and it is implemented by
using Generalized Algebraic Modeling Systems (GAMS) soft-
ware [37] and solved by SNOPT [36] solver. In this paper, mod-
ified 39-Bus New England system is studied, as it is shown in
Fig. 5. A wind farm is added to bus 16 rated as 600MW [49] and
a pool market is added to bus 25. The OM cost of this wind farm
is assumed to be 17.5 $/MWh, which is adopted from [47]. Bus
31 assumed as slack bus [50], 30, 32,33,34,35,36,37,38 and 39 are
taken as PV buses and the remaining 29 buses are PQ buses.

The system data which include the active/reactive loads,
under load tap changing transformers (ULTCs) values, trans-
mission system parameters, reactive power limits of generators
along with voltage limits are given in [50]. In this paper, in order
to investigate the impact of risk indices on the SOPF problem,
three different cases are studied as follows.

• Case-I: Solving RC-SOPF without considering risk manage-
ment

• Case-II: Solving RC-SOPF considering risk management by
variance calculation

• Case-III: Solving RC-SOPF considering risk management
by calculation

Fig. 4. Flowchart of the method proposed

Fig. 5. Single line diagram of 39-Bus New England system

A. Case-I: Solution of SOPF without considering risk indices

In this part, objective function is neglected the risk and conse-
quently the total system cost minimized. The computational
time of about 428 sec. on a PC with Intel Core i5 CPU@2.53
GHz and 8G RAM. The energy procurement cost is 147455.4$/h.
For this solution, active power generation in slack bus in all
scenarios is shown in Fig.6. Additionally, active and reactive
purchased power from pool market in all scenarios are presented
in Fig.7 and active and reactive power output of wind farm in
all scenarios for this case are supposed in Fig. 8.

B. Case-II: Considering risk via variance index

The goals include in risk aversion, the minimum risk and mini-
mize the cost, simultaneously. The variance of the cost is calcu-
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Fig. 6. Active power generation in slack bus (i.e. bus 31) in all
scenarios (in MW) in Case-I.

Fig. 7. Active and reactive purchased power from pool market
(located at bus 25) in all scenarios (in MW and MVAR) in Case-
I.

Fig. 8. Active and reactive power output of wind farm (lo-
cated at bus 16) in all scenarios (in MW and MVAR) in Case-I.

lated for β = [0, 1] in 20 solutions. The computational time is 985
sec. Pareto optimal cost front of variance is depicted in Fig.9. As
it is expected, the variance of the cost will be decreasing while
the value of β decreases. The values of the cost and variance
for all 20 Pareto optimal solutions are demonstrated in Table 3.
Among these optimal solutions, for β = 0, the maximum cost
has been achieved, with the total cost equal to 229228.2426 $/h
and the variance is equal to 64539.9540 $/h2. For this solution,
active power generation in slack bus for β = 0 in all scenarios
is given in Fig.10. Additionally, active and reactive purchased
power from pool market for β = 0 in all scenarios are offered in

Table 3. Wind-load- electricity price scenarios and their proba-
bilities

Solution β Total Cost ($/h) Variance ($/h2)

1 0 229228.2426 64539.9540

2 0.0526 229228.2425 64540.0588

3 0.1053 229228.2425 64540.0590

4 0.1579 229228.2425 64540.0594

5 0.2105 229228.2425 64540.0595

6 0.2632 229228.2425 64540.0595

7 0.3158 229228.2425 64540.0595

8 0.3684 229228.2425 64540.0595

9 0.4211 229228.2425 64540.0595

10 0.4737 229228.2425 64540.0596

11 0.5263 229228.2425 64540.0597

12 0.5789 229228.2425 64540.0598

13 0.6316 229228.2425 64540.0598

14 0.6842 229227.3363 64540.8891

15 0.7368 229227.3363 64540.8893

16 0.7895 229227.3363 64540.8893

17 0.8421 207479.5946 144419.7292

18 0.8947 207474.5862 144454.0335

19 0.9474 182099.2041 338231.2669

20 1 147455.3546 27074975.0013

Fig.11, also active and reactive power output of wind farm for
β = 0 in all scenarios for this case are supposed in Fig.12.

Fig. 9. The Pareto optimal front of Case-II.

C. Case-III: Considering risk via index

In order to solve the problem by -constraint method, Pareto
optimal cost front of is depicted in Fig. 13. This Pareto front
consists of 20 Pareto optimal solutions. The computational time
in this case is 1243 sec. The values of the cost and for all 20 Pareto
optimal solutions is presented in Table 4. Among these optimal
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Fig. 10. Active power generation in slack bus (i.e. bus 31) in all
scenarios (in MW) in Case-II.

Fig. 11. Active and reactive purchased power from exter-
nal network (located at bus 25) in all scenarios (in MW and
MVAR) in Case-II.

solutions, for β = 0 the maximum cost, with the cost equal to
151035.0664 $/h the is equal 159892.1459 $/h2. For this solution,
active power generation in slack bus for β = 0 in all scenarios
is given in Fig.14. Additionally, active and reactive purchased
power from pool market for β = 0 in all scenarios are given in
Fig.15 and active and reactive power output of wind farm for
β = 0 in all scenarios for this case are supposed in Fig.16.

Fig. 12. Active and reactive power output of wind farm (lo-
cated at bus 16) in all scenarios (in MW and MVAR) in Case-II.

Table 4. Pareto optimal solutions by considering risk manage-
ment CVaR

Solution β Total Cost ($/h) CVAR ($/h2)

1 0 151035.0664 159892.1459

2 0.0526 150843.6086 159892.1459

3 0.1053 150652.1507 159892.1459

4 0.1579 150460.6929 159892.1459

5 0.2105 150269.235 159892.1459

6 0.2632 150077.7772 159892.1459

7 0.3158 149886.3193 159892.1459

8 0.3684 149694.8615 159936.5579

9 0.4211 149503.4037 159945.3872

10 0.4737 149311.9458 160041.1533

11 0.5263 149120.488 160148.0719

12 0.5789 148929.0301 160261.0179

13 0.6316 148737.5723 160390.4808

14 0.6842 148546.1145 160531.8501

15 0.7368 148354.6566 160675.4816

16 0.7895 148163.1988 160685.8033

17 0.8421 147971.7409 160734.4268

18 0.8947 147780.2831 160866.077

19 0.9474 147588.8252 161051.8215

20 1 147397.3674 161394.5729

Fig. 13. The Pareto optimal cost front of Case-III.

D. Discussion on obtained results
In this paper active power generation of slack bus is considered
as the “wait and see” variable and the PV buses active power
generations are considered as the “here and now” variables. The
power generation of slack bus in all cases has been presented
in previous sections, but the PV buses power generations in all
cases is depicted in Fig. 17. Also, the voltage magnitudes in all
cases are presented in Table 5.

According to Fig.9 and Fig.13, if the risk coefficient (i.e. β)
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Fig. 14. Active power generation in slack bus (i.e. bus 31) in all
scenarios (in MW) in Case-III.

Fig. 15. Active and reactive purchased power from pool mar-
ket (located at bus 25) in all scenarios (in MW and MVAR) in
Case-III.

Fig. 16. Active and reactive power output of wind farm (lo-
cated at bus 16) in all scenarios (in MW and MVAR) in Case-
III.

being high, variance and CVaR will become low, with the low
amount of risk, while the cost is higher than risk neutral case.
Making a comparison between the results presented in Table 3
and Table 4 in β = 0 shows that the value of expected cost by
considering is less than that of variance. Also, when β varies
in the interval of [?, 1], the value of does not vary significantly,
but the variance changes extremely. Therefore, index is more
appropriate than the variance for taking risks and achieve lower
cost.

Table 5. Voltage magnitudes of generator buses (pu) in all
cases

Solution β Total Cost ($/h) CVAR ($/h2)

1 0 151035.0664 159892.1459

2 0.0526 150843.6086 159892.1459

3 0.1053 150652.1507 159892.1459

4 0.1579 150460.6929 159892.1459

5 0.2105 150269.235 159892.1459

6 0.2632 150077.7772 159892.1459

7 0.3158 149886.3193 159892.1459

8 0.3684 149694.8615 159936.5579

9 0.4211 149503.4037 159945.3872

10 0.4737 149311.9458 160041.1533

11 0.5263 149120.488 160148.0719

12 0.5789 148929.0301 160261.0179

13 0.6316 148737.5723 160390.4808

14 0.6842 148546.1145 160531.8501

15 0.7368 148354.6566 160675.4816

16 0.7895 148163.1988 160685.8033

17 0.8421 147971.7409 160734.4268

18 0.8947 147780.2831 160866.077

19 0.9474 147588.8252 161051.8215

20 1 147397.3674 161394.5729

Fig. 17. Maximum and active power generation in PV buses
(in MW) in all cases.

E. Value of Stochastic Solution

In order to evaluate the suitability of the proposed stochastic
model for the OPF problem, value of stochastic solution (VSS) in-
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dex [51] is calculated. This index highlight the impact of stochas-
tic models in simulations.VSS is defined as follows:

VSS = EEV − SS (36)

The VSS for both cases (case-II and case-III) is calculated using
the results given in Tables 3 and 4. It is observed that in Case-II
the VSS for total cost is 353.5811 $/h. Also in Case-III this value
is 513.6491 $/h. These results imply that in stochastic model the
cost values are more than deterministic case and because of this,
the stochastic results are more realistic than the deterministic
results.

5. CONCLUSIONS

In this paper stochastic version of OPF problem is studied via
scenario-based modeling approach. Multiple sources of uncer-
tainty such as wind power generation, power exchange with
external network and load demand are considered. In order to
manage the financial risk associated with these uncertainties,
two indices i.e. variance and conditional value at risk (CVaR) are
utilized. The proposed model is examined on the modified 39-
bus New England test system. The obtained numerical results
substantiate that Risk aversion leads to increase the total cost
of energy supply. Hence, for a desired operation of electricity
markets, each system operator should make a trade-off between
the cost minimization and its associated risk. Also, the results
confirm that CVaR is more appropriate index of risk reduction
in the proposed risk constrained OPF model.
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