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The environmental pollution problem is intensified in recent years due to increasing fossil fuel consump-
tion. In this regard, deployment of renewable resources can be a practical solution to decrease greenhouse
gases and global warming. This paper proposes a risk-aware multi-objective programming consisting of
operation cost and pollution objective functions to optimize the operation of a renewable hybrid micro-
grid composed of biomass-based conventional generators, wind turbines, photovoltaics and electrical and
heat storage systems. According to the presence of uncertainties in such infrastructures, fluctuations of
wind speed, solar radiation, loads and market price are modeled through a scenario generation and re-
duction procedure and then, the conditional value-at-risk index is used to measure the risk of decisions.
Moreover, the epsilon constraint and fuzzy logic approaches are utilized to solve the problem and select
the best solution in the Pareto set, respectively. A demand response program is also implemented for elec-
trical and heat loads to analyze the influence of responsive loads. The results validate that the operation
cost and pollution increase by about 10.03% and 11.31% in the risk-averse strategy, in return, robustness
in the worst-case scenarios improves. As well, responsive loads decrease operation cost by about 9.8%
under the uncertainties, however, the pollution increases by about 0.88%. © 2023 Journal of Energy Management

and Technology
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NOMENCLATURE

Parameters

BA : Blade area (m2)
BC : Cost of buying energy ($/kWh)
BFC : Biomass fuel cost ($/kWh)
EE : Emission factor (kg/kWh)
EL : Electrical load demand (kW)
GT : Solar radiation (kW/m2)
HL : Heat load demand (kW)
MC : Maintenance cost ($)
NSandNP : Series and parallel cells in PV module
OC : Operation cost ($/kWh)
Pl ine : Tie-line limitation (kW)
Prob : Probability (%)

SC : Cost of selling energy ($/kWh)
u : Binary variable
V : Wind speed (m/s)
α, β : Risk parameters
γ : Temperature coefficient (°C)
n : Efficiency factor
ρ : Air density (kg/m3)
µ : DRP index

Index

S : Scenario
t : Time (h)

Variable

A : Equivalent energy to air (kWh)
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C : Total cost ($)
E : Energy (kWh)
EM : Total Emission (kg)
G : Produced gas by biomass unit (m3)
H : Heat (kW)
P : Electrical power (kW)
RL : Responsive load (kW)
T : Temperature (°C)
Ψ : Risk variable

Subscript/Superscript

Ch : Charge
Dch : Discharge
Env : Environmental
Inj : Injected
NOCT : Normal operating cell temperature
Pu : Pumped
STC : Standard test condition

1. INTRODUCTION

A. Motivation
Penetration of renewable resources in electrical energy systems
has increased in recent years due to their various advantages[1].
Since the generated power by such components depends on
weather conditions, the uncertainty in renewable-based struc-
tures is a critical issue. As a practical solution, the energy storage
units can solve the mentioned problem, however, a high invest-
ment cost is required[2]. The contribution of responsive loads in
energy management is suggested as another method to mitigate
the influence of uncertainties [3].

B. Literature review
The planning of microgrids under the uncertain environment
has been investigated in recent researches. In this regard, a multi-
objective stochastic energy management approach is proposed
for a microgrid including conventional and renewable energy
resources, storage systems and electrical and thermal loads[4].
In a similar study, energy management of a grid-connected mi-
crogrid is analyzed considering portable renewable resources to
minimize operation cost and pollution [5]. A two-point stochas-
tic technique is applied to overcome the uncertainties of an iso-
lated microgrid composed of renewable resources and pumped
storage, where operation cost and energy not supplied (ENS) are
used as the objective functions and a demand response program
(DRP) is implemented to improve the flexibility [6]. A stochastic
day-ahead programming is suggested to optimize the opera-
tion cost and environmental pollution in distribution systems
incorporating responsive loads, conventional and renewable
resources [7]. In order to manage the load consumption and
optimize power fluctuations, an energy management strategy
based on hybrid storage systems is presented [8]. The results
approve the optimal peak load shaving by energy storage units
such as battery and heat tank. A novel economic planning is
proposed to specify the operation of a biomass-based microgrid
[9]. The simulations validate that the operation cost is decreased
by about 6.06%, while the efficiency is increased by about 6.34%.
Reference [10] introduces a new strategy to determine the opera-
tion of heat pump, photovoltaic (PV) system and energy storage

for domestic applications. The energy management of a micro-
grid composed of wind turbine (WT), combined heat and power
(CHP) equipped with biomass fuel, PV, boiler, thermal and gas
storage systems is optimized in [11]. The Monte Carlo simula-
tion (MCS) is also utilized to cope the uncertainties of renewable
resources and energy price. According to the requirements of
residential apartments, the design of cooling and heating re-
sources, biomass plant, cooling and heating storage units is
performed in different seasons, where the results show that the
biomass combined cooling, heating and power (BCCHP) system
has a significant impact on the operation cost and environmental
pollution [12]. The optimal stochastic scheduling of a network
consisting of WT, conventional power plant, and compressed air
energy storage (CAES) is analyzed in the presence of responsive
loads to reduce the operation cost and increase the profit of loads
[13]. In order to achieve the energy equilibrium and optimize
heat pump operation, a solar energy system integrated with bat-
tery storage unit and heat pump is designed [14]. A two-stage
stochastic approach is suggested for a microgrid integrated with
renewable energies, electric vehicles (EVs) and flexible loads
to minimize the cost [15]. The comparative results between
stochastic and deterministic methods illustrate the positive role
of responsive loads in reducing the influence of uncertainties.
Reference [16] investigates the capability of rolling horizon opti-
mization, interval and scenario-based approaches to determine
the best economic decisions in competitive electricity markets.
A stochastic multi-objective model is presented for management
of CHP-based microgrids considering economic, environmental
and reliability aspects under the forecast errors of electrical load
demand and wind power [17]. In this regard, the availability
of units is taken into account to model the reliability and the
exchange market algorithm, weighted sum method and fuzzy
satisfying are utilized to solve the problem. In a similar research,
a stochastic framework is introduced for CHP-based microgrids
consisting of WT, fuel cell (FC), boiler, conventional power gen-
erators, energy storage units and responsive loads to specify the
optimal set points of resources and maximize profit under the
uncertainties of wind speed, market and load [18]. The stochastic
day-ahead scheduling of microgrids considering load curtail-
ment cost and spinning reserve requirements is optimized in the
presence of load, electricity price, wind and solar uncertainties
[19]. Reference [20]discusses the operation of a hybrid microgrid
consisting of CHP, WT, energy storage and auxiliary boiler and
it uses the stochastic-robust method to manage the uncertainty
of energy price, wind power and load demand. A multi-stage
power and energy management approach including distributed
explicit model predictive control (DEMPC) and mixed-integer
quadratic programming (MIQP) is presented for a microgrids
with PV, battery storage system, FC and electrolyzer to solve the
unit commitment problem [21]. Due to the uncertainties of load
demand and renewable resources, a novel cumulative relative
regret decision-making strategy is proposed for optimal energy
management of a grid-connected multi-energy microgrid to en-
hance the robustness and reduce the operation conservatism
[22]. An incentive optimization model is suggested to obtain
the maximum profit in the reconfigured grid-connected micro-
grid, where the results express that the energy dependency on
the main grid and conventional energy sources is decreased by
about 9.62% and 29.06%, respectively [23]. A real-time dynamic
framework based on deep reinforcement learning algorithm,
Markov decision process and proximal policy optimization is
designed to achieve the optimal schedule decisions in microgrid
under the uncertainty of load and renewable resources [24].
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C. Research contribution
According to the literature review, energy management of mi-
crogrids is investigated from different points of view, however,
still several issues exist. In this regard, Table 1 shows the main
differences of this research compared to the previously pub-
lished papers. As observed, the operation of renewable-based
microgrids and their problems such as high penetration of un-
certainties and risk analysis of the worst-case conditions have
not been well analyzed. As well, the role of responsive loads
in such systems to mitigate the influence of uncertainties and
improve the system flexibility is not evaluated. In this study,
the day-ahead planning of a renewable-based microgrid is opti-
mized, where the key points and contribution are summarized
as follows:

• Developing a hybrid renewable microgrid composed of
PV, WT, biomass-based CHP (BCHP), biomass-based micro
turbine (BMT), heat pump (HP), electrical and heat storage
systems and loads.

• Modeling a risk-aware multi-objective mixed-integer lin-
ear programming (MILP) to simultaneously minimize the
operation cost and pollution functions.

• Proposing an algorithm consisting of the epsilon constraint
method (ECM), fuzzy satisfying and conditional value-at-
risk (CVaR) metric to solve the problem and analyze the
risk of uncertainties including wind speed, solar radiation,
electrical and heat loads and energy price.

• Implementing a time of use (ToU) DRP for electrical and
heat loads to enhance the system flexibility and mitigate
the influence of uncertain parameters.

D. Paper organization
The rest parts of paper are organized as follows: The problem
formulation including components modeling, responsive loads,
objective functions and constraints is described in Section 2, the
risk-based multi-objective planning is explained in Section 3, the
test system introduction and simulation results are proposed in
Section 4 and eventually, Section 5 is assigned to the conclusion.

2. PROBLEM FORMULATION

A. Modeling of components
A.1. Wind turbine

The generated power by WTs is impressed by many factors such
as wind speed, turbine position, blade area and wind direction
[25]. The WT power should be restricted by minimum and
maximum wind speeds due to economic and technical aspects
(1).

PWT(s, t) = 0.5× ρ× BA× ηWT×V(s, t)3 : Vmin ≤ V(s, t) ≤ Vmax

(1)

A.2. Photovoltaic

The PV power depends on cell temperature and solar radiation
[25]. The solar cell temperature is formulated in (2) and then,
the PV output can be obtained by (3).

T(s, t) = TEnv +
GT(s, t)
GTSTC

× (TNOCT − TEnv
NOCT) (2)

PPV(s, t) =

 [
PSTC ×

GT(s,t)
GTSTC

× (1− γ× (T(s, t)− TSTC))
]

×NS× NP


(3)

A.3. Heat pump

The HP produces heat by consuming electrical energy [25]. The
relationship between the generated heat by HP and consumed
power is calculated by (4).

HHP(s, t) = ηHP × PHP(s, t) (4)

A.4. Biomass-based components

The co-production systems receive much more attention in re-
cent years due to the high efficiency and low greenhouse gases
emission [11]. In this regard, BCHP and BMT are utilized in this
paper to provide local electrical and heat loads. The generated
electrical power of BCHP and BMT is modeled by (5) and (6),
respectively. As well, BCHP can produce heat power by a coef-
ficient that is determined in (7). The constraints (8) and (9) are
used to restrict the maximum electrical and heat powers.

PBCHP(s, t) = ηP
BCHP × G(s, t) (5)

PBMT(s, t) = ηBMT × G(s, t) (6)

HBCHP(s, t) = ηH
BCHP × PBCHP(s, t) (7)

PBCHP(s, t) ≤ Pmax
BCHP (8)

PBMT(s, t) ≤ Pmax
BMT (9)

A.5. Compressed air energy storage

In large-scale structures, compressed air storage is more applica-
ble as the electrical storage system (ESS) due to its high capacity
and low price [11, 26]. The injected and pumped air into/from
the storage and their limitations are specified by (10)-(13), respec-
tively. The storage should operate in charging or discharging
mode in the same time, as determined in (14). The amount of
stored air in each interval is formulated by (15) and the storage
capacity is restricted by (16).

AInj(s, t) = η
Inj
CAES × PInj

CAES(s, t) (10)

APu(s, t) = ηPu
CAES × POut

CAES(s, t) (11)

[Amin
Inj × uInj

CAES(s, t) ≤ AInj(s, t) ≤ Amax
Inj × uInj

CAES(s, t) (12)

Amin
Pu × uPu

CAES(s, t) ≤ APu(s, t) ≤ Amax
Pu × uPu

CAES(s, t) (13)

uPu
CAES(s, t) + uInj

CAES(s, t) ≤ 1 (14)

A(s, t + 1) = A(s, t) + AInj(s, t) + APu(s, t) (15)

Amin ≤ A(s, t) ≤ Amax (16)

A.6. Heat energy storage

The power of heat storage system (HSS) is calculated by (17),
the energy limitation is modeled by (18) and the total power of
storage is restricted by (19) [27]. In order to make the storage
usable for future day, the energy in last interval should be equal
to its initial state (20). As well, (21) limits the charging and
discharging power in each time.

PHSS(s, t) = EHSS(s, t)− EHSS(s, t− 1) (17)

Emin ≤ EHSS(s, t) ≤ Emax (18)

Emin − EHSS(t1) ≤∑
t

PHSS(s, t) ≤ Emax − EHSS(t1) (19)

EHSS(s, t1) = EHSS(s, t24) (20) PHSS(s, t)
/

ηDch
HSS ≤ Pmax

Dch discharge (PHSS(s, t) > 0)

−ηCh
HSS × PHSS(s, t) ≤ Pmax

Ch charge (PHSS(s, t) < 0)
(21)
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Table 1. Comparison between presented research and previously published papers.

Ref Uncertainty
Uncertainty

modeling
Risk

Objective

function

Responsive

load

Renewable

structure

[4] Wind, solar and load Scenario-based × Cost and pollution × ×

[5, 7] Wind, solar and load Scenario-based × Cost and pollution X ×

[6] Wind and solar
Two-point estimate

method
×

Cost and energy

not supplied
X ×

[8, 21] × × × Cost × ×

[9] Solar and load Monte Carlo × Cost X ×

[10] × × × Cost X ×

[11] Wind, solar and price Monte Carlo × Cost × ×

[12] × × × Cost × X

[13, 18] Price, wind and load Scenario-based × Cost X ×

[14] Price and load Scenario-based × Cost × ×

[15]
load, EVs, wind,

solar and price
Two-stage stochastic × Cost X ×

[16] Price Hybrid X Cost × ×

[17] Load and wind Scenario-based ×
Cost, pollution

and reliability
× ×

[19]
load, wind, solar and

price
Two-stage stochastic X Cost × ×

[20] Price, wind and load Stochastic-robust X Cost × ×

[22] Wind, solar and load Robust X Cost X ×

[23] Load Point estimation × Profit X ×

[24] Wind, solar and load Heuristic × Cost × ×

This paper
Price, wind, solar

and load
Scenario-based X Cost and pollution X X

B. Demand response program
In order to optimize the consumption of local loads and achieve
the flexible energy management, a ToU DRP is implemented
[28]. It is noteworthy that both electrical and heat loads can par-
ticipate in the program. The new electrical and heat demands in
the presence of responsive loads are determined by (22) and (23),
respectively. The constraints (24) and (25) limit the flexible loads
in each interval and eventually, constraints (26) and (25) spec-
ify that the summation of flexible loads over all time intervals
should be zero to avoid any load curtailment.

ELDRP(s, t) = RLEL(s, t) + EL(s, t) (22)

HLDRP(s, t) = RLHL(s, t) + HL(s, t) (23)

|RLEL(s, t)| ≤ µDRP
EL × EL(s, t) (24)

|RLHL(s, t)| ≤ µDRP
HL × HL(s, t) (25)

∑
t

RLEL(s, t) = 0 (26)

∑
t

RLHL(s, t) = 0 (27)

C. Objective functions and constraints
C.1. Operation cost function

The total cost of microgrid includes the operation cost of compo-
nents and market trading cost is determined by (28).

F1(s) = CBCHP(s) + CWT(s) + CPV(s) + CHP(s)+

CHSS(s) + CCAES(s)+

CBMT(s) + CBuy(s)− CSell(s)

(28)

The operation costs of BCHP and BMT are calculated by (29)
and (30), respectively. Since the produced gas by biomass unit
depends on the demand of BCHP or BMT, its operation cost is
considered in BCHP and BMT formulation. In this regard, their
first term indicates fuel cost and the second and third terms show
the operation and maintenance costs, respectively. The operation
and maintenance costs of WT, PV, HP, HSS and CAES are also
given by the first and second terms of (31)-(35), respectively.
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Furthermore, the costs of buying and selling power from/to the
main grid are modeled by (36) and (37), respectively.

CBCHP(s) = ∑
t

 BFC(t)×PBCHP(s,t)
ηBCHP +

OCBCHP × PBCHP(s, t)


+MCBCHP

(29)

CBMT(s) = ∑
t

 BFC(t)×PBMT(s,t)
ηBMT + OCBMT×

PBMT(s, t)


+MCBMT

(30)

CWT(s) = ∑
t

OCWT × PWT(s, t) + MCWT (31)

CPV(s) = ∑
t

OCPV × PPV(s, t) + MCPV (32)

CHP(s) = ∑
t

OCHP × HHP(s, t) + MCHP (33)

CHSS(s) = ∑
t

OCHSS × PHSS(s, t) + MCHSS (34)

CCAES(s) = ∑
t

OCCAES × PCAES(s, t) + MCCAES (35)

CBuy(s) = ∑
t

BC(s, t)× PBuy(s, t) (36)

CSell(s) = ∑
t

SC(s, t)× PSell(s, t) (37)

C.2. Environmental pollution function

The total generated pollution of microgrid is specified by (38),
where the released pollution by BCHP and BMT is calculated
in (39) and (40), respectively. Moreover, the pollution caused by
power purchase from the main grid is determined by (41).

F2(s) = EMBCHP(s) + EMBMT(s) + EMMG(s) (38)

EMBCHP(s) = ∑
t

PBCHP(s, t)× EFBCHP (39)

EMBMT(s) = ∑
t

PBMT(s, t)× EFBMT (40)

EMMG(s) = ∑
t

PBuy(s, t)× EFMG (41)

C.3. Problem constraints

In order to achieve the optimal solution, the problem should
be limited to additional technical and economical restrictions.
Hence, the constraints (42) and (43) model the balance of elec-
trical and heat powers, respectively. The maximum amount of
selling and buying power is also specified by (44)-(46).

EL(s, t) = PWT(s, t) + PPV(s, t) + PBMT(s, t)+

PBCHP(s, t) + PInj(s, t) + PBuy(s, t)− PSell(s, t)

−PPu(s, t)− PHP(s, t)

(42)

HL(s, t) = HHP(s, t) + HBCHP(s, t) + HHSS(s, t) (43)

PBuy(s, t) ≤ uBuy(s, t)× Pmax
Line (44)

PSell(s, t) ≤ uSell(s, t)× Pmax
Line (45)

uSell(s, t) + uBuy(s, t) ≤ 1 (46)

3. RISK-BASED MULTI-OBJECTIVE PLANNING

The uncertain parameters affect the reliable operation of system
due to their unpredictable behavior. In this section, the risk-
based multi-objective planning is modeled, as depicted in Fig. 1
and explained below [25], [28]-[30]:

• First stage: The uncertain parameters should be determined,
where the wind speed, solar radiation, electrical and heat
loads and energy price are considered as uncertainties.

• Second stage: The probability distribution functions (PDFs)
with a 20% standard deviation from the deterministic value
are used to generate sufficient random scenarios.

• Third stage: Since implementing the simulations for a
huge number of scenarios is time- consuming, the back-
ward/forward algorithm is utilized to select four scenarios
as the final sets.

• Fourth stage: The risk metric is inserted into both objec-
tive functions to analyze the risk of decisions under the
uncertain environment. As a result, the cost and pollution
functions are reformulated by (46).

FRisk = (1− β)×∑
s

F(s)× Prob(s) + β× CVaR (47)

CVaR = VaR +
1

1− α
×∑

s
Prob(s)× ψ(s) (48)

F(s)−VaR ≤ ψ(s) (49)

The CVaR and value-at-risk (VaR) indices are determined by
(47) and (48), respectively. It is noteworthy that the β equal to
0 and 1 is related to the risk-neutral and risk-averse strategies,
respectively.

• • Fifth stage: The ECM is implemented to solve the risk-
based multi-objective planning and obtain the Pareto set
and eventually, fuzzy satisfying method is used to select
the best solution.

4. RESULTS AND DISCUSSIONS

A. Test system and primary data
As illustrated in Fig. 2, the under study microgrid is composed
of WT, PV, BCHP, BMT, heat tank and CAES that is connected
to the main grid for power transferring. The wind speed, solar
radiation, electrical and thermal loads and energy price scenarios
are depicted in Fig. 3, where their deterministic values are
gathered from [? , r25] Moreover, the tie-line limitation is equal
200 kW and the flexible loads can only shift 10% of their demand
in each time interval. The specifications of all other components
are extracted from references [5, 7, 26, 27].

B. Simulation results
B.1. Risk-based planning of microgrid

In this section, the results are investigated for the risk-neutral
and risk-averse strategies to evaluate the operation of renewable-
based microgrid. It is noteworthy that the risk-neutral strategy
refers to α=β=0 and the risk-averse strategy refers to α=0.3 and
β0.4. In this regard, the Pareto set for the mentioned strategies
is illustrated in Fig. 4. As revealed, the risk-averse curve has
higher value in all iterations which means that such a strategy
simultaneously increases both objective functions, however, the
system robustness against the worst-case scenarios improves.
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Fig. 1. Process of implementing risk-based multi-objective
planning

Fig. 2. Structure of under study renewable-based microgrid.

According to the fuzzy satisfying approach, the best solution in
Pareto set for the risk-averse strategy is equal to 240.2 $ and 2803
kg, whereas it is equal to 218.3 $ and 2518 kg in the risk-neutral
strategy. The influence of risk parameters on the objective func-
tions is also exhibited in Fig. 5. As observed, ifα=0.3 and β
changes from 0 to1, operation cost and pollution increase from
218.341 $ to 282.507 $ and from 2518.335 kg to 3175.542 kg, re-
spectively. Moreover, if β =0.4 and α changes from 0 to 0.9,
operation cost and pollution increase from 215.104 $ to 652.802
$ and from 2527.769 kg to 8054.544 kg, respectively. In order to
have a better perspective, operation of components in the worst-
case scenario for the risk-averse strategy with α=0.3 and β=0.4 is
compared with the risk-neutral strategy. As shown in Fig. 6, the
produced power by WT and PV is equal in both strategies due

Fig. 3. Selected scenarios of wind speed, solar radiation, loads
and energy price.

to the same decisions of risk-neutral and risk-averse operators
about renewable resources. The results in Fig. 7 indicate that
the total produced power by BMT and BCHP is increased from
776.458 kW to 921.837 kW and from 1852.853 kW to 1871.834
kW, respectively. According to Fig. 8, the total imported power
is reduced from 436.389 kW to 318.876 kW, while the exported
power is increased from 194.855 kW to 248.19 kW. These simu-
lations approve that the dependency of the local microgrid on
the main grid is decreased in the risk-averse strategy. Fig. 9
validates that the operation of heat components in the 1st, 2nd,
3rd and 15th intervals is updated to match the new conditions,
however, their total variations are negligible. The operation of
storage systems in Fig. 10 indicates that the HSS is out of service
in the risk-averse strategy due to heat power balance in each
interval and availability of heat resources. In return, the ESS
is charged in the 12th and 18th intervals and discharged in the
15th, 21st and 24th intervals to reduce the power shortage in the
mentioned times.

Fig. 4. Pareto set in the risk-averse and risk-neutral strategies

B.2. Impact of demand response program

In this section, a DRP is implemented for electrical and heat
loads to show their influence on the energy management. Hence,
the results for the calculated Pareto set in the risk-neutral and
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Fig. 5. Influence of risk parameters on the cost and pollution
objective functions.

Fig. 6. Power of wind turbine and photovoltaic in different
risk strategies.

Fig. 7. Electrical power of BMT and BCHP in different risk
strategies.

risk-averse strategies are depicted in Fig. 11. As observed, con-
sidering responsive loads in the mentioned strategies reduces
the operation cost from 218.3 $ to 196.9 $ and from 240.2 $ to
218.7 $, respectively. However, environmental pollution has a

Fig. 8. Imported and exported power in different risk strate-
gies.

Fig. 9. Heat power of HP and BCHP in different risk strate-
gies.

Fig. 10. Operation of heat and electrical storage systems in
different risk strategies.

slight increase in both strategies, where it changes from 2518 kg
to 2539 kg and from 2803 kg to 2828 kg, respectively. In order to
show the impact of responsive loads more precisely, variations
of flexible electrical and heat loads are illustrated in Fig. 12.
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As evident, a huge amount of electrical and heat loads equal
to 184.923 kW and 231.516 kW are shifted from on-peak and
high price times to the off-peak and low price times, respectively.
In this regard, the results in Fig. 13 validate that the exported
power to the main grid is increased in the most of high price
times such as 16th, 17th, 19th and 20th intervals. Moreover, im-
ported power from the main grid is decreased in the high price
times such as 12th, 13th, 14th, 21st and 22nd intervals. In return,
it increases in the first intervals to supply the transferred load.
As a result, the total exported and imported powers are changed
from 248.195 kW to 462.02 kW and from 318.876 kW to 374.248
kW, respectively.

Fig. 11. Calculated Pareto set considering responsive loads in
different risk strategies.

Fig. 12. Flexible electrical and heat loads in the risk-averse
strategy.

5. CONCLUSION

This paper proposes a risk-aware multi-objective programming
to optimize the planning of a renewable hybrid microgrid. In
this regard, a network consisting of WT, PV, biomass-based con-
ventional resources and energy storage systems is considered
as the test system. In order to model the fluctuations of uncer-
tain parameters and the risk of decisions, CVaR metric is also
utilized. Moreover, ECM and fuzzy satisfying procedures are

Fig. 13. Exported and imported powers considering respon-
sive loads in the risk-averse strategy.

implemented to simultaneously minimize the cost and pollu-
tion. The simulations for the risk-based planning show that the
amount of cost and pollution in the risk-averse strategy with
α= 0.3 and β =0.4 are about 21.9 $ and 258 kg higher than the
risk-neutral strategy, respectively. Furthermore, the analysis of
the risk parameters approves that variation of α has a higher
impact on the objective functions compared to the β. As well, the
responsive loads improve the system flexibility, where the cost
is decreased about 21.5 $, however, the pollution increases about
25 kg which is acceptable due to high cost reduction. As future
studies, several suggestions are presented as follows: Modeling
further uncertainties such as fuel cost, integrating renewable-
based microgrids with other infrastructures, and implementing
robust optimization algorithms to cope the uncertainties.
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