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Given the importance of unit commitment risk (UCR) assessment in determining the probability
of meeting load demand in the ahead short-term operation period, in this paper, a new analytical
model for UCR assessment is presented. In the proposed model to consider the impact of
wind power participation in the entire short-term period of operation of the system, using
the developed risk area concept, a new model for UCR assessment is presented. Furthermore,
uncertainties of wind power and load demand are considered simultaneously. Unlike the models
presented in previous research for UCR assessment, which consider the share of wind power
in the last period of operation, the proposed model for UCR assessment considers the share
of wind power in all periods of operation. The proposed model was tested and evaluated on
the RBTS system with a wind farm. Moreover, the results obtained from the simulation were
reported. According to the results, in all cases, the value of UCR in the proposed model is
lower than the modified PJM (M-PJM) method. The effectiveness of this innovative approach
in evaluating the UCR of the power system despite wind power and load uncertainties was
confirmed based on the results. © 2023 Journal of Energy Management and Technology
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1. INTRODUCTION
Nowadays, due to the widespread use of fossil fuels and the
emission of greenhouse gases, the use of renewable resources,
especially wind power, has increased significantly. Despite the
many advantages of wind resources, the output power of these
sources is variable and cannot be accurately predicted [1]. This
issue has significant effects on assessing the short-term reliability
of power systems. Based on the explanations provided, more
detailed studies should be conducted on the impact of the
presence of wind farms on the short-term reliability of power
systems [1].

In the power systems, the value of spinning reserve, which is
determined in the unit commitment (UC) step, is responsible
for responding to load changes or changes in output power of
generating units. The generation capacity of a power system
with high wind power penetration will change significantly
due to variations in the wind farms’ output power. Therefore,
the power system operator must consider the participation of
wind power in determining the value of the spinning reserve
to ensure system short-term reliability [2, 3]. In most of the
presented methods for evaluating the short-term reliability of
power systems with wind farms to take into account wind and

load power uncertainties, the units are scheduled periodically
[2]. At the end of each period, the power system situation is
updated based on the information obtained from the values of
load demand and the output power of wind farms [3].

In general, short-term reliability studies of power systems
are divided into two different categories in terms of system
operation conditions: system adequacy and system security
[4, 5]. System adequacy is an index of the existence of sufficient
facilities in the system to provide the required load and meet
the operational limitations of the system. System security is
a measure of a system’s ability to respond to dynamic and
transient disturbances [6]. The short-term reliability of the
power systems can be calculated using deterministic and prob-
abilistic methods [5]. In deterministic methods, the situation
of the power system is limited to a set of constant values, and
uncertainty is not considered. The main weakness of these
methods is the inability to evaluate random system behaviors
such as a forced outage of system elements and uncertainty
in consumers’ demand. In probabilistic methods, possible as-
pects of the system are also considered. For this reason, these
methods can provide more in-depth information for the design,
scheduling, and allocation of generating units [6].
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In another category, short-term reliability evaluation of
power systems using probable techniques is divided into two cat-
egories of analytical and non-analytical methods [6]. Analytical
methods are based on mathematical equations, and mathemat-
ical modeling is system behavior, while non-analytical methods
are based on simulation. In analytical models, the capacity
model, known as the capacity outage probability table (COPT),
determines the probability of occurrence of any level of genera-
tion capacity outage. The Monte Carlo simulation method is
the most well-known non-analytical method. This method is
based on simulation of all system elements to evaluate system
performance [7–9].

UCR evaluation is a probabilistic method to specify an
acceptable value for the required spinning reserve [10]. This
method was first introduced by the Pennsylvania-New Jersey-
Maryland (PJM) system to determine the value of the required
spinning reserve of the system to achieve a certain amount of
UCR criteria [11]. Studies in the field of UCR show that wind
power and load uncertainties have a significant effect on the
UCR value [12, 13]. In [12], the effect of different uncertainties
on UC studies in power systems is investigated. In [10], using
the concept of risk area, an approach to calculate the UCR
value in a power system is presented. One of the advantages of
this approach is considering wind power in UCR calculation.
One of the disadvantages of the approach presented in [10] is not
considering the effect of load uncertainty in UCR calculation.

In [14], to minimize the total operation cost including gen-
eration and maintenance costs and risk costs, a risk-based
coordination model of maintenance planning and UC is pre-
sented. According to the results presented in [14] by controlling
the operational risk of the system, it is observed that the total
operation cost is reduced by coordination, which indicates the
effectiveness of the proposed model. In [15], to reduce the price
spikes in the short-term operational planning process, a new
indicator for energy tariff risk is presented. According to the
results obtained from the enactment of the proposed method
in a power system with the wind farm, price fluctuations in the
short-term operational planning process have been effectively
reduced. One of the disadvantages of the approach presented
in [15] is not considering the effect of load uncertainty in price
spike calculation.

In [16], by combining the chance-constrained programming
method with the purposeful programming method, a new model
for solving the risk-constrained UC problem is proposed. Con-
sidering the impact of transmission lines in solving the risk-
constrained UC problem is one of the strengths of the approach
presented in [16]. In [17], the UC is investigated by considering
the high level of wind penetration. This paper states that
stochastic programming is not sufficient to model all aspects
of the decision-making process. In [18], the performance of
stochastic programming and robust optimization methods in
UC solving has been evaluated, considering the risk. In this
work, CVaR (Conditional Value at Risk) is used to risk eval-
uation. One of the disadvantages of the approach presented
in [18] is not considering the effect of load uncertainty in UC
evaluation. In [19], the UC has been formulated and solved by
considering the wind power uncertainty and the probability of
congestion of lines. One of the strengths of the study presented
in [19] is considering the wind power uncertainty in the power
system and considering the transmission capacity of the lines to
evaluate the UC more efficiently during the operation period.

Based on the explanations provided, UCR evaluation has not
been studied in previous works by simultaneously considering

the wind power and load uncertainties. Concerning this issue,
this paper focused on evaluating UCR in power systems by
considering wind power and load uncertainties. To this work,
the conditional probability method and the developed type of
risk area are used to analyze the impact of uncertainties of wind
power and load demand in the UCR. Finally, to demonstrate
the effectiveness of the proposed UCR model, the proposed
UCR model is compared with the modified PJM (M-PJM)
method. Given the above, the innovations of this study are
summarized as follows:

• Introduce a new UCR model using the concept of extended
risk area (RA-UCR).

• Consider the effect of wind power in all divided intervals
of the operation period to calculate the UCR value of the
short-term operation period.

• Simultaneous consideration of wind power and load de-
mand uncertainties in UCR assessment to make system
operator decisions more realistic.

The organization of this paper is as follows. In Section
2, modeling wind power and load uncertainties are expressed.
Section 3 describes the RA-UCR method. Section 4 describes
the result of numerical studies. Section 5 concludes the paper.

2. MODELING WIND POWER AND LOAD UNCER-
TAINTIES

The wind speed in a specific area in a short period of several
hours depends on the initial wind speed and the features of the
time series of wind variations in a given area. Therefore, the
initial wind speed conditions are used to calculate variations
in wind speed and wind power over a short period [10, 13]. In
many of the proposed methods for risk assessment, hourly wind
data based on long-term measurements for a specific area are
not sufficient to generate the probability distribution function
used in the short-term reliability studies. To solve this problem,
time series are used to generate the required wind data [20].
In this work, the ARMA (Auto-Regressive Moving-Average)
time-series presented in [21] have been used to generate data to
modeling wind speed. In Eq. (1), using the ARMA time series,
wind speed at time t is calculated based on historical data [21]:

SWt = µt + δt ·Qt (1)

Where, SWt is the modeled wind speed at time t, also µt

and δt are the mean and standard deviation of wind data in a
specific area, respectively [21]. According to Eq. (1), in addition
to µt and δt, the Qt parameter is required to calculate wind
speed. The Qt parameter, which is a time series, is calculated
using Eq. (2) [21]:

Qt = φ1Qt−1 + φ2Qt−2 + ... + φnQt−n+

βt − βt−1λ1 − βt−2λ2 − ...− βt−mλm
(2)

Where, φi (i = 1, 2, . . . ,n) is the regression of the model,
λj (j = 1, 2, . . . ,m) is the moving average of the model and
βt ∈ NID(0, δ2

a) is normal white noise with zero mean and
variance δ2

a [21].
The wind speed distribution obtained using the time series

model indicates the hourly variations in wind speed over a short
period ahead for a specific initial condition in the study area
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[10]. Finally, according to the studies performed in [1, 10, 22],
the wind speed distribution function obtained in the previous
step is converted into a wind power distribution function using
the wind turbine speed–power relationship. The amount of
load variation is less than the wind speed variation because the
load changes slowly and is largely predictable. However, load
demand prediction error for large power systems is in the range
of megawatt and significant. A well-known method for modeling
load uncertainty is the use of normal probability distribution
functions [23]. In this research, by considering the different
forecasts for the load demand and using the prediction error
probability distribution function with zero mean and different
standard deviations, the value of load demand uncertainty
is obtained. According to the above, for the load demand,
probable distributions with different standard deviations are
considered. Each probable distribution is then divided into
thirteen equal parts. In the following, thirteen error values are
calculated relative to the mean value, with a specific probability
for each error and standard deviation [24]. Therefore, for
each standard deviation, thirteen scenarios are achieved with a
specified probability for the load demand.

3. DESCRIPTION OF THE PROPOSED RA-UCR
METHOD

In the proposed RA-UCR method, a new approach to calculate
the UCR value is presented, taking into account wind and load
uncertainties and considering the wind power contribution in
all intervals of the short-term operating period.

A. The modified PJM method
In the PJM method presented in [11], UCR is defined as the
probability that the predicted load demand for the ahead period
will not be met. In the PJM method, with the initial conditions
of the units being clear, uncertainties increase when the system
operator wants to evaluate the system state for the ahead
period. Uncertainties in the system state in the ahead period
are since the allocated units may be failed in the ahead period
when support is not possible [5]. The primary PJM method for
the participation of rapid start and hot reserve units, where
the decision to use them was made in initial time and will be
online in the ahead period, has been modified in [25]. Fig. 1
shows the risk curve of a power system, including rapid start
and hot reserve units. In the M-PJM method, the total risk of
participation of units that come online during the initial period
or later is equal to the sum of partial risks in each part or area
under the risk curve. The value of total risk for the system
shown in Fig. 1 is calculated using Eq. (3) [10].

P (failure) =

∫ T 1

0
F (R1)dt+

∫ T 2

T 1
F (R2)dt+

∫ T

T 2
F (R3)dt

(3)
According to Fig. 1, three different periodic risks have been

created so that the rapid start and hot reserve units come online
at times H1 and H2, respectively, and both units are expected
to be online until the end of the H time [10]. Hence, the total
system risk will be equal to the sum of the partial risks in the
three periods. In the M-PJM method, the risk of periods is
obtained using the partial risk assessment method presented in
[5]. For example, the partial risk in the H2-H period is achieved
using the COPT by considering the forced outage rate values
calculated at time H for the committed units [5, 10]. This

Fig. 1. Concept of risk area in short-term reliability evalua-
tion [10].

method can be developed to consider wind power participation,
whose power and probability are known in each scenario.

Short-term variations in wind farm output power are quan-
tified as discrete-state capacities, and the probability of each
state occurring is calculated using the conditional probability
distribution function. In the M-PJM method, to consider the
impact of wind power participation, the COPT of units are
combined with the wind probability distribution function gener-
ated in the last interval of the short-term operation period [13].
This process is shown in Fig. 2. According to Figure 2, it can
be seen that the distribution function of demand over 4 hours
and wind probability distribution function generated in the last
interval of the short-term operation period, is combined with
the risk function of allocated units over 4 hours.

Fig. 2. The use of the concept of risk area in the M-PJM
method to calculate UCR with wind power participation.

B. The RA-UCR method
Because the wind speed increases or decreases sharply over the
entire ahead period, the wind probability distribution function
obtained in the latest interval may not correctly show the share
of wind power across the overall ahead period. In the proposed
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RA-UCR method for risk assessment, the variations obtained
for wind power and load in each interval belonging to the ahead
period are combined with the capacity model of allocated units
at a suitable time. This process is shown in Fig. 3. In this
figure, the distribution function of wind and demand over 4
hours, achieved for a specific initial condition, is combined with
the risk function of allocated units over 4 hours.

The generating capacity of the wind farm in a short period
in the future depends on the initial conditions of wind. In
this study, the initial conditions of the wind power and load
will remain unchanged in the first half-hour of the first period.
Wind power and demand modeling based on historical data
is stored uniformly. Therefore, in the proposed model, the
obtained values of load demand and wind farm output power
for H hour are used for 30 minutes before and 30 minutes after
H hour, which is clearly shown in Fig. 3.

Fig. 3. The use of the concept of risk area in the proposed
RA-UCR method to calculate UCR with wind power partici-
pation.

According to the explanations provided, the risk amount of
the allocated units for the first half-hour is determined using the
initial values of wind power and load. For the hourly periods
after the first period, the risk amount of the allocated units is
determined using the conditional distribution of wind power
and load demand in each of the ahead periods. Finally, based
on equations (4) - (9), a UCR evaluation is performed for each
period.

Ar(0.0−0.5) = R0.5+W 0+L0 (4)

Ar(0.5−1.5) = R1.5+W 1+L1 −R0.5+W 1+L1 (5)

Ar(1.5−2.5) = R2.5+W 2+L2 −R1.5+W 2+L2 (6)

Ar(2.5−3.5) = R3.5+W 3+L3 −R2.5+W 3+L3 (7)

Ar(3.5−4.0) = R4.0+W 4+L4 −R3.5+W 4+L4 (8)

UCR(0−4) = Ar(0.0−0.5) +Ar(0.5−1.5) +Ar(1.5−2.5)+

Ar(2.5−3.5) +Ar(3.5−4.0)
(9)

Where, Rt is the partial risk achieved of the COPT of
allocated units during the operating period t, Rt +Wx + Lx

is the partial risk derived from the modified COPT with the
conditional distribution of wind power and demand at x hours
after the initial conditions and At is the risk value for period t.

4. NUMERICAL STUDIES
In this section, to evaluate the effectiveness of the proposed
method, the RA-UCR method is applied to the RBTS test
system with a wind farm. Table 1 presents the information on
the generation units of the RBTS system [26]. The priority
of allocation of generation units is based on the priority list
arranged in Table 1. For UCR evaluation in the RBTS test
system, the proposed RA-UCR method is compared with the
M-PJM method presented in [13]. In this study, wind data in
Toronto, Canada, has been used to analyze the effect of wind
power on the UCR value [20]. The wind farm connected to
the system includes 26 wind turbines with a nominal power
of 1.8 MW [10, 22]. Also, the failure rate of wind turbines is
ignored and assumed that in the ahead period (4 hours), the
wind generators will operate without failure. The probability
of each prediction error of load demand for different standard
deviations is shown in Table 2. All calculations are performed
in a MATLAB environment with a machine running at Intel(R)
Core (TM) i5-8250u 1.6 GHz CPU and 8GB RAM.

Table 1. Information on RBTS system units [26].

priority of

coming online

Nominal

capacity (MW)
Unit type

Failure rate

(failure/year)

1 40 Hydraulic 3

2 20 Hydraulic 2.4

3, 4 40 Thermal 6

5 20 Thermal 5

6 10 Thermal 4

7, 8 20 Hydraulic 2.4

9, 10 5 Hydraulic 2

A. Generation of the probability distribution function for wind
power

Based on the results presented in [20], the ARMA model
has good accuracy. At most wind speeds modeled by the
ARMA model, the simulated and actual values are almost the
same. This study uses historical wind speed data from Toronto,
Canada over a year to simulate wind speed. The ARMA model
obtained for these historical wind data is in the form of Eq. (10).
[10, 22]:

Qt = 0.4709Qt−1 + 0.5017Qt−2 − 0.0822Qt−3 + βt+

0.1876βt−1 − 0.2274βt−2 βt ∈ NID (0, 0.55082)
(10)

The value of wind speed in the coming hours after obtaining
Qt values is determined. Fig. 4 shows the wind speed prob-
ability distribution considering different values of the initial
speed. Based on Eq. (10), the wind speed distribution curve
depends on the mean and standard deviation of the wind data.



Research Article Journal of Energy Management and Technology (JEMT) Vol. 7, Issue 3 138

Table 2. The probability of each prediction error of load
demand for different standard deviations.

Percentage

prediction

error

Probability of

prediction error

for standard

deviation= 0.025

Probability of

prediction error

for standard

deviation= 0.050

Probability of

prediction error

for standard

deviation= 0.075

Probability of

prediction error

for standard

deviation= 0.100

30 % 0 0 0.0001 0.003

25 % 0 0 0.0012 0.0092

20 % 0 0.0002 0.0085 0.0278

15 % 0 0.006 0.038 0.0656

10 % 0.0013 0.0606 0.1109 0.1210

5 % 0.1573 0.2417 0.2108 0.1747

0 % 0.6828 0.383 0.261 0.1974

-5 % 0.1573 0.2417 0.2108 0.1747

-10 % 0.0013 0.0606 0.1109 0.1210

-15 % 0 0.006 0.038 0.0656

-20 % 0 0.0002 0.0085 0.0278

-25 % 0 0 0.0012 0.0092

-30 % 0 0 0.0001 0.003

According to Fig. 4, with the initial wind speed increasing,
the wind distribution curve shifts to the right, indicating an
increase in the probability of occurrence of larger wind speeds.
In addition, an increase in initial speed increases the bandwidth
of the probability distribution curve. An increase in bandwidth
indicates an increase in the standard deviation of wind speeds
with the initial speed increases.

Fig. 4. Wind speed probability distribution for different ini-
tial speed values.

Considering the wind speed curve at different hours, using
the speed-power relationship, the probabilistic distribution set
of wind speed is transformed into the probabilistic distribution
set of the wind farm output power. Fig. 5 shows the probable
distribution of wind turbine output power in each hour for
four consecutive hours (8 to 11 o’clock). Fig. 5 shows that at
8 o’clock, given that the initial wind speed is low, the wind
turbine output power is low. Also, in the following hours, with
the increase of the initial wind speed, wind turbine output
power will increase.

Fig. 5. Probability distribution of wind farm output power
for different hours.

B. Impact of wind power on UCR value
Fig. 6 shows the UCR value for four different modes without
considering wind power for the next 4 hours. Four different
modes include the allocation of 5, 6, 7, and 8 units of RBTS
system units based on the priority of Table 1. It can be seen
from Fig. 6 that with increasing the load of the RBTS system,
the value of UCR in each mode increases. Because with increas-
ing system load, the number of generation units that must be
coming online increases. With increasing the number of online
generation units, the probability of failure of one of the online
units increases. On the other hand, as shown in Fig. 6, due
to the discrete capacity of the generation units, the amount
of UCR increases step by step with increasing load. In other
words, by increasing the load from a specific value, a new unit
must be turned on and committed. This leads to a step-by-step
increase in the available capacity and consequently increases
step by step in UCR. In addition, it is clear that for a specific
value of the load, increasing the number of committed units
decreases the UCR value. The value of UCR remains constant
as the load increases until there is no need to add a new unit.

Fig. 6. UCR value without considering wind power.

This analysis is repeated by considering the wind power
in the UCR evaluation. Fig. 7 shows the UCR values by
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considering the wind farm with a nominal capacity of 46.8
MW for the next 4 hours. According to Fig. 7, it is clear
that, as in the previous case, increasing the load has increased
the UCR value, but in this case, the increase in UCR value
is gradual. This is due to the presence of wind power which
can supply part of the load increase. This shows that despite
the uncertainty in the output power of the wind farm, the use
of wind farms reduces the UCR value compared to the case
without considering the wind power.

Fig. 7. The UCR value considering wind power.

C. Assessing the UCR value taking into account wind power
and load demand uncertainties

In this section, the performance of the proposed RA-UCR
method is evaluated by comparing the results of the proposed
RA-UCR method and the M-PJM method. Initially, in both
methods, COPT is used to evaluate the probability of outage
of generation units and the results are combined with the prob-
ability distribution of wind power. The UCR value is then is
obtained by calculating the cumulative probability distribution
of the available capacity states of generation units, which is
equal to or less than the expected load. Tables 3 and 4 show
the values obtained for UCR in the short-term operation period
(8 to 11 o’clock) using the M-PJM method and the RA-UCR
method with considering wind power, for cases with load un-
certainty and without load uncertainty. In both methods for
UCR evaluation, all system conditions in the study period are
completely the same. In the M-PJM method, to calculate the
UCR value, the wind power distribution obtained in the last
interval is used. In the proposed RA-UCR method, to calculate
the UCR value, the wind power distribution obtained in the
entire short-term operation period is used. In Tables 3 and 4,
the UCR values for the load in the range of 140 to 200 MW
and considering the allocation of 8 generation units with a
wind farm connected to the system are presented for the two
mentioned methods.

According to Tables 3 and 4, it can be seen that the value
of UCR obtained in RA-UCR method for all load levels in two
cases with load uncertainty and without load uncertainty is
less than the values obtained in M-PJM method. As we know,
with increasing ahead period, the scatter of wind power distri-

Table 3. UCR values for both M-PJM and proposed RA-
UCR methods in the ahead short-term period for mode with-
out load uncertainty.

Load (MW) M-PJM method RA-UCR method

140 0.0000143 0.0000111

145 0.0000144 0.0000130

150 0.0000144 0.0000137

155 0.0000503 0.0000311

160 0.0000503 0.0000419

165 0.0000621 0.0000523

170 0.0000621 0.0000576

175 0.0065113 0.0029405

180 0.0065113 0.0053471

185 0.0065209 0.0060543

190 0.0065209 0.0062988

195 0.0117530 0.0087401

200 0.0117530 0.0107290

Table 4. UCR values for both M-PJM and proposed RA-
UCR methods in the ahead short-term period for mode with
load uncertainty for different standard deviations.

Load (MW) M-PJM method RA-UCR method

140 0.0000403 0.0000227

145 0.0001097 0.0000563

150 0.0002983 0.0001203

155 0.0007974 0.0002380

160 0.0008763 0.0005828

165 0.0029319 0.0010777

170 0.0056377 0.0025555

175 0.0085719 0.0064336

180 0.0187611 0.0164690

185 0.0466070 0.0178310

190 0.0470980 0.0449110

195 0.1205100 0.0459380

200 0.1205100 0.1177800
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bution also increases, which indicates an increase in variations.
Therefore, increasing the scatter of wind power distribution will
increase the UCR value. As explained, in the M-PJM method,
only the wind power distribution in the latest interval (latest
hour) is used to calculate the UCR value in the entire 4-hour
period, while in the proposed RA-UCR method, wind power
distribution in all leading intervals is used to calculate the UCR
value in the entire 4-hour period. Therefore, this is why the
UCR values in the proposed RA-UCR method are smaller than
the M-PJM method.

Fig. 8 shows the values obtained for UCR in the short-
term operation period using the M-PJM method and the RA-
UCR method with considering wind power, for cases with
load uncertainty and without load uncertainty. According to
the UCR values in Fig. 8, it is clear that the simultaneous
consideration of wind power and load demand uncertainties has
a significant effect on UCR values. For all load levels, the value
of UCR in the mode with load uncertainty is much increased
compared to the mode without load uncertainty. The reason
for the intense increase in the UCR value for load levels more
than 175 MW in mode with load uncertainty compared to the
mode without load uncertainty is that in some scenarios, the
load demand is more than the sum of the nominal power of
the generation units and the wind farm. In these scenarios,
because the load demand is more than the sum of the nominal
power of the generation units and the wind farm, the UCR
value is equal to one, which in turn increases the UCR value
for that load level. For example, in both methods for a load
of 200 MW, the UCR value is more than ten times higher in
the mode with load uncertainty than in the mode without load
uncertainty. Therefore, in the UCR evaluation, it is necessary
to model the uncertainty of wind farms and especially the load
demand uncertainty with high accuracy.

Fig. 8. The UCR values in the short-term operation period
using the M-PJM method and the RA-UCR method with
considering wind power, for cases with load uncertainty and
without load uncertainty

5. CONCLUSION
In this study, an analytical model for evaluating UCR in the
power system by considering wind power and load demand
uncertainties in the short-term operation period is presented.
The main feature of the proposed RA-UCR method is the
calculation of UCR taking into account uncertainties related
to wind farm output power and load demand. In the proposed

RA-UCR method for evaluating UCR in a power system with
the wind farm, the conditional probability, and developed type
of risk area are used to consider the effect of wind power and
load demand uncertainties on the UCR value. To evaluate the
effectiveness of the proposed RA-UCR method, the proposed
method and M-PJM method were applied to the RBTS system.
According to the numerical results for the cases with load
uncertainty and without load uncertainty, in the proposed RA-
UCR method, the UCR value in the short-term operation period
in all load levels is less than the M-PJM method. Therefore,
the proposed RA-UCR method for calculating the UCR value
in the short-term operation period is much more powerful than
the M-PJM method.

Also, considering the UCR values calculated in the numerical
results, it is clear that the simultaneous consideration of wind
power and load demand uncertainties has a significant effect
on UCR values. In both methods at all load levels, the value
of UCR in the mode with load uncertainty is much increased
compared to the mode without load uncertainty. According to
Fig. 8 and Tables 3 and 4, the reason for the increase in UCR
value for load levels more than 175 MW in mode with load
uncertainty compared to the mode without load uncertainty
is that in some scenarios, the load demand is more than the
sum of the nominal power of the generation units and the wind
farm. As a result, in these scenarios, the UCR value is equal
to one, which in turn increases the UCR value for that load
level. For example, in the RA-UCR method for a load of 200
MW, the UCR value in the mode without load uncertainty has
increased from 0.0107290 to 0.1177800 in the mode with load
uncertainty. Similarly, in the M-PJM method for a load of 200
MW, the UCR value in the mode without load uncertainty
has increased from 0.0117530 to 0.1205100 in the mode with
load uncertainty. As a result, in both methods for a load of
200 MW, the UCR value is more than ten times higher in the
mode with load uncertainty than in the mode without load
uncertainty. Therefore, in the UCR evaluation, it is necessary
to model the uncertainty of wind farms and especially the load
demand uncertainty with high accuracy.

In general, it can be said that the proposed RA-UCR method
provides high accuracy and capability in evaluating the UCR
value of power systems with wind farms and is a suitable
criterion for evaluating the short-term reliability of the power
system with wind power penetration despite load uncertainty.
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