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Generation maintenance scheduling (GMS) is one of the most important and influential programs on
short-term scheduling. On the other hand, the variability nature of distributed renewable resources is led
to the need for a power system to provide flexibility. In order to achieve a flexible operation, it is essential
to develop a flexible GMS framework. For this purpose, it has used the flexibility index of the system
in order to evaluate the flexibility of the power system. In flexibility studies, modeling and predicting
the variability of renewable resources is important. Gas-fired power plants are one of the most important
suppliers of flexibility in the supply-side. Therefore, the reliable operation of electricity grids depend on
the natural gas availability . Furthermore, gas demand is subject to various uncertainties, especially in
cold seasons, which will have significant effects on power system. In this paper, the uncertainties of wind
and gas load is considered through forecasting by ARIMA method in Python. In this paper, natural gas
and electricity demand responses are implemented as flexibility provisions from demand-side resources.
It is worth noting that the objectives of increasing flexibility, leveling the energy index of reliability and
reducing emission and costs have been considered as the objectives of optimizing GMS . The proposed
framework is implemented on a modified IEEE 24 bus. According to the results, the system flexibility has
been improved without increasing costs. The flexibility index in proposed model has improved by about
19.11%, due to the use of DRRs. © 2023 Journal of Energy Management and Technology
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1. INTRODUCTION

A. Motivation and background

In recent years, the widespread penetration of gas-fired power
plants has led to the importance of the gas network and the
resulting uncertainties for the operators and developers of the
power system. The natural gas system also has uncertainties in
the amount of natural gas consumption, natural gas prices and
so on. The unexpected increment in natural gas consumption is
bounded the supply of fuel to gas-fired power plants. fast start
gas-fired unit as flexible resource is used to mitigate variability
of RERs. Secure operation of gas-fired units is depended on
natural gas availability. In power system, one of a primary
energy resources is the natural gas that is dramatically increased
recently.

B. Literature review

Lack of attention to the penetration of various uncertainties and
flexibility analysis in the generation maintenance scheduling
(GMS) problem will lead to an insecure environment for power
system operators and developers. Hence, it is necessary that
published research in GMS is investigated. In [1], the uncertain
prices of natural gas and electricity are taken account into multi-
stage mixed programming model that seeks optimal operations
for accurate maintenance. In [2], the preventive maintenance
schedule of multi-energy micro grids is introduced to increase
the resilience of the system in unpredictable conditions. In [3],
minimizing reliability index and operation cost is considered as
the primary objectives in GMS by bi-level framework. A flex-
ible GMS framework is presented considering the portfolio of
demand response programs in [4].In [5], a GMS has been intro-
duced as two-stage stochastic programming. The lexicographic
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method has been applied to consider the economics, emission,
and reliability objectives in [6]. In [7], GMS is applied with mini-
mizing operation and maintenance costs in multi-carrier energy
systems. In [8], the operation cost, as well as demand reduction,
has been minimized to ensure reliability constraints in GMS. In
[9], GMS is integrally implemented with unit commitment with
the aim of reducing costs. The flexibility analysis has become
a thriving topic in research in the field of power systems. In
[10], energy storages as flexibility supplier have been used as
to handle the uncertainty of RERs. Reference [11] has been con-
sidered the transaction between gas and electricity system as
a future flexible provision. In [12], resilient and flexible opera-
tion is applied considering plug-in electric vehicles (PEVs) as
flexibility provisions. Incentive design for flexibility provisions
is presented by the local distribution company that has been
transformed residential demand to residential energy hub (REH)
in [13].

Demand response resources (DRRs) are considered to be in-
fluential components of the power system due to their impact
on security, environmental and economic as well as social pa-
rameters. In [14], the DRRs have been utilized to attenuate the
variability of renewable resources as well as improving flexi-
bility. In [15], an incentive-based DRRs has been applied with
reconfiguration method for optimal energy management in a
microgrid. DRRs have led to reduce costs and increase flexibility,
as well as restore the system quickly in [12]. In [16], an incentive-
based DRRs has been implemented to reduce the emission and
cost of operation. In [17], the impact of energy storages and
DRRs has been investigated on the effectiveness aspect of energy
efficiency.

One of the significant characteristics in energy democracy
policy is the customers welfare. Despite the willingness of con-
sumers to participate in demand response programs (DRPs),
consumers have little inclination to reduce consumption during
peak hours, because the scheduling of the implementation of
DRPs is determined by the ISO (usually implemented during
peak hours). Hence, the implementation of DRPs causes con-
sumer inconvenience [17]. In the smart society, the curtailment
of demand in inappropriate time is led to enhance the customer
inconvenience that should be noted in the scheduling of power
system. The inconvenience of customers is a qualitative pa-
rameter, that has been modeled in cost function as a quantify
parameter to evaluate their impact on power system.

To briefly demonstrate the contribution features of the pro-
posed model as compared with the existing literature, Table 1 is
added for more visual understanding. The considered factors
for the following comparison are respectively:

• Factor 1: Generation maintenance scheduling.

• Factor 2: Flexibility analyses.

• Factor 3: Considering electricity network uncertainties (e.g.
renewable generation or demand uncertainties).

• Factor 4: Considering gas network uncertainties (e.g. gas
pipeline or gas load uncertainties).

• Factor 5: Electricity or natural gas DR participation.

• Factor 6: Considering inconvenience cost.

• Factor 7: multi-objective optimization method.

C. Model and contribution
As seen in Table 1, It should be mentioned that the previous
researches have been evaluated the flexibility criteria in the
power system studies with a short-term horizon. Regarding
that GMS affects on short-term scheduling of power system, it is
necessary to consider the flexibility in GMS to achieve a more
flexible power system. Therefore, a novel environmental techno-
economic framework for uncertain based flexible GMS consider-
ing DRRs (UFGMSDRRs) has been presented in this paper. The
electricity demand response (EDR) is the another approach of to
mitigate the impact of power system uncertainties ,which have
been used extensively. On the other hand, the interdependen-
cies between power system, gas network, requires integrated
decisions-making for two networks. The gas demand response
(GDR) is the one of decision-making in the gas network that can
have a significant impact on the power system. The lack of atten-
tion of integrating GDR and EDR leads to loss of opportunities
in the power system. In this paper, the DRRs have been applied
to handle to variability of RERs. It should be noted that the
forecasting wind speed and gas demand have been conducted
by autoregressive integrated moving average (ARIMA). In this
paper, several analyzes have been implemented in UFGMSDRRs
to evaluate the impacts of DRRs on objectives such as cost, emis-
sion, reliability, and flexibility, Here, to overcome the difficulties
in solving the non-convex and mixed integer nature of UFGMS-
DRRs, the augmented epsilon constraint (AUGMECON) method
is applied to find the optimal global solution.

D. Paper structure
The remaining parts of the paper are as follow. Section 2 assigns
to formulation of the proposed UFGMSDRRs. The simulation
results and numerical analysis are presented in Section 3. Finally,
Section 4 concludes the paper.

2. METHODOLOGY

This study suggests a multi-objective framework in Fig. 1 to eval-
uate and reinforce a power system against variability of RERs.
In Fig. 1 (a), the flexibility analyses hierarchy has been repre-
sented. the flexibility of the system, the reaction time (RT) and
maximum available capacity (MAC) are introduced for the eval-
uation of system flexibility considering unexpected events. the
system flexibility index has been produced via dividing MAC to
RT. Afterwards, a approach oriented upon time-series models is
actuated to predict wind and natural gas uncertainty in Fig. 1
(b). In Fig. 1 (c), the UFGMSDRRs in combination with DRRs is
regarded as a multi-objective problem solving for cost, emission,
reliability and flexibility. Several approaches are deployed to
manage multi-objective problems from the perspective of the
decision-maker. In this paper, the augmented epsilon constraint
is applied to solve multi-objective UFGMSDRRs problem. Here,
the uncertainties of natural gas demand and the output of wind
resources are considered by ARIMA.

The proposed model in this paper includes different goals as
follows:

• Economic: Minimizing the total cost of operation, repair
cost and incentives paid to subscribers in exchange for par-
ticipation in load response programs is considered as an
economic criterion.

• Environmental: due to the different value of producing a
polluting unit in different areas of the power system, the
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Table 1. Comparison of the proposed model with the recent research

Approach Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7

[1] X - X X - - -

[2] X - X - - - -

[3] X - - - - - X

[4] X X X - - - X

[5] X - X - - - X

[6] X - - - X - X

[14] - X X - X - X

[17] - - - - X X X

Proposed X X X X X X X

environmental criterion is the minimization of the cost of
emission of pollution.

• Reliability: Reliability energy index based on the expected
unsupplied energy is considered as the index considered
by the system operator to maintain reliability.

• Flexibility: The increase of the flexibility index based on the
available free capacity and the reaction time for each area is
considered as a flexibility evaluation criterion.

In order to establish a balance between the aforementioned
goals, the augmented epsilon constraint method is used; It
should be noted that, in this method, decision makers have
freedom of choice. In the following, the enhanced epsilon con-
straint method is fully explained. The concept of the improved
epsilon constraint method and the selected preferences of the
decision maker, a structure consisting of four phases is presented
as follows:

• The first phase: the costs incurred by the system, including
the cost of operation, the cost of repairs, and the cost of
maintaining the reservation, are minimized in the presence
of the common constraints of the problem.

• Second phase: In this phase, the cost of pollutants released
from the power sector is sometimes minimized; As long
as the common constraints of the problem include mainte-
nance constraints and production planning constraints. The
production pattern of power plant units and the emission
rate of pollutants are considered as the output of this phase.

• The third phase: the reliability criterion, which is consid-
ered as a reliability energy index during the study period,
is leveled in the presence of the common constraints of the
repair planning problem.

• Fourth phase: In this phase, the final answer to the prob-
lem is obtained. The objective function is to maximize the
flexibility index in the planning period. Here, the results
of the previous phases are applied as restrictions according
to the payoff table so that other goals are also provided. In
the rest of the section, the modeling of the problem will be
discussed in detail.

A. Electricity and gas demand response model
The electricity DR (EDR) have potential to offer special features
such as reliability increasment, reduction of operation cost, emis-
sion reduction, flexibility improvement. On the other hand,
natural gas is also one of the most consumed energies in the
world. Disregarding to gas load is led to miss the chances of gas
demand responses (GDR) utilization. In proposed model, both
GDRs and EDRs have been implemented due to the maximum
utilization of these resources. The TOU and event programs
are considered in proposed UFGMSDRRs. In event-based elec-
tricity and gas DRRs, the customer are obtained incentive for
reducing their consumption. Notice of gas and electricity cur-
tailment event is supposed to be supervised in the moment. The
customers of participating in event-based DR programs will be
notified before the event occurs. The total incentive payment for
electricity DR curtailment is presented by Eq. (1) [18].

CEevent = min
{

0, drh.RDR.
(

PD
t,h+1 − PAevent

)}
(1)

The total incentive payment for gas DR curtailment is defined
via Eq. (2) [18].

CGevent = min
{

0, ngh.GRDR.
(

GD
t,h+1 − GAevent

)}
(2)

B. Uncertainty model
In order to predict the nature of the variability of RERs and gas
load are applied a time series uncertainty method in this study.
Herein, the ARIMA is applied to forecast wind generation and
gas load. ARIMA as a type of statistical models could be predict
and analyze time series data. ARIMA presents a potent method
for developing expert time series predictions via providing a
collection of joint structures [19]. ARIMA is an abbreviation for
auto regressive integrated moving average. It’s a more complex
version of the autoregressive moving average, with the addition
of integration. This abbreviation is descriptive, summarizing the
model’s major features. ARIMA are briefly defined follow as:

• Autoregression (AR): The dependent relationship between
a set of lagged observations and an observation is used in this
model.

• Integrated (I): To make the time series steady, differencing
raw observations is used.
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• Moving Average (MA): The dependency between a residual
error and an observation from a moving average model is uti-
lized to lagged observations. The following are the parameters
of the ARIMA model:

• p: The lag order is the number of lag observations incor-
porated in the model. • d: The degree of differencing refers to
the number of times the raw observations are differed. • q: The
order of moving average (MA) is the size of the MA window.

The data is prepared by a degree of differencing in order to
make it stationary, i.e. to remove trend and seasonal structures
that negatively affect the regression model. A linear regression
model is constructed with the specified number and type of
terms, and the data is prepared by a degree of differencing in
order to make it stationary, i.e. to remove trend and seasonal
structures that negatively affect the regression model. The sup-
plementary aspect about this approach is represented in [20].
The implementation of the ARIMA model in Python is illustrate
in Fig. 1(b).

In the power system, wind resources are one of the most
prevalent and significant RERs. The production of wind re-
sources is determined by a variety of factors, including wind
speed and direction, as well as the location of the wind turbines.
Wind speed has a significant impact on the production of wind
resources. The output of wind farm output is determined via
Eq. (3) [21].

Pw =


0 v ≤ vc

in or v ≥ vc
out(

v− vc
in

vR − vc
in

)
× PR vc

in ≤ v ≤ vR

PR vR ≤ v ≤ vc
out

(3)

C. Phase1: Economic
The total costs of system including maintenance, operation DRPs
incentive and inconvenience cost have been minimized in this
section [18].

Min

 T

∑
t=1

H

∑
h=1

N

∑
i=1


(

OCt,h
i

)
.
(
1− Xt

i
)
+ Ct,h

IDRR+

+ inct,h
DRP + mi.gmax

i .Xt
i


 (4)

where:

OCt
i = ai + bi.gt

i + ci
(

gt
i
)2 (5)

inct,h
DRP =

Ndr

∑
j=1

κinc(DRup
i + DRDn

i ) (6)

The economic objective has been subjected to the following
constraints:

∑N
i=1 gt,h

i = Ln
t,h+lossh-IDRRh, ∀t ∈ T, ∀h ∈ H (7)

Ln
t,h = PDt,h

− PRe al/ f orecasted
w (8)

IDRRh=EDRevent
h +GDRevent

h ∀h ∈ H (9)

gmin
i ≤ gt,h

i ≤ gmax
i ∀i ∈ N, ∀t ∈ T, ∀h ∈ H (10)

∑T
t=1 Xt

i = Mi, ∀i ∈ N, ∀t ∈ T (11)

Xt
i − Xt−1

i = ωt
i , ∀i ∈ N, ∀t ∈ T (12)

∑T
t=1 ωt

i =1 , ∀i ∈ N, ∀t ∈ T (13)

∑N
i=1 Xt

i ≤ NMN , ∀i ∈ N, ∀t ∈ T (14)

EDRevent
h ≤ Pnr.Lh, ∀h ∈ H (15)

GDRevent
h ≤ Pnr.GD

h , ∀h ∈ H (16)

RDRmin
h ≤ RDRh ≤ RDRmax

h , ∀h ∈ H (17)

GRDRmin
h ≤ GRDRh ≤ GRDRmax

h , ∀h ∈ H (18)

The power balance in each subperiod has been satisfied via
Eq. (7); Eq. (10) have limited units’ generations. Eq. (11) deter-
mine the maintenance period of units. Eq. (12) covers consecu-
tive periods of maintenance. Limit once being maintained in the
planning horizon is guaranteed via Eq. (13). Eq. (14) has deter-
mined the maximum number to be maintain over a period of
time. EDR and GDR participation have been limited by Eq. (15)
and Eq. (16). The incentive rate for the EDR and GDR event in
have been limited via Eq. (17) and Eq. (18), respectively.

D. Phase2:Emission

The emission has been represented as the quadratic function in
the power system. The greenhouse gases released from electric-
ity generation are minimized by Eq. (19) [22].

Min

(
T

∑
t=1

H

∑
h=1

N

∑
i=1

(
αi + βigt

i + γi
(

gt
i
)2
)

.
(
1− Xt

i
))

(19)

E. Phase3:Reliability

The appropriate reliability index should be apply to attain the re-
liable system .The energy index of reliability (EIR) as probabilis-
tic reliability index is considered to satisfy the system reliability.

Min

 T

∑
t=1

H

∑
h=1

(
1− EENS(h)

TE(h)

)
︸ ︷︷ ︸

EIR

2

 (20)

The reliability index is based on the expected energy not
supplied (EENS). The higher value of EIR is the more suitable for
the system operator, but it is obvious that increasing reliability
requires high cost. The the system operators seeks to achieve a
suitable and standard level. Therefore, it has been tried to make
the EIR index at the same level by using leveling during the
planning horizon.

Eq. (21) satisfies a reserve above a determined level.

Rt,h ≥ Rmin, ∀t ∈ T, ∀h ∈ H (21)
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F. Phase 4: Flexibility
The operating status of the system should be clear in the assess-
ment of flexibility. Therefore, it should be noted that to what
extent, at what speed and with what acceleration, the system has
the ability to go out of balance and reach its maximum capacity.
Therefore, only the maximum power generation capacity cannot
be relied upon as a measure to check the degree of flexibility
of the system; Rather, the response time and reaching the max-
imum capacity and acceleration of the system in reaching this
goal are important parameters in the level of flexibility. In fact, it
is a system with more flexibility to obtain more capacity in less
time and with more acceleration. Moreover, two sub-indicators
such as RT and MAC have been applied to analyze flexibility
in this phase. Hence, the RT and MAC have been defined in
Eq. (22) and Eq. (23), respectively. Eventually, SFI is defined by
combining RT and MAC to achieve the flexibility as in Eq. (24)
[23].

RT =
1

TN

T

∑
ut=1

N

∑
i=1

(
tC(i,ut)

− t(i,ut)

)
(22)

MAC =
1

TN

T−1

∑
ut=1

1
T − ut

H

∑
h=1

N

∑
i=1

Ca
(i,h,ut)

gt,h
i

(23)

SFI =
1

TN

T−1

∑
ut=1

1
T − ut

 H

∑
h=1

N

∑
i=1

Ca
(i,h,ut).

(
1− Xt

i
)

gt,h
i ×

(
tC(i,ut)

− t(i,ut)

)


(24)
The objectives of multi-objective problems (MOPs) may be at

odds with one another. In MOPs, there is no one best solution
that can achieve all the targets at once. As a result, it is necessary
to choice one solution to compromise between the targets. The
augmented epsilon constraint approach has been implemented
for solving MOPs in this paper. provides a quick overview of the
optimization technique. According to the mentioned method,
economic, environmental, reliability and flexibility goals are
solved separately. Then, lower and upper bounds (lbk and ubk)
are calculated for economic, environmental and reliability pur-
poses. In the following, the range of changes of the objective
functions (rk ) except for the calculated flexibility of specifying
the desired points ( gk) is created to create values on the right
side. using the upper edge of the objective functions, created the
values on the right side (ek = ubk − (ik × rk)/gk ). At the end,
solving the main problem (flexibility) is done by considering
other functions as limitations. sk is the optimization surplus
variable. The more detail about this method has been expressed
in [24].The main objective function of the proposed method is
formulated as follows:

Max



1
TN

T−1

∑
ut=1

1
T − ut

 T

∑
t=1

N

∑
i=1

Ca
(i,t,ut).

(
1− Xt

i
)

gt,h
i ×

(
tC(i,ut)

− t(i,ut)

)


︸ ︷︷ ︸
Flexibility Objective

+eps× (s2 + s3 + s4)


(25)

s.t.

T

∑
t=1

H

∑
h=1

N

∑
i=1


(

OCt,h
i

)
.
(
1− Xt

i
)
+ Ct,h

IDRR

+inct,h
DRP + mi.gmax

i .Xt
i

︸ ︷︷ ︸
Economic Objective

+s2 = e2 (26)

T

∑
t=1

H

∑
h=1

N

∑
i=1

(
αi + βigt

i + γi
(

gt
i
)2
)

.
(
1− Xt

i
)

︸ ︷︷ ︸
Emission Objective

+s3 = e3 (27)

T

∑
t=1

H

∑
h=1

(
1− EENS(h)

TE(h)

)
︸ ︷︷ ︸

EIR

2

︸ ︷︷ ︸
Reliability Objective

+s4 = e4 (28)

3. RESULTS

The UFGMSDRRs is implemented on IEEE 24-bus. The modi-
fied IEEE 24-bus including wind resources with 300 MW and 26
dispatchable units (U1-U26) are listed in Table 2 [6].The weekly
peak load is illustrated in Fig. 2 and the peak load of system
is 2850 MW [25]. The reserve criteria and eps are considered
20% and 10-6, respectively [26]. The maintenance scheduling
and flexibility evaluation horizons are assumed 52-week and
8736 hours, respectively. The emission function slopes and the
startup emission of generating units are the same as those for
corresponding unit fuel cost curves, all multiplied by conver-
sion factors of 0.2 and 0.5 for SO2 and NOx emission [27]. The
UFGMSDRRs problem is solved by BARON in GAMS.

Fig. 2. The weekly peak load.

In this section, three cases have been implemented to investi-
gate the impact of the UFGMSDRRs model on the level of system
flexibility, the details of which are as follows:

• Case 1: Flexibility analysis disregarding to uncertainties of
gas and wind as well as the participation of DRRs.

• Case 2: Flexibility analysis regarding to uncertainties of gas
and wind speed.

• Case 3: Flexibility analysis considering DRRs. In the follow-
ing, the results related to each case will be examined separately.
Eventually, the results of all cases will be compared with each
other.

A. Case 1: Flexibility analysis disregarding to uncertainties of
gas and wind as well as the participation of DRRs

The UFGMSDRRs model seeks to achieve a comprehensive main-
tenance scheme with the goals of reliability, flexibility, environ-
mentally and economic. Hence, maintenance and operation
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Table 2. Generation units information of IEEE 24-bus

Unit gmax/gmin FOR Mi
ai

($)

bi

(($/MWh)

ci

($/MWh2)

HRi

(MBtu/MWh)

RUi

(1/MWh)

1 400/100 0.12 6 311.91 7.503 0.00195 10 10

2 350/140 0.08 5 177.05 10.862 0.00153 9.5 36

3 197/68.9 0.05 4 260.17 23.200 0.00263 9.6 78

4 155/54.3 0.04 4 143.59 10.758 0.00487 9.7 78

5 155/54.3 0.04 4 143.31 10.737 0.00481 9.7 78

6 100/25 0.04 3 218.77 18.200 0.00598 10 31

7 100/25 0.04 3 218.33 18.100 0.00612 10 31

8 76/15.2 0.02 3 81.626 13.407 0.00932 12 36

9 76/15.2 0.02 3 81.464 13.381 0.00910 12 36

10 20/4 0.10 2 118.82 37.890 0.01433 14.5 104

11 20/4 0.10 2 118.45 37.777 0.01359 14.5 104

12 12/2.4 0.02 2 24.888 24.888 0.02855 12 42

13 12/2.4 0.02 2 24.761 24.761 0.02842 12 42

14 12/2.4 0.02 2 24.638 24.638 0.02801 12 42

15 400/100 0.12 6 310.00 7.492 0.00194 10 10

16 197/68.9 0.05 4 259.13 23.100 0.00260 9.6 78

17 197/68.9 0.05 4 259.13 23.000 0.00259 9.6 78

18 155/54.3 0.04 4 143.02 10.715 0.00473 9.7 78

19 155/54.3 0.04 4 142.73 10.694 0.00463 9.7 78

20 100/25 0.04 3 217.89 18.000 0.00623 10 31

21 76/15.2 0.02 3 81.298 13.354 0.00895 12 36

22 76/15.2 0.02 3 81.136 13.327 0.00876 12 36

23 20/4 0.10 2 118.10 37.664 0.01261 14.5 104

24 20/4 0.10 2 117.755 37.551 0.01199 14.5 104

25 12/2.4 0.02 2 24.411 25.675 0.02649 12 42

26 12/2.4 0.02 2 24.389 25.547 0.02533 12 42

costs as the costs of system have been minimized. In objective
4, the amount of obtained from the first objective, 238.39M$,
assume as a limitation. The greenhouse gas emissions and reser-
vation criteria as the reliability objective are minimized in objec-
tive 2 and objective 3, respectively. The amount of greenhouse
gas emissions and reserve level are considered as constraints in
objective 4. The SFI as objective 4 is maximized with considering
pervious objectives as constraints. In Table 3, the maintenance
schemes of all objectives are presented. Note that the total emis-
sion of Case 1 is 123.435 Mlbs, which is a good level compared to
the total emission of objective 2 (120.221 Mlbs). In Fig. 3, the SFI
index for each week is illustrated. The lowest flexibility occurs in
weeks of 23-31 and 46-52. According to Fig. 2, the peak demand
is happened at these weeks. Also, in the weeks when the peak
load occurs, the fast ramp units have not been maintained so as
not to reduce the flexibility of the system.

B. Case 2: Flexibility analysis regarding to uncertainties of
gas and wind speed

The availability of natural gas for electricity generation depends
on the demand for natural gas, which if not considered can
disrupt the operation of the power system. In this section the
variability of wind speed anad gas uncertainty has been modeled
by ARIMA. ARIMA as a time series method is a suitable method
for forecasting time based-data. Therefore, the foretasted gas
loads and wind speed by ARIMA has been presented in Fig.
4 and Fig. 5, respectively. The historical data for wind speed
gas demand are extracted from [28] and [29], respectively. The
maximum capacity of gas pipeline 1 is 7000 kcf/h that it is
supplied four units (U4 ,U5 ,U18 and U19) and the natural gas
load a. The maximum capacity of gas pipeline 2 is 6000 kcf/h
that it is supplied three units (U3 ,U16 and U17) and the natural
gas load b. 1 kcf of gas is assumed could produce 1 MBtu of

Fig. 3. The flexibility index in Case 1.

energy [29].
In Fig. 6, the SFI index for Case 2 is presented with respect

to the natural gas supply limitation and without the natural gas
supply limitation. According to Fig. 6, the flexibility index has
decreased significantly compared to Case 1, which is due to the
modeling of wind power plant production changes. On the other
hand, the level of SFI has decreased due to the constraint of gas
supplies, which is due to the reduction of the available capacity
of gas-fired units. Also, the reduction in the production of gas-
fired units has worsened other goals, such as cost, reliability,
and the environment of the system compared to Case 1. The
maintenance schedule of units is presented in Table 4.

C. Case 3: Flexibility analysis considering DRRs

In this Case, EDR and GDR have been used to reduce the limi-
tations of the gas supply and the variability of wind resources.
The results of DRRs in UFGMSDRRs are shown in Fig. 7. Fig.
7a depicts the participation of EDRs of all categories. The par-
ticipation of each GDR in flexible GMS has been determined
in Fig. 7b, According to Fig. 7a, EDR program is implemented
throughout the year. But in the weeks when the system peak
occurred, participation is more significant. Fig. 7b shows that
the participation of the GDR program is greater in the weeks
when gas consumption is higher and has limited the production
of gas-fired power plants, which can serve as a road-map for
power system operators. The flexibility index of all three cases is
shown in Fig. 8 for better comparison. In Case 3, implementing
EDR and GDR programs have led to reduce the effects of wind
farm output changes and gas supply constraints. As a result, it
has a favorable acceptance level compared to other cases. The
maintenance schedule of units for Case3 is presented in Table 5.

The flexibility, cost, reliability and emission objectives in var-
ious cases are compared with each other as shown in Table 6
and Fig. ??. The flexibility index in case 2 has decreased by
about 12.96% compared to case1. The flexibility index in case 3
has improved by about 19.11% compared to case 2, due to the
use of DRRs (flexibility resources and reduction of gas supply
limitation). Emission level, reliability and cost in Case2 have the
worst and in Case 3 the best value. Due to the use of DRRs, the
level of demand has decreased significantly and the production
of fossil fuel power plants has decreased. According to Fig. 9,
Case 3 has the best results compared to other cases due to the
presence of DRRs.
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Table 3. Maintenance scheme results for Case 1

Unit U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13

Target 1 9-14 38-42 9-12 27-30 34-37 3-5 7-9 18-20 15-17 18-19 31-32 13-14 42-43

Target 2 10-15 18-22 16-19 47-50 7-10 16-18 13-15 12-14 15-17 8-9 11-12 4-5 2-3

Target 3 31-36 38-42 10-13 38-41 11-14 24-26 8-10 27-29 14-16 31-32 15-16 21-22 8-9

Target 4 39-44 33-37 40-43 17-20 13-16 36-38 6-8 20-22 6-8 46-47 42-43 19-20 12-12

Unit U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26

Target 1 7-8 38-43 34-37 14-17 15-18 31-34 43-45 10-12 36-38 5-6 1-2 1-2 39-40

Target 2 6-7 44-49 6-9 47-50 43-46 2-5 3-5 50-52 42-44 51-52 51-52 45-46 1-2

Target 3 21-22 10-15 4-7 36-39 34-37 4-7 40-42 27-29 27-29 31-32 16-17 21-22 8-9

Target 4 1-2 1-6 26-29 47-50 24-27 28-31 17-19 27-29 13-15 51-52 1-2 51-52 21-22

(a) Load a (b) Load b

Fig. 4. The forecasted natural gas demand.

Fig. 5. The forecasted wind speed by ARIMA Fig. 6. The flexibility index for a year in case2
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Table 4. Maintenance scheme results for Case 2

Unit U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13

Case 2 31-36 5-9 19-22 38-41 10-13 41-43 27-29 22-24 2-4 1-2 9-10 36-37 7-8

Unit U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26

Case 2 2-3 35-40 10-13 14-17 41-44 13-16 27-29 22-24 27-29 47-48 48-49 50-51 15-16

(a) Participation of EDR (b) Participation of GDR

Fig. 7. Result of DRRs in UFGMS.

Table 5. Maintenance scheme results for Case 3

Unit U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 U11 U12 U13

Case 3 33-38 12-16 30-33 4-7 34-37 44-46 13-15 40-42 19-21 31-32 44-45 4-5 33-34

Unit U14 U15 U16 U17 U18 U19 U20 U21 U22 U23 U24 U25 U26

Case 3 36-37 9-14 22-25 28-31 39-42 6-9 15-17 26-28 10-12 7-8 50-51 5-6 9-10

Fig. 8. The flexibility index for all cases.

Table 6. Comparison of different objectives.

Total emission

(Mlbs)
EIR

Average SFI

(pu/h)

Total cost

(m$)

Case1 123.435 0.9942 0.0571 247.97

Case2 129.712 0.9923 0.0497 275.26

Case3 122.02 0.9951 0.0592 236.67

4. CONCLUSION

In recent years, the interdependence of gas and electricity sys-
tem has increased. Hence, the limitation of natural gas supply
is notable for secure operation in power system. On the other
hand, lack of attention to the penetration of RERs and flexibility
analysis in the GMS will lead to an insecure environment for
power system operators and developers. In this paper, an en-
vironmental techno-economic framework for uncertain based
flexible GMS considering integrated DRRs has been applied.
In the proposed model, the EDR and GDR have been used to
mitigate the limitations of the gas supply and the variability of
wind resources. The obtained results revealed that extensive
presence of wind power plant attenuates the flexibility index.
In this paper, it is illustrated that both price-based programs
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Fig. 9. Comparison of different objectives.

and incentive-based DR programs entail notable benefits to im-
prove techno-economic indices. The level of participation and
impact of any type of DRRs on system flexibility can also be an
applicable roadmap for investing on demand-side resources in
future power system. The results are shown that reliability and
flexibility are ameliorate significantly via the DRRs as well as
the total cost and emission are reduced. In future research, it
should be necessary to consider load and price uncertainties as
well as additional constraints to apply the proposed structure
on real systems.
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