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This study investigates the effects of ACH, students’ number, wall thickness, different semester start-
ing dates, and energy consumption reduction. The optimal academic timetabling for reducing energy
consumption considers curricula’s rules for taking courses, departments’ specific instructions, existing
classes, professors’ priorities, and other related factors. This research uses simulation and demand-side
management models to determine the energy consumption of holding classes during a timeslot. They
can quantify the factors’ effects on energy use. ACH is between 1.5 and 12, wall thickness is up to 1.6 of
its normal value, and students are 10 to 40. There are three starting dates for the semester: conventional
time, one-week and two-week earlier. As long as there is no need to change cooling/heating systems,
the factors’ impacts on each timeslot from the energy reduction perspective when implementing optimal
timetabling are investigated. The developed model revealed that the four factors do not change classes’
priorities from the energy viewpoint but noticeably affect energy use reduction. The optimal scheduling
by keeping the semester’s starting date and classes’ operational conditions decreases energy consumption
between 11.5 and 24.5 %. The results show that the semester’s early start has a substantial influence on
energy consumption reduction. If the operational conditions are the same and classes begin two weeks
earlier, energy consumption will be reduced between these two ranges: 36.7 - 52.2 % and 49.4 - 63.9%.
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1. INTRODUCTION

The building sector consumes around 30 % of the final energy,
and its direct carbon dioxide emissions are 15 % among end-
use sectors. Adding the indirect ones doubles this proportion,
playing a critical role in climate change [1, 2]. Various measures
mitigate the detrimental effects of giving off greenhouse gas
emissions from this sector [3]. Its vast impacts have justified
energy-saving methods in this sector [4]. There are many ac-
tions to deal with this issue and reduce the building’s energy

intensity, such as renovation, improved insulation, sophisticated
HVAC, or passive design [3, 5]. Although technological advance-
ments can bring the most diminish in energy use, this does not
mean they are economical [6]. These activities have different ex-
penses, and some are not applicable because of prohibitive costs
[7]. One of the measures that do not pose any cost is demand-
side management [5] since most energy use happens during the
building’s operational stage of its life cycle [8].

Public service buildings are important in decreasing energy
consumption; in the long run, they will help reach the desired
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sustainable development goals [9, 10]. Commercial buildings,
part of which are universities, have noticeable energy consump-
tion, and there is a great potential for energy conservation,
roughly up to a third of the total consumption [11]. These build-
ings’ occupancy significantly affects energy use [12], like univer-
sity class schedules. If they are adjusted, there could be beyond
a 40 % fall in energy use [13, 14].

Many studies investigate university timetabling, not from
the energy-saving perspective. But they introduce some points
that have to be considered from the energy point of view. Gen-
erally, university timetabling allocates limited resources, such
as classes, to some entities, like students, in which assumptions
are satisfied [15]. A point in academic timetabling is a combi-
nation of faculty timetabling and course scheduling, requiring
mathematical optimization that is difficult for optimality [16, 17].
Constraints to which this planning should adhere are time slots,
not overlapping [18], available resources [19], a minimum per-
turbation problem [20], minimizing operational costs [21], and
being fair for everyone [22]. Hence, these considerations should
be part of any model.

Studies about educational buildings in the context of this
study can be classified as understanding occupant behaviour
and proposing strategies to conserve energy. The latter group
can also be divided into two subsets: saving energy by man-
aging the load and adjusting the systems. Both methods are
challenging due to these buildings’ complex and various func-
tions [23]. Occupants are why there is a discrepancy between
energy simulation models and actual data, and an agent-based
model can entirely simulate occupant behaviour as the agents
[12]. A questionnaire and interviews in a pilot study to ana-
lyze the relationship between the electrical energy demand and
user activities showed that the occupancy pattern could help the
building management system reach optimum energy consump-
tion [6]. The critical electricity consumption driver collects data
at different time steps from educational buildings’ equipment
and users [24]. Accurate models or interventions in occupancy
behaviour demand specific energy data, requiring expensive
apparatus. There is a non-intrusive occupant load monitoring
to derive this information, utilizing the preferred data from the
existing infrastructures [25]. Categorizing various university
campuses and collecting their electricity data revealed higher
educational buildings and some laboratories, owing to their
operation, used the most energy [26].

Energy saving in university buildings is attainable through
different approaches. State-of-the-art technologies for collecting
energy consumption data, matching them with timetabling of
the university, and then introducing a management framework
for analyzing energy conservation potential is one way [27]. An-
other strategy is an agent-based system that compares outside
weather conditions with the university’s management system to
optimize consumption [28] or establishes a methodology based
on ISO guidelines for energy consumption reduction potentials
[5]. HVAC scheduling reduces energy consumption, and three
clusters are investigated: Basic meaning on and off, Conven-
tional translating to decreasing the peak demand, and Advance,
which is a combination of the other two [28]. An occupancy-
based HVAC system operation schedule can cause a 14 % energy
use reduction [29]. Simple measures like replacing extravagant
fans or lighting fixtures dwindle electricity by nearly 14,000 kWh
per month [30]. Demand-response control strategies are also sug-
gested to cut heating energy consumption and heating energy
cost by three and six per cent, respectively [31].

The other strategy to conserve energy in these buildings re-

lies on load management via changing the timetable. These
methods utilize mathematical optimization to obtain optimal
scheduling. Centrally controlled variable air volume systems
are commonly operated based on the fixed period occupancy
assumption. Therefore, applying the actual occupancy patterns
will save energy by around ten per cent [32]. Optimizing one
department’s schedule and comparing it with the conventional
trial-and-error technique revealed that the solution’s relative im-
provement is from 8% to 29% [33]. Not considering a group of
educational buildings and some assumptions for simplifying the
problem negatively affects that study’s results. An energy-aware
meeting schedule in academic buildings using mixed-integer
linear programming, depending on the building’s HVAC sched-
ule, can halve energy consumption compared to arbitrary plans
[34]. Course timetabling by genetic algorithms can lead to a
five per cent energy-saving if hard constraints are removed [35].
Some factors, such as a multiobjective problem or different as-
pects of academic-related resources, need further investigation.
A bi-level energy-efficient occupancy behaviour optimization
technique, combined with a demand-driven control scheme,
decreases the energy consumption of a university building by
1.23 per cent by only optimizing the timetable, and nearly 12%,
with the demand-driven control strategy [35]. If these methods
are integrated, a 19% reduction is achievable. The region of a
building significantly influences energy consumption, occupant
behaviour, and indoor environmental quality, and optimizing
the behaviour will cut down energy between 11 to 15 per cent
regarding the region [36]. A common BCVTB-based (Building
Controls Virtual Test Bed) simulation method uses a genetic
algorithm to optimize the university timetabling concerning
building energy efficiency [37]. More courses were allocated
in the afternoon, resulting in decreased lightning operations
during the daytime and the heating load despite increasing the
cooling load. The proposed scheduling could reduce energy use
by 3.6 percent in the fall term.

A university’s timetable on different campuses is an excel-
lent example of load management. Not only does it not need
any money to do energy-saving actions, but it also is among
the easiest methods to implement. Educational buildings have
vast capacities for conserving energy [38]. This type of load
management can contribute to these potentials because of its
features and users’ vital role in energy consumption. Although
not an acceptable number of studies assess energy timetabling
thoroughly, this study would form its research on Fahi et al. [39].
Their comprehensive model based on shared resources between
several departments considered the teaching constraints to opti-
mize the energy consumption of an educational building. The
model can calculate the thermal load only based on the ambient
temperature. It determines the percentage reduction in the heat-
ing load of a building due to the change in room temperature, the
start date of a semester, and shared classes compared to standard
curricula by the Boolean method and ANAGRAM model. The
results showed that the optimum curriculum is not affected by
scenarios. The early two-week start of the semester and a class
temperature of 23 degrees would reduce energy consumption
by more than 50%.

Figure 1 depicts what parameters affect a building’s energy
load in general [40, 41]. Among them, occupants, air change
rate, thermal resistance, and weather are significant in this study.
People influence building energy use through occupancy, inter-
actions, and behavioural efficiency [42]. Occupants add sensible
and latent loads to the space, impacting cooling and heating
demands [43]. A sufficient outdoor air supply is necessary for
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Fig. 1. Factors influencing heating and cooling load in general.

the inhabitants’ well-being [45]. It also affects the building’s
energy demand. More fresh air leads to sensible and latent loads
added to the space, meaning the airconditioning system would
consume more energy to provide the heating or cooling demand
[43]. Air Changes Per Hour (ACH) is the total volume of air
passing through an enclosed space in one hour, equal to the
space’s volume [44]. One of the ways to reduce energy con-
sumption is to lower ACH [45]. The number of people and ACH
depend on the building usage. 40 to 60 % of the total heat trans-
fer of a building occurs through envelopes [46, 47]. Therefore,
the better thermal resistance of the material translates to less
energy consumption [47]. The main objective of envelopes is to
protect people from outside weather effects and bring a comfort-
able environment [48]. Weather, which relies on the building’s
location, is significant for determining envelopes’ final design
and thermal resistance [49, 50]. Other characteristics of a place
are a building’s positioning around other facilities or the solar
radiation impact.

2. METHODOLOGY

The number of occupants, ACH, and thermal resistance are the
features that would be added to the previous model to measure
their effects on the results. In reality, the change in wall thick-
ness cannot be implemented without structure calculations and
other similar ones. Besides, although increasing the thickness
would reduce the heating load, it affects the investment cost
and the available area. Changing the weather is not among
them because the location of the considered building is the same,
which is Shiraz University’s second engineering building com-
plex. The approach to answering the main question is divided
into simulation and demand-side management. The simulation
model is used to involve the factors in the previous study. The
demand-side management explains the necessary modifications
that should be undertaken to the model.

A. Simulation Model
Different models to determine a building’s energy load include
time series, econometrics, simulation, and combined [51, 52].
Since this study aims to measure the factors’ influences, the
simulation method should be used. The financial aspects of
choices are not involved in this research. Simulations also could
be categorized into direct and indirect models [53]. The second
method is similar to [36], heavily requiring installing equipment
to obtain the building’s data. Because there was not possible
to implement these measures in the complex, the study used a
direct method to determine the building’s energy consumption.

A building has seven general categories of energy demand:
cooling, heating, lighting, cooking, refrigeration, non-renewable
electricity, and sanitation. HVAC is the most significant one on
university campuses because of its noticeable energy consump-
tion and around 40 % reduction potential [54, 55]. As a result,

more studies concentrated on it. The other ones are negligible
in comparison or cannot be adjusted through load management.
Cooking, for example, does not exist in these buildings. Elec-
tricity by equipment always happens since it is essential for
a class’s functioning. The presence of electrical equipment af-
fects the heating and cooling loads. Using these systems in the
classrooms is not common in Iranian universities. Therefore,
they are not investigated in this study. Since the classes are
held in the daytime, lighting could be eliminated. However,
the occupants would behave randomly, which could affect class
prioritization. These behaviors are not assessed in this study.
Lighting also follows this path, which is regularly on during
class. Iranian universities generally do not have systems that
simultaneously provide both heating and cooling demands [40].
Shiraz University’s second engineering building complex, the
previous research’s location, has the same characteristic. The
concentration is on the upcoming fall semester since students are
anticipated to return to the class after a long period of absence.
The heating demand, hence, is considered.

Building simulation models are based on fundamental heat
balance principles. The model calculates the building’s energy
load. Temperate difference between the inside and outside
causes heat transfer in a building, the basis for the consider-
able heat loss. Envelopes consist of various layers. Thin air heat
flow on both sides of envelopes acts as thermal resistance. The
overall thermal coefficient is as Equation (1).

U =
1

1
fi
+ R1 + R2 + .... + 1

fn

(1)

Where U is the overall coefficient, 1
f is convection thermal re-

sistance, i is inside, O is outside, and R is the envelope’s layers’
thermal resistance. Then, Equation (2) determines the heat trans-
fer from envelopes. Many features affect the thermal resistance,
for example, materials, construction, or walls’ thickness [56].
Analyzing the wall thickness is one of the common ways that
influence the heating/cooling load.

Q = AU(t1 − t2) (2)

Where Q is the heat transfer, A is the envelope’s area, t1 and t2
are the hotter and colder sides’ temperatures, respectively. Im-
proving air change requires investment because existing equip-
ment should be retrofitted or substituted. Infiltration happens
when the pressure difference between the outside and inside re-
sults in air entry through the building’s cracks [57]. It is assumed
that any infiltration would mix with inside air and alter the en-
ergy load of the space. The infiltration quantity is included in
ACH and could be determined by several methods like Equation
(3) [58].

inf iltration = (FSchedule)
AL

1000

√
Cs∆T + CW(Wind speed)2

(3)
Where the user defines the value of FSchedule, AL is the effective
air leakage area, Cs is the coefficient for stack-induced infiltra-
tion, Cw is the coefficient for wind-induced infiltration, and ∆T is
the absolute temperature difference between indoor and outdoor
air. Ventilation is intentionally controlled air entry to enhance
indoor air quality [59]. There are also several methods to deter-
mine it. Equation (4) determines it and is a function of wind
speed and thermal stack effect [60]. Equations (5) and (6) show
how its two components should be calculated.

Ventilation =
√

Q2
S + Q2

W (4)
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Qs = CD AopeningFschedule

√
2g∆HNPL(

|Tzone − Todb|
Tzone

) (5)

Qw = Cw AopeningFscheduleV (6)

Where Qs and Qw are the volumetric airflow rate due to stack
effect and driven by wind, respectively. And CD is the discharge
coefficient for opening, Aopening is the open area, Fschedule is the
user-defined open area fraction, HN PL is the height from the
midpoint of the lower opening to the neutral pressure level, Tzone
is zone air dry-bulb temperature, and Todb is local outdoor air
dry-bulb temperature. Also,Cwis opening effectiveness, and V is
the local wind speed. Metabolism generates heat in the human
body. This heat dissipates into the building, causing impacting
the energy load. The heat gain could be calculated by Equation
(7) or is available in standard handbooks [61, 62]. The original
formulation was in the Imperial unit, but the following is in SI.

S = 6.461927 + 0.946892M + 0.0000255737M2+

7.139322T − 0.627909TM + 0.0000589172TM2−

0.19855T2 + 0.000940018T2 M− 0.00000149532T2 M2

(7)

Where S is the sensible heat, M is the metabolic rate, and T is the
air temperature. Software such as EnergyPlus, DesignBuilder, or
Rhino employs these bases, some of which have a user-friendly
graphical interface. Their proposed model is holistic and pre-
vents verification problems. The following section explains the
utilization of this part in the demand-side model.

B. Demand-Side Management Model
The previous model’s objective function should be modified to
include the factors’ influences. Hence, the function’s coefficients
and the prioritizations could change. However, the modifica-
tions are carried out so that it does not alter the prioritizations
because the constraint should be revised. Changing them means
each university or department should develop its own model
based on its rules. It is against the primary goal of this research
since it seeks to investigate the three factors. In that case, there
would be many additional factors apart from the main ones.
It is worth mentioning that other studies used soft constraints
despite Fathi et al.’s hard ones. Hard indicates the constraints
must be satisfied, and soft is that if it is not met, paying fines is
still acceptable. Its novelty is that every individual’s limitations
are answered, and there is no trade-off between variables owing
to not having penalties. It gives a great advantage to the previ-
ous model and another reason for just the objective function’s
adjustment. The following constraints in educational planning
should be met:

• Time interference between classes, like resting period

• Courses not being held due to professor scarcity

• Holding the same courses at matching times. This is nec-
essarily not for every department. But, regarding this as-
sumption, the only factor for taking classes by students is
educational quality and other related considerations, not
the time of classes

• Preventing the students’ required courses at the same times-
lot

• Limitation of each department’s allocated classes in each
timeslot

• Limitation of a professor’s presence in each timeslot in a
class

• Holding course (i) by the professor (j) of the department (d)
at the time (k)

The proposed mathematical programming is similar to the pre-
vious study except for the objective function. Its coefficients
were a function of outside and inside temperatures during class
periods. Since the ambient temperature could be random at the
same timeslot during various days, the coefficients of energy
costs of a timeslot are determined by proper equations. These
coefficients consider students’ number, buildings’ characteris-
tics, outdoor and indoor climate, and occupants’ behaviour. This
study does not include the last part. In the study’s time frame,
the student arrangement did not have an influence on the priori-
tization.The coefficients of holding classes in each timeslot for all
days (C̄k) are assumed equal. To quantify the factors’ impacts on
energy consumption,(C̄k) in different scenarios contain students,
ACH, wall thickness, and other related factors. Therefore, each
scenario’s useful cooling and heating energy is calculated for a
year. Equations (8) and (9) present how(C̄k) is calculated.

Ci−j = ∑en
Day=St

(
n

∑
K=1

(LoadDay∗ j−i
n ∗24+i+ j−i

n ∗K
)

)
(8)

C̄ =
C
‖C‖∞

(9)

Where Loadt of timeslots is a function of factors determined by
the simulation model. Ci−j is the energy cost of cooling/heating
services for holding a class in the period between i and j. n is the
number of temperatures measured during i to j. stis the first and
en is the last day of a semester. C is a coefficient vector of the
energy cost of providing cooling/heating load. ‖C‖∞is infinity
norm and C̄ is the normalized vector of energy cost. Regarding
the randomness of temperature in a specific period of the day
and not considering temperature forecast for these periods, the
energy cost coefficients are the same if other factors are constant.
Achieving this requires gathering the cooling/heating load of
timeslots and then normalizing the energy cost coefficients. This
model is presented in Table (1).
Where xidjdkd is the binary decision variables. λ is a subset of
the conventional intervals. id and jd are a course and a faculty
member of the department. K is the number of time slots in a
week. Nkd is the number of classes assigned to a department in
a time slot.

3. RESULTS AND DISCUSSION

In this section, the case study is described. The results are then
presented.

A. Second Engineering Building Complex
First, the weather features of Shiraz are described and then the
building itself is outlined. The university’s second engineering
complex is situated in Shiraz. This city is located in southwest-
ern Iran. Its climate is categorized as hot and semi-arid, with
hot summers and cool winters [63]. Some days the tempera-
ture is below freezing. Figure (2) shows the annual temperature
of Shiraz. It also depicts Iranian universities’ fall and winter
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Table 1. The revised mathematical programming model based on [40,64]

Min Zd = ∑
k

∑
jd

∑
id

C̄k (ACH , OCC , Building , Weather Conditions , Tsetpoint , Neighborhood) xidjdkd

First set of constraints
xid jdkd

= 0
∀λ ∈ λ, λ

⊆ K
Time interference between classes

General set of constraints

Second set of constraints
xid j′dk′d

= 0
∀j′d
∈ j′d, j′d ,⊆ K

Course not being held due to professor scarcity
General set of constraints

Third set of constraints x
αjdkd = x

αj′d
kd

∀jd & j′d ,∈ jd

∀α ∈ Id , ∀k ∈ K
Holding the same courses at matching times

Specific set of constraints

Fourth set of constraints
xid jdkd + xid j′dkd ≤ τjj′

τ ∈ {1, 2} , ∀id

i′d ∈ Iα , ∀jd&j′d ∈ jα

Preventing the students required courses at the

same time slotGeneral set of constraints

Fifth set of constraints Id

∑
id=1

Jd

∑
jd

xid jdkd , ≤ Nkd ∀k ∈ K
limitation of each department’s allocated classes

in each timeslotGeneral set of constraints

Sixth set of constraints Jd

∑
jd

xid jdkd ≤ 1 ∀k ∈ K , ∀id ∈ Id
Limitation of a professor’s presence in each timeslot

in a classSpecific set of constraints

Upper and lower boundary xid jdkd : Boolean
Holding course by the professor of the department

at the time

Fig. 2. Shiraz’s annual temperature

semesters duration based on the Iranian calendar. The Fathi et
al. study demonstrated starting the semester in summer will
significantly reduce energy consumption, which can also be seen
in the chart. Through this strategy, the outside air temperature
range approaches the comfort zone, reducing the need for a
cooling system. There are also restrictions on starting classes in
the summer. The most important limitation is the lack or ineffi-
cient operation of a cooling system in educational environments.
Due to the different climates in different countries, zero to 93
days can be considered for this transfer of study program. The
other reason for limiting the start of classes in the summer is
the beliefs and habits of the people about summer, which have
accepted this season as a holiday. The studied building’s pri-
mary usage is for holding classes. These buildings, utilized for
teaching purposes, have higher energy consumption than all
campus buildings [64]. The building contains eight classrooms,
two bathrooms and a corridor on its three floors. The hall ceiling
height is 2.2 meters; in other parts, it increases to 3.4 meters. The
building is graphically modelled to consider the interactions

between floors and simulate the total energy load. The building
and its floor plan with each part’s dimensions are displayed in
Figure (3).

B. Results of Considering the Three Factors in the Model

The impacts of changing ACH, number of students, and wall
resistance on the beginning date of semesters of the heating load
are assessed. The results are also compared with the simple ther-
mal model, not requiring the building’s specific characteristics
and outdoor climate. Because the majority of Iran is located
in a hot and dry climate, one of the best strategies is to start
universities and schools earlier until the less demanded period
for cooling. This method, therefore, is analyzed. ACH changes
from 1.5 to 12. The walls’ thickness equals the same quantity of
existing value to 1.6 times of it. The students are between 10 and
40 people. Figure (4) presents the effect of ACH, the students’
number, and wall thickness in the three different starting dates
on the heating energy cost of each timeslot. These dates are
usual and one-week and two-week earlier Figure (5) shows the
calculated coefficient of normalized heating expenses in each
timeslot with the help of the previous model. The normalized
coefficient cost of each scenario is shown in Figure (6). Figure (4)
delineates that changing three factors does not affect the class
times from the energy standpoint. Comparing these results with
Figure (5) reveals that the precise models do not improve edu-
cational timetabling in contrast to the low-computational load
models. Therefore, Fathi et al.’s model can be used unless the
amount of energy reduction is not the main focus of scheduling.
Although the priority of classes does not change with increas-
ing ACH, normalized cost coefficients rise except for the first
timeslot. Comparing it to Figure (6) indicates that the higher
ACH, the higher the energy expenses in all timeslots. Thus,
Reducing air leakages and better controlling HVAC decrease
energy consumption. Similarly to this, increasing wall thickness
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a: The building 

 

b: Floor plan 

 
Fig. 3. Shiraz University’s second engineering building and its
floor plan

does not impact the priority. It, however, reduces normalized
cost coefficients. This rise causes a decline in energy use, raising
investment costs. The number of students has the same effect as
the other two and reduces the coefficients. Its increase leads to a
reduction in heating energy costs and merges two demandant
student groups into one, meaning a cost reduction. But it is
also associated with a plummet in learning quality and lower
demand for students. These challenges could be solved through
smaller classes. The earlier beginning of all scenarios results in
a decrease in energy consumption. This happens because the
semester would be in the more moderate weather condition of
the year. The climate data demonstrates that an early start of
more than two weeks needs cooling systems in Shiraz. The other
effect is the earlier start of the next semester, cutting the cooling
load.
Analyzing the four factors’ effects on coefficients of the cost

of holding a class per timeslot shows that adjusting ACH and
the semester’s earlier start considerably influence the heating
energy load. This is presented in Figure (7).
Changing ACH, early beginning, and optimal timetabling are

the best strategies to reduce the heating load in cold seasons.
The last two have the lowest implementation costs. Figure (8)
shows the projected range of heating load reduction if apply-
ing the optimal scheduling and keeping operational conditions.
In these circumstances, the reduction is between 11.5 to 24.5
%. As this figure indicates, the share of heat load reduction
when the optimal scheduling is implemented without chang-
ing other conditions in the early start is more than others. The
maximum reduction in this situation is 24 %. The results show
that the semester’s earlier beginning can reduce heating load
between 36.7 to 52.2 %, typically around 40 %. Also, if it is ac-
companied by optimal timetabling, the reduction is 49.4 – 63.4

 

 

 

a: various ACHs, room temperature of 23oC, 25 students, and normal wall thickness 

 

 

 

b: various wall thicknesses, room temperature of 23oC, 25 students, and ACH around 5 

 

 

Fig. 4. Energy cost coefficient of holding classes in each times-
lot for different ACHs, students’ numbers, and wall thick-
nesses in the three beginning dates of the semester

Fig. 5. Coefficient of normalized heating costs
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Fig. 6. Normalized coefficient cost of each scenario

 

a: Changing ACH 

 

b: Changing the number of students 

 

c: Changing wall thickness 

 
Fig. 7. Intervals of coefficients of the cost of holding a class per
timeslot
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Fig. 8. Effects of the semester’s early start on the heating load
reduction

Fig. 9. Effects of the semester’s early start on the heating load
reduction

%, typically around 50 %. Figure (9) indicates the range of heat-
ing load reduction with the early start in different scenarios.
Among the strategies, the beginning of the semester is the most
important because of the case study’s mild weather and opti-
mal timetabling. Applying them does not significantly impact
investment and operational expenses besides their influences.
If the heating load reduction prediction is not that important,
using the building’s thermal model, which does not require the
building’s characteristics and operational situations, can be a
better option.

4. CONCLUSION

Load management is among the conventional measures to re-
duce energy consumption and the peak. Academic timetabling
is one of these methods. It not only has a suitable time for
courses and allows students to take the maximum number of
courses but also lowers energy costs. Its noticeable challenge is
possessing a great number of decision variables and constraints.
To carry out its objective function, which is minimizing energy
expenses, this model requires the thermal model of the building
and its surroundings, indoor climate control, weather condition,
number and behaviour of students, and other related consider-
ations. Although a rise in students without considering their
random behaviors would decrease the heating demand, using
this method is not always possible. Altering ACH would affect
indoor air quality and, therefore, the quality of education. But
optimally modifying ACH could reduce energy consumption
while keeping the quality of education. Another common strat-
egy is beginning the fall semester early. As long as the cooling
load is small, this method is proper because the spring semester
could end early, cutting the cooling load. The objective function
of this study can consider the heating/cooling energy demand,

quantifying solar radiation influences, ambient temperature, op-
erating conditions, students number, and adjacent buildings. Its
constraints are like the previous research [40]. The prioritization
of the class times from the energy consumption view is based
on ambient temperature during the semester. And this prior-
itization could change every day. However, the class timing
cannot change. Therefore, ACH, wall thickness, and the number
of students can be analyzed. In this study, ACH is between
1.5 and 12, wall thickness is up to 1.6 of its normal value, and
students are 10 to 40. They represent the uncertainty of students’
presence, outside and inside climate, and different buildings.
The Second Engineering Building Complex of Shiraz University
has three different starting dates. The results demonstrate that
these three factors do not affect the priority of timeslots for hold-
ing classes from the energy use viewpoint. These priorities are
aligned with the previous study. The optimal scheduling with
keeping conditions of use of the class and the semester’s start
can cut the heating load by 11.5 to 24.5 %. With a two-week
earlier beginning, this strategy will decrease the load between
49.4 – 63.9 %.
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