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Weather based power curtailments have a huge share in total customers outage. Hence, reliable-affordable
exploitation of networks during the adverse weather condition is one grid operator’s main issue. This
article addresses an approach for optimal operational by considering dynamic line outages rate during
extreme weather condition. In this paper, resiliency modification is accomplished by probing influences
of weather condition on line outages using embedded sources, power storages and feeder topology re-
configuration. This work addresses objectives associated with resiliency issue in order to minimize total
operation cost from distribution Company’s viewpoint, reduce amount of outages and maximize private
sector’s benefits by probing weather changes during operational time interval. In this regard, a multi-
objective optimization problem including both economic and resiliency targets is proposed to model the
behavior of distribution company and private sector. Also, a benefit sharing mechanism is applied to
increase synergistic integration between these players. A hybrid genetic- constraint strategy employing
fuzzy decision maker is applied to achieve optimum Pareto-front solution based on fair profit sharing.
Results proves that the proposed method increase profits for all players due to reduction in energy not
supplied penalty cost as well as it enhance resiliency during adverse weather conditions. © 2023 Journal of

Energy Management and Technology
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NOMENCLATURE

i, j Bus indices
s Scenario indices
w Weather condition indices
L Load management indices
Ns Number of scenarios
Nw Number of atmospheric condition modes
NL Number of load management modes
L Number of thunderbolts
W Wind speed (m/s)
Lb Line length (km)
PD

i,dl ith node active power and active load demand before
applying DRP (kW)

QD
i,dl ith node reactive power and active load demand

before applying DRP (kVAR)
SD

i,dl ith node apparent power (kVA)
ρdl Rate of purchased electricity from up-stream net-

work ($/MW)

λpeak Peak electricity consumption rate
PLFdl Price level factor at dl
DLFdl Demand level factor at dl
Nb Branch number
Nwind Faults rate due to wind speed (fault/km)
PDRP

i,dl Active load demand after applying DRP (kW)
SDP,i,dl,s Shifted active power given by DRP (kW)
SDQ,i,dl,s Shifted reactive power given by DRP (kVAR)
DRPdl Amount of load contribution in DRP (kW)
λP

sell Selling rate of electricity to consumer ($/MW)

λWTG
sell Purchase rate of electricity from wind unit

($/MW)
λPDGO

sell,dl Purchase rate of active power from DG owner
($/MW)

λQDGO
sell,dl Purchase rate of reactive power from DG owner

($/MW)
Pch

k,dl,s, PD
i,dl,s Selling active power to ESS unit and consumer

($/MW)
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Pdis,in
k,dl,s Injected power by batteries (kW)

Pup,pu
dl,s Purchased active power from main network

(kW)
Qup,pu

dl,s Purchased reactive power from main network
(kVAR)

PWTG,pu
j,dl,s Purchased active power from wind unit’s owner

(kW)

PDG,in
j,dl Injected active power from DG unit (kW)

QDG,in
j,dl Injected reactive power from DG unit (kVAR)

EXswitching,s,i,dl Reconfiguration expenditure
EXR,dl,s ENS expenditure
EXrepair Repair expenditure ($)

ξ
dep
k Battery depreciation coefficient ($)

ηdis
k Battery discharging efficiency

ηch
k Battery charging efficiency

Aj, Bj, Cj Expenditure coefficients for DG production
σi,dl,s Voltage angle
Vi,dl,s Node voltage amplitude (Volt)
µrate Rate of branch failure (fault/ km)
βch

k,dl , βdis
k,dl Battery charging/discharging binary variables

1. INTRODUCTION

Growth in information technology along with other advanced
technologies enhances capability of conventional grids every day.
Daily proliferation of embedded systems, storages, electrical ve-
hicle and responsive loads are inevitable. Reliability, economic
and security of these grids entails using available tools in an
intelligent and smart way [1]. The principal goal of intelligent
grid is to optimize grid performance and reliability-resiliency
as well as improve technical conditions. Operational planning
optimization problems can be classified in two groups. The
first group consists of planning during normal conditions and
it improves economic-technical based objectives. The second
group consists of planning during emergency conditions and
it improves stability and load supplement. Various methodolo-
gies have been addressed to amplify performance and flexibility
of networks based on optimum programming (in normal or
emergency situations) of measures, loads, generators, and ES
devices [2]. These strategies are based on innovative tools and
intelligent exploitations, employ to change the main demand
curve and minimize operating costs. Many of these procedures
also take the uncertainty of renewable sources, electricity de-
mand, prices, etc. into consideration [3]. Different methods are
used for managing uncertainty in decision making algorithms,
whose choice depends on the goals and methods of modeling
parameters and uncertainty [4]. In many studies, improvements
in reliability have been investigated. Power failure statistical
data is utilized for most of issues in assessing reliability. How-
ever, pointed out strategies does not satisfy operators in terms
of adequacy and performance which can be due to the complex-
ity and nonlinearity nature of operating conditions [5]. In [6]
for evaluating successive faults to overcome the complexity of
computations in emergency analysis, a new method has been
introduced, which is based on rescheduling generation using
Monte Carlo simulations.

The issue of feeder reconfiguration (FR) has always been con-
sidered in electrical energy systems for facing various utilization

conditions. The goals of FR and the used methods for solving the
problem have been the subject of much research [7–9]. The goals
include minimizing losses, improving power quality and load
balancing. These used methods are very diverse and include
experimental and innovative as well as analytical methods. In
[7], the issue of FR and its effect on the power quality, which
is related to utilization, has been considered, while in [8] the
graph method and programming integers and graph analysis
have been considered for optimal planning of micro grids con-
sisting of DGs and storage devices to improve the power quality
and solve self-healing problem. In another study [9] using FR,
outage management and system repair time optimization has
been studied in which DGs have also been used.

In [10] the problem of key placement is solved by minimiz-
ing the cost of customers’ outage and the cost of installing the
keys using integer programming. In this paper, long-term profit
and loss analysis is considered for the optimal utilization of a
distribution grid by the use of FR. The feature of this review
was the uncertainty considered for the load and improving the
system capability by reducing the number of customers’ outage
from the grid. In recent years, flexible loads and generators with
renewable energy, especially EVs with the ability to connect to
the grid and wind turbines (WTs), have been considered. In [[11],
the work with this technology and solving the problem of FR
has been studied in their presence. WT output and EVs energy
consumption are both considered possible processes and are in-
vestigated. Increasing reliability and optimizing utilization costs
by hourly FR has been the goal of modeling and solving this
problem. This procedure has also been adopted in [12] by taking
renewable energy sources into consideration. The difference
is that the mathematical model has been considered to reduce
losses using hourly FR, in which the mixed quadratic conic
programming method has been used, taking into account load
changes and the generation of energy sources. In another study
[13], optimization of construction investment and utilization has
been considered simultaneously. In this research, the DG and
load growth is characterized in planning and reconfiguration
step. For illustration of feeder topology importance, FR strategy
as an old topic is highlighted in planning stage. Ostensibly this
category will continue to maintain its importance and evolve
with the gradual upgrade of conventional grids towards grids
that are utilized more intelligently. If real-time performance is a
feature of smart grids, real-time automatic reconfiguration will
be an important part of smart grid self-healing operations. In the
process of self-healing of the grids, identifying the location of
the fault, isolating it from the grid with the minimum customers’
outage and meeting their needs from alternative methods auto-
matically or with minimal intervention of human resources is
very important. In this way, the resilience of the system increases
and the side effects of possible faults are minimized. In the early
stages, reliability indicators can be employed to self-healing and
resiliency reinforcement procedure. In [14], diverse facets of a
grid with self-healing properties in the framework of a multi-
factorial system are investigated. Fault isolation, locating, FR,
and restoring the system to normal are some of the activities
studied in this study. After the fault inception, the grid corrects
itself, detects the fault, and after the initial steps, the fault is
separated by the action of the appropriate keys. Then, different
recovery strategies, according to the existing or defined goals
and constraints, follow the sequence of reconfiguration activities
in such a way that in the minimum time and minimum output
loads, it is possible to redirect power to grid loads. In [15], the
mentioned trend in a distribution grid is evaluated. In [16], be-
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sides network topology layout, DG planning has been addressed
as a multi-objective issue to optimize ENS. summing up studied
papers, the studies can be categorized as in the following.

• Papers that demonstrate the importance of economical in-
dexes for both utility and private sector and profit share between
them in order to encourage them for investment.

• Papers which conduct a trade-off between at least two
opposite targets, such as resilience improvement and economic
operation.

• There is lack of attention to resilience improvement while
that is ostensibly a challenging obstacle to make smart grid
smarter.

The goal of current study is to investigate the behavior of
grids in unexpected conditions. This paper shows how a grid can
be intelligently utilized to make power outages that are caused
by predictable events more resilient with takes into account the
impact of different parameters. Unexpected conditions can be
storms or thunderbolts.

Breakthrough of this article could be compacted as follows:
• Treatment assessment of intelligent networks during ad-

verse weather condition indicates that resilience grid can main-
tain the most utilization benefits in a reasonable manner, even
in unexpected conditions.

• Employs double-objective optimization for resilient grid
that is able to counterbalance risk and profits in a sensible way.

• Generation rescheduling, load variation, unexpected condi-
tions, utilization costs, and resiliency indicators are expressed
as an optimization problem in such a way that the system utiliz-
ing benefits and private sector is maximized and ENS costs of
customers are minimized. Unexpected conditions are modelled
according to uncertainty of wind speed in exploitation program-
ming and its impacts on branch outages are investigated.

• The purpose of this paper is based on the fact that purely
economic utilization in the situation that the grid is not affected
by any events, but increase in probability of an event due to
unexpected conditions can be slightly changed to improve the
system’s ability to cope with possible events in the future.

• The proposed method will prove that in short-term daily
planning affects grid profits, private sector benefits and reduc-
tion of ENS during bad weather conditions. Although bad
weather conditions do not mean a definite occurrence of an
event in the grid, by removing part of the grid profit, the amount
of costs due to blackouts can be reduced when an incident hap-
pens.

The organization of this paper is as follows: The scheduling
of resources and FR based on weather condition is introduced in
part 2. Optimization modeling is presented in part 3. Case study
and results are presented in part 4 and conclusion is last part.

2. OPERATIONAL SCHEDULING AND FEEDER RECON-
FIGURATION BASED ON WEATHER CONDITION

To gain the resiliency of distribution grids in adverse atmo-
spheric conditions, several measures should be taken into consid-
eration in scheduling. Obviously, in the present case, these mea-
sures will depend on weather conditions. The key items used in
this scheduling could be including DGs, Demand Response (DR)
and Energy Storages (ESs). Rescheduling and reconfiguration
along with the use of these items will help system resilience
during time intervals with high probability of failure. Utilizing
a smart grid learning feature with a history of faults and unex-
pected conditions can also help the process of making a balance
between purely economic utilization and sacrificing some of

Fig. 1. Schematic of proposed method.

grid profits to reduce side effects outages in extreme weather
conditions. It is supposed that during proposed rescheduling,
the electricity consumption can be controlled, the necessary FR
can be made and the scheduling of the existing resources can
be reviewed so that in the worst conditions, the system works
optimally and the side effects caused by the event under study
become minimal. In the present study, it is shown that flexibil-
ity and more intelligent operational planning help the optimal
utilization of the grid in extreme weather conditions. Also, it
reduces the utilization profit according to changes in weather
conditions in the long time framework which will lead to an in-
creased profit of the grid and the private sector. In other words,
the probable evaluation of operational planning changes the
operational planning methods from one-dimensional economic
mode to a hybrid mode including economic variables and re-
silience indicators. In this case, Demand Response Program
(DRP), DG management and FR during unexpected estate guar-
antees optimal utilization. An overview of proposed process is
illustrated in Figure 1. This figure shows the objectives, vari-
ables, uncertainties and constraints. In the proposed method,
fuzzy decision maker (FDM) and ε-constraint strategy are used
in GAMS in order to handle double-obj problem. In order to min-
imize the adverse influence of adverse atmospheric conditions
on outages and ENS expenditures, the problem of reconfigura-
tion the grid has been solved in MATLAB software. The outcome
of FR is related to the problem of double-objective optimization
to approach dynamic FR and rescheduling of resources.

3. MODELING AND PROBLEM FORMULATION

In the proposed optimization model, maximization of private
sector benefit and grid operator in exploitation resilient schedul-
ing is the aim of optimization. This optimization is in the context
of possible processes due to weather conditions such as uncer-
tainties such as outages caused by wind, energy cost and load. In
this study, WT output and weather conditions are independent
from the scenarios. Therefore, to obtain different scenarios, the
following equation is used:

Ns = Nl × Nw (1)

In the above equation, Ns, Nl and Nw are respectively the
number of scenarios, the number of modes for load manage-
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ment (two modes with load management and without load
management) and the number of modes related to weather con-
ditions on grid costs (taking into account weather conditions
and regardless of it).

A. Modeling of load, price, DR and ES
Every day is divided to 24 level, 24 demand level is indicated
by Ndl. by multiplying peak load parameter and demand level
factor, the model of 24-hour load will be illustrated as in Eq. (2)-
Eq. (4):

PD
i,dl = PDd l

i,max × DLFdl (2)

QD
i,dl = QDd l

i,max × DLFdl (3)

SD
i,dl = SDd l

i,max × DLFdl (4)

The price of purchased power from upstream grid varies
in each level according to amount of electricity consumption
and the behavior of power market operator. The price model is
described as follows:

ρdl = λpeak × PLFdl (5)

The actual price for the grid operator per hour contains the
expenditure of purchased power from the main network and
possible penalties for outages per hour. Therefore, the actual grid
cost(ρh,s) for each hour, which has two definite and probable
parameters which can be shown as follows:

CostG,s =
ρdl ∑Nload

i=1 +γl ENSdl,s

∑Nload
i=1

(6)

In the above equation, ρP is the amount of fine due to the lack
of loads supplement. In this paper, modification in hourly prices
is used as a tool in rescheduling to reduce ENS by load transfer
to time with lower risk (ENS reduction), DG/ES scheduling
and dynamic changes in topologies. In other word, in pervious
works DRP used to transfer demand from peak time to off-peak
times, but, in this paper DRP is used to transfer demand from
high-risk time intervals to other time intervals to reduce ENS
penalty cost and overall operation cost of system. There is a
similar way for scheduling of resources and reconfiguration.
The amount of ENS is obtained as follows:

EXR,dl,s =
Nb

∑
b=1

µrate.Lb.ρp.(
Nb

∑
re=1

Pres,dl,stre) + EXrepair (7)

In the above equation, Nb is the number of branches in the
system, µrate is the rate of branch failure, Lb is the line length,
Nres, the number of disconnected busses during outage and
repairs, Pres is the restored loads after the event happens, tres is
the time of fault continuity. Equation Eq. (6) will be used as a
signal to implement resilience management programs because
these costs include operating costs and blackouts costs. It is
necessary to mention that ENS is one of most popular indexes for
reliability and resiliency evaluation due to its concept. The value
of ENS is affected by characteristics like extent lengthwise of the
grid line and outage rate in grid components in each kilometer.
In order to reduce its costs, the grid operator implements a DRP
to change the consumption behavior of its customers and to
shave the consumption peak and fill the valley of load curve. It
is worth to be pointed out that in current paper the transferred

Fig. 2. Load modeling based on DRP.

capacity by consumers is limited. It is estimated that only 15%
of the total load is used in the DRP. The DRP can be modeled as
Figure 2.

The dashed line part in Figure 2 is the part of the load that
cannot participate in the DRP, while other parts of the load can
be moved to different time intervals due to price changes. The
mathematical model of Figure 2 is as follows, which shows the
load transfer (active power and reactive load simultaneously and
with constant power factor). The DRP used is of the time of use
type. It is also assumed that the amount of active and reactive
power load transfer from all busses is done with a constant
percentage and the load transfer from each bus is with a constant
power factor for that bus.

PDRP
i,dl,s = PD

i,dl,s + SDP,i,dl,s (8)

QDRP
i,dl,s = QD

i,dl,s + SDQ,i,dl,s (9)

SDP,i,dl,s = DRPdl,s × PD
i,dl,s (10)

SDQ,i,dl,s = DRPdl,s ×QD
i,dl,s (11)

24

∑
dl=1

SDP,i,dl,s =
24

∑
dl=1

SDQ,i,dl,s = 0 (12)

DRPmin < DRPdl,s < DRPmax (13)

Equations Eq. (11) - Eq. (13) shows the relevant constraints
on DRP. The changeable demand at each load level has a vari-
able value that is shown by DRPdl and is shown in equation
Eq. (13). The DRPdl index indicates consumer participation in
DRP. Equation Eq. (13) limits the increase in demand over any
time period. In this article, the proposed method is implemented
in such a way amount of outages due to unexpected conditions
is minimized.. One of the optimization goals is resilience rein-
forcement. In current article ENS index is addressed to highlight
the significance of system uncertainty. If there are distributed
energy resources with island operation capability and ES in the
distribution system, these power sources are used as a source to
feed loads that have been cut off due to faults in transmission
lines or distribution systems. And thus, the resilience of the
system increases.



Research Article Journal of Energy Management and Technology (JEMT) Vol. 7, Issue 4 196

B. Objective Function
The performance model is a combination of distributed sources
and other ESs. The grid is able to trade power with distributed
resource operators as well as upstream-network. Maximizing
of daily profit of power trading is the main term of exploitation
framework.

Equation Eq. (14) shows the mathematical formula of the grid
operator profit.

OF1,s =
Ndl

∑
t=1

{
Nload

∑
i=1

λP
sell,dl,s · P

D
i,ds,l +

Nk

∑
i=1

λP
sell,dl,s · (Pch

k,ds,l − Pdch
k,ds,l)

(14)

−
Nup

∑
up=1

λdl · P
up,pu
dl,s −

Nup

∑
up=1

λQ f ix ·Q
up,pu
dl,s −

Nswitch

∑
i=1

(EXswitching,s,i,dl

−EXR,dl,s)−
NWT

∑
j=1

λWTG
sell,dl · P

WTG,pu
j,dl,s −

NDG

∑
j=1

λPDGO
sell,dl,s · P

DG,in
j,dl,s

−
NDG

∑
j=1

λQDGO
sell,dl,s ·Q

DG,in
j,dl,s

}
The profit of selling electricity to consumers, purchased elec-

tricity expenditure from upstream-network or power market,
expenditure of purchased reactive power, ENS expenditure, and
purchased energy from RESs owners are described as terms of
1th obj-function in equation Eq. (14), respectively. The renewable
energy operator’s profit comes from the sale of energy to the
grid. The renewable energy operator also invests in batteries.
The price at which operators sell their renewable energy sources
is affected by their role in power market. They can sell their
energy under a bilateral contract at market price. The renew-
able resources are the profit function of the operator and are
calculated as Eq. (15).

OF2,s =
Ndl

∑
t=1

{
NDG

∑
j=1

λPDGO
sell,dl,s · P

DG,in
j,dl,s +

NDG

∑
j=1

λQDGO
sell,dl,s ·Q

DG,in
j,dl,s (15)

+
NWT

∑
j=1

λWTG
sell,dl · P

WTG,pu
j,dl,s +

Nk

∑
k=1

λP
sell,dl,s · P

dis,in
k,dl,s −

Nk

∑
k=1

λP
sell,dl,s · P

ch
k,dl,s

−ζ
dep
k (

Nk

∑
k=1

Pdis,in
k,dl,s

ηdis
k

+ ηdis
k · P

ch
k,dl,s)−

NDG

∑
j=1

(AjP2
j,dl,s

DG,in

+BjP
DG,in
j,dl,s + Cj) =

NDG

∑
j=1

QDG,in
j,dl,s · CTQ

j

}
Benefit gaining from selling electricity to up-stream grid, the

benefit of ESS exploitation, the expenditure of battery charging
in which case the batteries act as a consumer for the network, the
expenditure of battery depreciation and exploitation expendi-
ture of DGs for active power generation are addressed as terms
of second obj-function in equation Eq. (15). Respectively. Aj ,
Bj and Cj are also cost coefficients for producing the distributed
generation resources which can be controlled.

Given the effects of resiliency in enhancement of economic-
technical factors of grid, it is visible that optimal operational
planning leads to considerable benefits for all players. There-
fore, giving incentives for private sector to more cooperation
is a logical solution to resiliency improvement. In this regard,
mentioned multi-objective optimization functions include an

index (β) for ENS reduction due to cooperation between owner
of grid and private sources. Objective functions are presented in
two cases, with β coefficient and without β coefficient:

OF1 = OF1withcooperation − β× (OF1withcooperation (16)

−OF1withoutcooperation)

OF2 = OF2withcooperation − β× (OF2withcooperation (17)

−OF2withoutcooperation)

Swing profit (profit gained by grid operator due to private
sector instruction) sharing helps private sector to increased flexi-
bility of rescheduling.

C. Constraints

The load distribution constraints and equations shall be at ith

bus and the level of dlth as follows. It should be noted that the
owners of DG and ESS units are assumed to be common. On
the other hand, wind units, unlike thermal units, do not have
a variable cost with generation and generally have a fixed cost
due to depreciation, which is independent of the amount of
generation.

Pup,pu
dl,s + PDG,in

i,dl −
(
(1− DRPdl)× PD

i,dl,s + SDP,dl,s
)
+ (18)

Nk

∑
k=1

(Pdis,in
k,dl,s − Pch

k,dl,s) = Vi,dl,s ∑
j

Vj,dl,s(Gijcosσi,dl,s + Bijsinσj,dl,s)

Qup,pu
dl,s + QDG,in

i,dl −
(
(1− DRPdl)×QD

i,dl,s + SDQ,dl,s
)
= (19)

Vi,dl,s ∑
j

Vj,dl,s(Gijcosσi,dl,s + Bijsinσj,dl,s)

The node voltage at any given time must be kept within its
permitted range.

Vmin
i ≤ Vi,dl ≤ Vmax

i (20)

The active and reactive power produced by each bus is shown
as follows:

Pup,pu
min ≤ Pup,pu

dl,s ≤ Pup,pu
max (21)

Qup,pu
min ≤ Qup,pu

dl,s ≤ Qup,pu
max (22)

The generation capacity of each of the distributed generation
sources must also be within their permitted range.

PDG,pu
min ≤ PDG,pu

dl,s ≤ PDG,pu
max (23)

QDG,pu
min ≤ QDG,pu

dl,s ≤ QDG,pu
max (24)

At all levels, the transmission power through the lines is
limited by their thermal limit.

Sij,dl ≤ Smax
ij (25)

Equations Eq. (26) - Eq. (30) show the constraints related to
ESS. Constraints Eq. (26) - Eq. (28) demonstrates the boundary of
battery charging/discharging furthermore the amount of stored
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electrical power in the ESS. Equation Eq. (29) illustrates that the
battery ESS can be on only one mode at any time. The dynamic
model of ESS is shown in equation Eq. (30).

0 ≤ Pch
k,dl,s ≤ βch

k,dl P
ch,max
k (26)

0 ≤ Pdis
k,dl,s ≤ βdis,in

k,dl Pdis,in,max
k (27)

BEmin
k ≤ BEk,dl,s ≤ BEmax

k (28)

βch
k,dl,s + βdis

k,dl,s = 1 (29)

BEk,dl+1,s = BEk,dl,s + (ηch
k · P

ch
k,dl,s =

Pdis,in
k,dl,s

ηdis
k

) (30)

D. modeling of outages
The results of various studies indicate that storm is main rea-
son for largest part of the failures in electrical distribution grids
[17]. In a smart grid, recording data related to these events can
help improve the performance of these grids in the above condi-
tions. However, not all grids have this technology. In this study,
outages are studied in two categories. The first part includes
faults due to environmental pollution, the role of animals and
other faults caused by unknown reasons. The coefficient of this
type of events is considered constant. In the second part, faults
due to storm are taken into consideration. In order to analyze
properly for evaluating the outcome of weather condition on the
number of outages, the correlations presented in [18] are used
for modeling. To prob the treatment of flexible grids in different
weather condition the normal data are applied in simulations
due to lack of real data of weather incidents. The value of wind
speed is assumed to be foreseeable at one-hour intervals. In [18]
the relationship between incidents and wind speed is presented
for small distances using the equation Eq. (31):

Nwind = 0.0012W2
s − 0.0131Ws (31)

In current article the mean value of wind speed is applied per
time interval. Wind speed affects outages number and thus it
alters the output of WTs. The uncertainty of wind speed change
pattern needs to be estimated for each region. In this study,
to evaluate the effect of wind, Nwind is assumed to be variable
during the day to evaluate the sensitivity of the power grid
to this factor. In case of outage in the grid, the time required
for repairing depends on the type of outage, its location and
weather conditions. Obviously, in storm condition, more time
will be needed for repairing [17]. In one study, the repair time
was 4 hours in normal conditions, and in extreme conditions, the
average was estimated as 6 hours [18]. Therefore, wind speed
Nwind and the number of lightning strikes NTh will affect the
repair time and the amount of ENS.

E. Resilience Evaluation Metrics
In this Paper, in order to evaluate resilience improvement of
proposed method, ENS as most popular metric in reliability
and resiliency evaluation and also, ΦΛEΠ metrics proposed in
[19] are calculated. ENS metric can present effect of proposed
method in value of outages. Also, based on ΦΛEΠ metrics,
system can operate in different operational phases as shown in
figure 4. In order to prove effectiveness of proposed method

Table 1. Metrics for operational and infrastructure [19].

Metric
Mathematical Formula Unit

Operational Infrastructure Operational Infrastructure

Φ Rpdo−R0o
tee−toe

Rpdi−R0i
tee−toe

MW/hr Lines tripped/hr

Λ R0o − Rpdo R0i − Rpdi MW Lines tripped

E tor − tee tir − tee Hours Hours

Π R0o−Rpdo
Tor−tor

R0i−Rpdi
Tir−tir

MW/hr Line restored/hr

(during windstorms) and study effects of resources reschedul-
ing, load management and effective reconfiguration in resilience
oriented operational planning, results will be evaluated by men-
tioned metrics. Different phases of operation in [19] are pro-
posed by resilience trapezoid model. In mentioned model three
various states are the disturbance state (Φ and Λ–metrics), post-
disturbance state (E -metric) and restorative state (Π -metric). In
[19], mathematical formulations for ΦΛEΠ metrics are defined
for both operational resilience Rpdo and infrastructure

(
Rpdi

)
resilience.

Mathematical formulas for ΦΛEΠ metrics are presented in
Table 1 [19].

F. Solution method

The uncertainties and different constraints are increasing com-
plexity of multi-objective problem. In this regard, a multi-
objective genetic algorithm approach is used to solve optimiza-
tion problem. In order to model uncertainties of outages, Monte
Carlo method is used. By considering variable β to benefit shar-
ing between grid operator and private sector, a method for β
selection is vital. In current article, -constraint technique is ap-
plied according to [20] probing optimal profit sharing condition
using crowding distance. Also, the FDM uses Pareto optimal
solutions to achieve optimum Pareto-front. The FDM assigns
a fuzzy membership function to all available Pareto solutions.
In this study, the minimum-maximum approach is used for a
compromise between the existing optimal solutions. Choosing
maximum amount of the least benefit for each obj-function as
the optimum outcome is the basic approach of this trial. In order
to grid feeder reconfiguration and then the achieved topology
is excreted to multi-objective mathematical problem (MOMP),
genetic algorithm is used. Wind speed, thunderbolts probability
and load level are employed in GA. Changing atmospheric con-
dition at various time intervals of demand whether at consump-
tion peak or other hours lead to various figures for each tempo-
ral period. Reducing ENS expenditure is the goal of GA trial
with intention to minimize grid exploitation expenditure. After
choosing optimum grid topology per temporal interval, opti-
mum programming regarding real-time energy price is modified
and applied to the supply units and demand buses to manage
the undesired influences of adverse atmospheric condition and
to establish a counterbalance between resiliency and economic
performance. It should be noted that the incidence of adverse
atmospheric condition does not mean the random inception of
an event in the grid, but in terms of probability, the outage rate
of the lines is highly dependent on atmospheric condition, and
therefore as the atmospheric condition get worse, the grid takes
measures to improve the capability of dealing with probable
conditions. This in turn reduces grid profits in proportion to the
severity of the risk due to atmospheric condition, but as it will be
demonstrated in the following part, with proper management,
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Fig. 3. The studied 33 bus test system.

Table 2. Comparison of optimum Pareto solutions.

Results in case without

considering resiliency

DisCo profit

($/day)

Private sector profit

($/day)

Without DRP
Ref. [20] 6022 1704

Proposed method 6127 1653

With DRP
Ref. [20] 6177 1688

Proposed method 6284 1611

grid profits will amplify in the long-temporal intervals. In order
to improve resiliency, simulations are performed by variable
index (β ).

4. SIMULATION RESULTS

The proposed approach is used for the standard 33-bus grid,
shown in Figure 3. In the understudied grid, 5 sectionalizing
switches are probed. The test system information is extracted
from the reference [21] with modifications to study the present
problem. A DG and a WT with nominal capacity of 1 MW for
each one are located in nodes 11 as well as 28. A storage system
with 0.6 MW capacity enabling charging/discharging level of
300 kilowatt is located in node 11. The boundary of stored
energy in mentioned storage unit is between 100-600 kWh. The
temporal duration for exploitation programming is probed to
be an hour. In this trial, the ENS expenditure is probed as an
indicator of grid resiliency.

In this paper in order to prove validation and accuracy, re-
sults of simulations are compared with results obtained from
reference [21]. Information is extracted from mentioned refer-
ence and used in similar formulations and data. As, there is not
any resiliency improvement in [21], so the objective function is
reformed to check accuracy. Comparisons of results are shown
in Table 2. The results prove that for similar objective functions
and data, the results are close to each other. In the next, with in-
tention to prove effectiveness of presented operational planning,
the cases mentioned in the following part are probed in which

Fig. 4. Pareto solutions (β 6= 0).

reconfigurations have been made to reduce the ENS in the grid.
1st Case: exploitation programming, DRP and grid feeder

reconfiguration are not involved
2nd Case: exploitation programming, considering feeder re-

configuration and DRP is not involved
3rd Case: exploitation programming, considering DRP and

feeder reconfiguration is not involved
4th Case: exploitation programming regarding DRP and grid

feeder reconfiguration
Adverse weather affects all cases on exploitation program-

ming and ENS expenditures are computed per temporal inter-
vals. Also, outage rate and repair time for all components are
the same. The optimum grid topology selection for each wind
speed and number of lightning strikes is calculated according
to the level of demand and energy prices using a GA and then
used to optimize exploitation programming.

It is assumed that grid operator shares a part of benefits
earned by resiliency improvement (ENS reduction) with private
sector due to rescheduling in private sector resources to ENS
reduction. In this regard, a variable β is considered in non-
inferior solutions. For positive values of β, related solution is
acceptable for both parties, However, the value of benefits for
each side is different for various β amounts. The obtained Pareto
solutions is shown in Figure 4.

A set of Pareto is obtained for the system for all probed
cases. The benefit for the distribution company as well as the
private sector furthermore the ENS expenditures at the end of
this trial for all of above cases conformed in Table 3. In this Ta-
ble, amounts of OF1 and OF2 and in sequence the best solution
(maximizing min (OF1, OF2) named by C.D) is shown. In order
to attain the optimal Pareto the FDM is applied in the range [0-1]
to allocate the desired Pareto. Then, the minimum-maximum
procedure is applied to the gained benefits of the distribution
company and the private sector.

Changes in β parameter will change profits of all players
earned by ENS reduction due to resources re-scheduling. For
each value of β parameter, a certain operational planning exists.
In simulation results, the effects of DRP on operation cost and
gained benefits are studied. It is proved that using DR increase
flexibility of grid in order to improve resiliency and as well as
it increase economic profits for grid operator. As table 2 con-
firms, the optimum Pareto for grid profits, private sector and
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Table 3. A set of optimum Pareto fronts for the probed cases.

Case # Pareto Solution Utility Private sector ENS expenditure

1st Case

1 6762.3 317.6 3154.2

13 6620.2 484.1 3128.7

20 6306.5 581.1 3119.2

2nd Case

1 7203.8 277.3 2894.8

12 7013.7 465.5 2878.8

20 6693.6 575.7 2861.9

3rd Case

1 7523.7 268.1 2530.4

13 7351.5 451.2 2494.9

20 7160.1 557.4 2489.7

4th Case

1 7739.3 269.9 1985.1

13 7612.1 376.1 1970.9

20 7383.5 446.6 1969.3

ENS expenditures in 1th case are $6620.2, $484.0 and $3128.8,
respectively. Regarding to Table 3, the nearest Pareto solution
to the benefit of electricity grids and private sector is Pareto
Solution 13. The maximum grid profit is equal to $6762.4, which
is obtained in the number one solution. The best Pareto solu-
tion for private sector is number 20 which is $581.0. Grid profit,
private sector owner’s benefit and ENS expenditure for case
2 are $7013.8, $465.6 and $2878.9, respectively. The outcomes
demonstrate that the desired set of Pareto solution is number 12.
The outcomes also confirm that dynamic grid feeder reconfigu-
ration reduces the expenditure of ENS by 7.99%, which in turn
increases grid profit by 5.95%.

Private profitability is also reduced by 3.80% in this case. The
expenditure of ENS modifies the rate of electricity, as described
in Equation Eq. (6). The original and modified prices are pre-
sented in Figure 6. It is noticeable that DRP based on resiliency
enhancement uses modified prices. In other word, a consid-
erable difference between proposed method and other similar
methods is in price modification. The price signal received by
the private sector’s owner is a function of ENS. Therefore, as
the value of ENS decreases, electricity rates change and private
sector profits decrease. It is worth noting that the expenditure
of ENS is positive in all atmospheric condition, so the rate of
modified energy is always higher than the base rate for private
sector. In other words, the private sector always makes more
profit after the price change and thereby absorbs electricity grid
operator to cooperate. As shown in Table 2, demand response
operations increase grid profits, which reduce private sector’s
owner benefits and the expenditure of ENS. In the case of 3, grid
profits, private sector profits, and ENS costs are $7351.6, $451.0,
and $2494.0, respectively. Thereby, the benefit of network opera-
tor is 11% more than the 1th case, in the other side the benefit of
the private sector’s owner and the expenditure of ENS are 6.81%
and 20.29% under their values of 1, which is for the sake of DRP.
It is also revealed that alleviating the expenditure of ENS has a
positive effect on grid profits as well as a negative impact on the
profits of private sector. Collation of the outcomes obtained in
cases 2 and 3 confirms that in the studied grid, the use of DRP is
more effective than grid reconfiguration.

4th case demonstrates the outcomes of the employed method-
ology. As is conformed by Table 1 Pareto Solution 13 is the
desired Pareto attained by probing load responsiveness and
grid dynamic reconfiguration in various atmospheric condition,

Fig. 5. Changes in hourly prices in proposed method.

Fig. 6. Effect of employed exploitation programming (4th case)
on load curve.

which grid profits, private sector profits, and ENS costs are
$7612.1, $376.1, and $1970.9, respectively. The normalized net-
work operator’s benefit and private sector’s owner benefits used
in the Pareto method are shown in Figure 3. Increment of the
utility operator’s benefit and decrement ENS expenditure are
14.99% and 27.00%, respectively. The private sector is facing a
22.28% decrease in profits in 1st case.

In introduced approach, the efficacy of DRP on the demand
curve is conformed by Figure 5. As is obvious, the employed
DRP shifts consumption from peak hours to other times, in
which case grid profits increase and reducing the expenditure of
ENS in adverse weather is guaranteed. Using a DR program will
increase energy availability however, weather will also affect the
whole range.

Figure 7 shows the power received from the battery for both
conventional and optimal programming modes. Charging and
discharging process are associated with positive value of curve
and negative one, respectively. Considering this figure, in con-
ventional system mode, for the sake of lower electricity rate in
the early morning hours, the battery ESS is in charge mode as
much as possible and injects power into the distribution grid dur-
ing peak load. In the current methodology, the electricity rate is
under effect of ENS expenditure. There is a correlation between
failure rate and ENS value with wind speed and thunderbolts
strikes. Therefore, in adverse atmospheric condition, the offered
electricity rate to the private sector’s owner will increase. During
these time periods, the storage unit is discharged. The profits
of the private sector are higher in the conventional grid due to
rising energy prices. On the other hand, changes in the process
of shifting the load from high-risk hours to hours with better
weather conditions increase the utility owner’s benefit, for the
sake of decrement of energy demand in urgent situations. In
these circumstances, ENS value changes due to forecasted risky
conditions.

The outcome of DG unit conforms by figure 8. In conven-
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Fig. 7. Effect of employed exploitation programming (4th case)
on battery ESS charging/discharging procedure.

Fig. 8. The effect of the proposed approach on DG.

tional scheduling, the grid provides electricity during off-peak
hours from the main network. However, in the current exploita-
tion programming, in high-risk periods, the embedded system
operator enhances the rates to interact with the DG to reduce
the received power from the upstream grid. Considering that
revised prices are higher than conventional operational planning
prices, DG will tend to sell electricity.

It is confirmed by Figure 8 that at consumption-peak and
high risk hours of power outages, the generation of DG modifies
in collation with conventional mode. Figure 9 shows that in
proposed planning, energy purchased from the upstream net-
work is reduced in unexpected conditions and the distribution
network tends to use local resources. This procedure reduces
the effects of outages on ENS. Because dynamic reconfiguration
in these conditions also allows the use of local resources.

It should be noted that the dynamic reconfiguration of the
network is also running during the mentioned process. Recon-
figuration is done according to the atmospheric condition, the
necessities of supply unit and the possible risk of branch failure.
Attained topologies in exploitation programming and hourly
modification are illustrated in Table 4. This means that for each

Fig. 9. . The effect of the proposed approach on the purchased
electricity from the main network.

Fig. 10. The effect of proposed approach on voltage profile.

Table 4. Changes in grid topology in proposed method for 24
hours.

Demand Level Grid Topology Demand Level Grid Topology

1 5-7-23-30-32 13 5-7-25-29-32

2 5-7-23-30-32 14 5-7-25-29-32

3 5-25-30-32-33 15 5-7-23-30-32

4 5-25-30-32-33 16 5-7-23-30-32

5 5-25-30-32-33 17 5-7-23-30-32

6 5-25-30-32-33 18 5-7-23-30-32

7 5-7-25-29-32 19 5-7-25-29-32

8 5-7-25-29-32 20 5-7-25-29-32

9 5-7-25-29-32 21 5-7-25-29-32

10 5-19-25-30-32 22 5-19-25-30-32

11 5-19-25-30-32 23 5-19-25-30-32

12 5-19-25-30-32 24 5-19-25-30-32

time period, there is a certain topology for minimizing ENS costs
and losing power, which results in minimal changes in energy
prices for the grid. On the other hand, it is clear that in any
case, these minimal changes will increase the price compared to
normal hours. DG and ES will benefit in this situation. It should
be noted that reconfiguration improves benefits the economy as
well as technical issues, such as voltage as shown in Figure 10.

ΦΛEΠ metrics which present effectiveness of resilience ori-
ented operational planning are shown in Table (4). For all op-
erational states (include: disturbance state (Φ and Λ–metrics),
post-disturbance state (E-metric), and restorative state (Π - met-
ric)), results prove that proposed method has better outputs.
Also, effect of resource re-scheduling, demand response and
dynamic reconfiguration are studied based on various cases. In
Table 5 results show that in case 2, resilience operational plan-
ning improves Φ,Λ and Π metrics up to 20.2%, 25.6% and 25.6%
in compared with case 1, respectively. In case 2, reconfiguration
is not applied, so, outage rate didn’t change, compared with case
1. In similar way, damaged lines isolating using reconfiguration
is not possible. So, E metric is not improved.

In case 3, both operational and infrastructure metrics are bet-
ter, compared with previous cases. Reconfiguration will isolate
some faults in certain lines. It is assumed that reconfiguration
can isolate certain faults in one hour. In other words, post-
disturbance degraded time can be reduced from 4 hours to 1
hour for some faults and it leads to improvement in E metric
around 60.6% and Π metric to 244.0%. Also, ΦΛEΠ metrics for
infrastructure are improved to 23.8%, 31.7%, 60.6% and 244.0%,
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Table 5. ΦΛEΠ metrics for operational and infrastructure
resilience.

Index Type Case 1 Case 2 Case 3 Case 4

Φ
Oper. -1 -0.798 -0.715 -0.597

Infra. -1 -1 -0.762 -0.762

Λ
Oper. 1 1.256 1.402 1.758

Infra. 1 1 1.317 1.317

E
Oper. 1 1 0.394 0.394

Infra. 1 1 0.394 0.394

Π
Oper. 1 1.256 4.475 4.475

Infra. 1 1 3.440 3.440

respectively. Results evaluation for case 2 and case 3 show recon-
figuration has stronger effect in resiliency improvement in com-
pared with load shifting. Results verify that proposed method
for REP has best results in improvement of resilience. As shown
in Table 4, in case 4,ΦΛEΠ metrics for operational are improved
40.3%, 75.8%, 60.6% and 347.5%, receptively. Also, infrastruc-
ture Φ,Λ, E and Π metrics improved by 23.8%, 31.7%, 60.6% and
244.0%, respectively. It is obvious that the infrastructure metrics
in test system for cases 3 and 4 are similar to metrics are affected
by reconfiguration.

5. CONCLUSION

In current study, a novel approach was presented for exploita-
tion programming due to changes in weather conditions and
line outage risk for a sample distribution grid. The studied grid
had DG units, ES, isolated switches and DR capabilities. The
employed approach is designed in such way which the exploita-
tion programming in unexpected conditions, takes into account
the possibility of line outage and its marginal costs, the ability
to change the planning and reconfiguration from a purely eco-
nomic mode to a more resilient mode and the grid with low
probability of outages and better resilient in extreme weather
conditions could continue its activities with good resilience. The
novelty of paper is based on defining new application for DRP,
rescheduling of energy resources and reconfiguration by con-
sidering probability of outages caused by weather condition. In
this regard, results are explaining the different of normal oper-
ational planning (without considering weather based outages)
and resilient operational planning (with considering weather
impact in operational planning and changes in DRP, resource
scheduling and reconfiguration).

In the addressed methodology, it is revealed that modern
grids can change their operational planning dynamically by
considering unplanned definite risks and taking into account
costs and profit sharing ability. Unexpected conditions are taken
into account considering the wind speed and the number of
lightning strikes. Four cases were examined with different ap-
proaches to examine grid behavior and resilience and flexibility
at time intervals with the probability of definite occurrence. The
results showed that the grid operator can use reconfiguration
and rescheduling of resources to reduce outages and utilization
costs. Objective functions for the power grid and the private

sector were simultaneously defined and examined in the frame-
work of multi-objective optimization. Although the definite
risk for all four cases was assumed to be the same over time,
it was shown that there were significant differences between
conventional operational planning and proposed planning in
unexpected conditions by comparing ΦΛEΠ metrics. The ε-
constraint method related to the GA was applied to attain Pareto
sets and solve the issue of multi-objective optimization trial with
intention to use the full potential of the grid so that the private
sector could benefit more by fair profit sharing mechanism. Nu-
merical studies have shown with the use of reconfiguration and
increasing the proposed price to private sector, in proportion
with risk level, we could guarantee the continuity of grid work
in unexpected conditions by use of DG and DRP. It was also
shown that the characterized load and voltage curve improve
under these conditions.
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