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Improving the air quality and preserving the residents’ comfort are the main tasks of HVAC (heating, ven-
tilation, and air conditioning) systems in different buildings. A large number of control methods have
been applied to HVAC systems to adjust the indoor temperature of buildings and at the same time to
minimize the energy consumption and the energy cost, to reduce the peak load of the grid, and to pro-
vide ancillary services such as frequency regulation. This paper reviews different techniques proposed
for HVAC systems modeling. Then, the HVAC system control methods are reviewed comprehensively
and the main features of them are extracted. Furthermore, an HVAC system model is proposed and the
performance of it is compared with the RLF (residential load factor) model with and without applying the
Takagi-Sugeno Fuzzy (TSF) controller. The simulation results are obtained and analyzed for the proposed
HVAC system and the RLF model from different aspects. The results demonstrate the efficiency and ro-
bustness of the proposed model. Moreover, the energy consumption of an HVAC system, controlled by
a TSF controller, along a day is evaluated. The results show an energy saving of 10.06% of the proposed
HVAC system as compared with the RLF model. © 2022 Journal of Energy Management and Technology
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NOMENCLATURE

HVAC Heating, ventilation, and air conditioning.
ANN Artificial neural network.
SVM Support vector machine.
TS Takagi-Sugeno.
ANFIS Adaptive network-based fuzzy inference system.
ARX Autoregressive exogenous model.
ARMAX Autoregressive moving average exogenous model.
ARIMA Autoregressive integrated moving average model.
MIMO Multi input Multi output.
SISO Single input single output.
LQR Linear quadratic regulator.
RNN Recurrent neural network.
CBR Case-based reasoning.
PSO Particle swarm optimization.
GP Genetic programming.
EP Evolutionary programming.
CI Computational intelligence.

SCM Soft computing method.
DRL Deep reinforcement learning.
RLS Recursive least square.
EMS Energy management system.
DX Direct expansion.
MPC Model predictive controller.
RMS Root mean square.
ODE Operation decision environment architecture.
KBS Knowledge-based system.
GA Genetic algorithm.
SNN Static neural network.
DMM Decision-making method.
PPD Predicted percentage of dissatisfaction.
PSTC Predictive smart thermostat controller.
PID Proportional integral derivative.
CANN Convolutional artificial neural network.
AI Artificial intelligence.
RLF Residential load factor.
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ES Evaluation strategy.
DE Differential evolution.
ACO Ant colony optimization.
FCM Fuzzy cognitive map.
Knn K-nearest neighbor.
HMM Hidden Markov model.
RLF Residential load factor.
ARXNN Autoregressive model with exogenous inputs neural

network.
RBF Radial basic function.
MASRL Multi-agent system reinforcement learning.
DEMPC Distributed economic model predictive control.
AHU Air handling unit.

1. INTRODUCTION

A. Motivation and background
In recent years, energy consumption has grown rapidly causing
various environmental and economic challenges worldwide.
Pollution and global warming are examples of these challenges.
Buildings are one of the most energy-exhaustive industries and
the highest greenhouse gas (GHG) emitters, contributing to
around 40% of total energy demand and 30% of GHG emission
[1], [2]. To reduce energy consumption in buildings, efforts are
being made to improve energy efficiency through greater design.
Efficient HVAC systems can be presented to considerably
reduce energy consumption and carbon emission in buildings
[3]. Given the importance of models and appropriate control
methods for the HVAC systems, the present paper addresses
these two issues.
HVAC systems are becoming more widespread in the residential,
commercial, and industrial sectors, increasing pollution and
global warming. At the same time, the demand for HVAC
systems is on the rise over the world while their demand rises
worldwide.
One of the most challenging tasks concerning HVAC systems
is plant modeling due to their complex nature. The energy
consumed by an HVAC system is around 70% of the total energy
of a building and 10% to 20% of the energy consumption in
the developed countries [4]. These systems play a significant
role in buildings because they provide the desired comfort
conditions for the inhabitants. In recent years, researchers have
focused on finding different strategies for controlling HVAC
systems. The primary motivation behind these studies is to
provide the occupants’ desired comfort levels and demand-side
management simultaneously, i.e., to reduce energy consumption,
energy cost, carbon emission, and (demand response) peak
shaving [5].
Improving the HVAC system models and utilizing proper
control strategies can provide a more efficient way for energy
saving and preserving thermal comfort levels. The available
HVAC system models are reviewed and categorized as white-
box, black-box, or gray-box models in this work. In a white-box
model, the physical relationships, linked input(s), and HVAC
system outputs can be described by several mathematical
equations. In contrast, a black-box model implements statistical
estimation approaches, and requires data collected from the
input(s)/output(s), developing without knowledge of the
structure, elements, or control approach. A mixture of a
white-box and a black-box model provides a gray-box model.
Several control schemes are found in the literature [6]. In

this paper, HVAC system control methods are classified into
five groups: feedback control methods, feed-forward control
methods, nonlinear control methods, artificial intelligent control
methods, and hybrid control methods. Then, the advantages of
these groups are separately highlighted such as achievement
of super performance, fast response, credible prediction, and
environment adaptation. The disadvantages of each group are
also presented; for instance, some of them are inappropriate for
real-time HVAC system applications, requiring large amounts
of training data, and influence model stability. Moreover, a
comparison is made between the advantages and disadvantages
of these groups of control methods.
In addition, an HVAC system model is proposed based on the
heating effects only, regardless of the impacts of air humidity
and simulation results are analyzed to evaluate the performance
of the proposed HVAC system and RLF model.
Then, a TSF controller is developed to examine the efficiency
and robustness of the proposed HVAC system model. Actual
worldwide building and weather data (real outdoor/indoor
conditions) for the city of Basrah, in the south of Iraq, are used
in the verification process of the model validity. Finally, a
comparison is made for the simulation results to demonstrate
the better performance of propose HVAC system as compared
to the RLF model.

B. Contributions
In summary, the significant contributions of this paper can be
highlighted as follows.
1- Different HVAC system models are presented. Moreover,
various HVAC system control techniques are reviewed and
categorized into different groups, and a comparison is made
between their advantages and drawbacks from other aspects.
2- An HVAC system model is proposed with new relationships
based only on thermal effect and control volume. A comparison
is made between the presented model and the RLF model in
different conditions. The two models are also tested under the
TSF controller to demonstrate that the adopted HVAC system
model provides a better response than the complex-structure
RLF model due to its simplicity, more remarkable energy-saving,
and robustness.

C. Paper organization
The paper is organized as follows. Section 2 gives a review of
the different methods of HVAC system modeling. The following
is an overview of the control techniques available for HVAC
systems in Section 3. Section 4 presents a case study of a new
HVAC system model. Section 5 reports the simulation results,
analyzes, and discusses them, along with a comparison between
the peresented model and the RLF model under different
conditions. Conclusions and suggestions for future works are
made in Section 6.

2. HVAC SYSTEM MODELING

To represent the behavior of real HVAC systems, they are
modeled in distinct ways, which can be categorized into three
basic types based on their structures. The first type structure is
the white-box (mathematical or physical) model, which consists
of two subtypes, the lumped and distributed parameter models.
The second type structure is the gray-box (semi-physical) model,
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and the third is the black-box model. A discussion about the
advantages and shortcomings of the models mentioned above
reveals that the gray-box (hybrid) model is distinctive because it
involves several features closely representing the real behavior
of the HVAC system [7]. By modifying the black-box or the
white-box model of an HVAC system to a gray-box model,
its prediction accuracy and robustness can be improved, and
training time can be reduced [8].
Afram et al. reported and reviewed three modeling methods:
data-driven (black-box), physics-based (white-box), and gray-
box modeling techniques. They concluded that gray-box models
combine the benefits of the other two types. The white-, black-,
and gray-box models can be categorized as discrete/continuous
[9], static/dynamic [10], [11], linear/nonlinear [12], [13],
deterministic/probabilistic, and explicit/implicit models [14],
[15]. Compared to data-driven models, gray-box models
provide perfect generalization capabilities. According to the
studies conducted on the major data-driven models, they are
more precise than physics-based, shown in Fig. 1 [16].
Table 1 shows a summary of several related works. A review
of various modeling strategies, used in HVAC system models,
along with their advantages and disadvantages was developed
in [17]. The physical model approach helps to divide the HVAC
system into subsystems to reduce its complexity so that the
components of an HVAC system such as cooling and heating
coils, steam humidifiers, hydraulic systems, humidity and
temperature sensors, pumps, mixing boxes, and fans can be
modeled and described separately [18], [19].
Based on the energy conservation principle, the HVAC system
mathematical model has been generated with several assump-
tions [20]. Arendt et al. [21] compared the performance of
white-box, black-box, and gray-box models to predict the indoor
temperature in a building. In most cases, the black-box models
outperformed the white- and gray-box models, but the gray-box
models provided a reasonable alternative for the black-box
models in terms of accuracy. Using the SISO and MIMO
black-box modeling techniques and the ARMAX and ARX
structures, the modeling of AHU has been presented and its
parameters have been identified [22]. The results demonstrated
that the MIMO ARMAX model is the most efficient [22].
Afram et al. presented a white-box and gray-box model for the
HVAC system and its subsystems, including the buffer tank
(BT), energy recovery ventilator (ERV), radiant floor heating
(RFH) system, AHU, zone, and ground source heat pump
(GSHP), based on energy balance equations [23].

3. CONTROL METHODS FOR HVAC SYSTEMS

Generally, the design of a controller for an HVAC system is a
complex problem. Using a proper control method for HVAC
systems improves their efficiency while maintaining occupants’
thermal and air quality comfort levels. The literature on HVAC
control methods consists of several research papers and reports,
technical articles, and numerous textbooks [24], [25]. In this pa-
per, a comprehensive overview has been provided to classify the
major optimal and supervisory control approaches and sophisti-
cated optimization methods for the HVAC systems; Fig. 2 shows
the categorization of HVAC systems control methods. These
control methods have been divided into five main categories:
feedback control methods, feed-forward control methods, non-
linear control methods, hybrid control methods, and Artificial
Intelligent (AI) control methods [26]. This paper has focused on

the AI control systems, especially on the reinforcement learn-
ing (RL) control method, which comprises a subset of machine
learning, and the multi-agent system (MAS) control method.

A. Feedback control methods

Feedback is a control system in which an output is used as feed-
back to adjust the system’s performance. It can be classified
as: P, PI, PID, On-Off, LQR, and MPC. A review presented in
[50] comprehensively has been summarized and compared the
standard technologies and implementations available for control
methods.
The most common control approach used in the HVAC system
industry is the PID method because of its simplicity, efficiency
in different operation conditions, and ease of implementation
[51].
On the other hand, PID control methods suffer drawbacks such
as a trial-and-error process to determine the optimal PID param-
eters. It is difficult to maintain control variables close to set-point
values due to changing operating conditions. To manage these
problems, there are three conventional approaches used for the
regulation of the hybrid (PI/PID) controller in HVAC systems:
self-tuning, manual, and adaptive control methods. PID con-
trollers can be combined with other feedback controllers, feed-
forward controller, cascade controller, and common controller
structures of the three types mentioned in [51], [52]. A combina-
tion of the feed-forward controller and a SISO PI decentralized
feedback controller has been used to progress the step reference
tracking behavior of rate evaporator temperature, simultaneous
with the decreasing coupling influence of other input channel
changes. The results have demonstrated a reduction of Root
Mean Square (RMS) control system error [52].
Meanwhile, to improve energy efficiency in buildings of Energy
Technological Institute (ETI), PID controllers have been used
for enhancing the HVAC system control [53]. The only aim of
the On/Off controller is to provide two outputs for the HVAC
system: maximum (On) and minimum (zero) (Off). The advan-
tage of this controller is that it is low-cost and straightforward,
but it fails to provide sufficient quality and accuracy [54]. An
energy management system (EMS) has been evolved in Energy
Plus (EP) that allows simulation of the residential DX-HVAC
system on/off cycling. The results exhibited improvements in
different ways [55]. The predictive control is important because
it contains a model for future troubles and disturbances [50], [56].
Many studies have demonstrated that predictive controllers can
reduce energy consumption if provided with occupancy pre-
dictions, real-time measurements, and information on weather
circumstances [57], [58]. Parisio et al. designed a stochastic MPC
method by proposing a randomization strategy obtaining sub-
optimal solutions to the problem of non-convex stochastic MPC
[59], [60].
Several studies have been found in the literature for applying
the MPC to HVAC systems [61], [62]. A simple controller has
been proposed in [63], [64] that uses a pulse width modulation
technique to turn the HVAC system on/off according to the opti-
mal decisions made by MPC. The controller has been referred to
as a predictive smart thermostat controller (PSTC), which saves
energy and is cheap and straightforward. The Linear Quadratic
Regulator (LQR) is a conventional control method that computes
the state feedback gain and optimizes a function of the quadratic
cost of inputs and states. Several articles focused on LQR have
been presented in [65].
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Fig. 1. Data-driven modeling strategies.
 

 

Fig. 2. Classification of the control methods of HVAC systems.

B. Feed-forward control methods

The feed-forward principle is used to forecast a forthcoming
weather variation indicated by future changes in certain param-
eters [66]. Cascade control is an example of the feed-forward
control methods, used to control the temperature in HVAC sys-
tems [67]. The set-point response of a new controller proposed

in [67] has been planned according to the robust control H2
performance specification. Several research papers have been
found on the performance of feed-forward and cascade control
methods [68], [69]. Genetic Algorithm (GA) has been used in
[70] for simultaneous tuning of control parameters in the outer
(PID) and inner (PI) loops of a cascade HVAC system. Kianfar
et al. [71] have designed the inner and outer loops of a cascade
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Table 1. Summary of previous research closely related to HVAC system modeling.
Year HVAC Model Type Objective Function Advantages Ref.

2020 White-Box Enhancing thermal efficiency by maintaining the re-
gion thermal comfort limits

Precision, explainability, and reliability [27]

2020 White-Box (Energy Plus) Developing energy model simulation Development of indoor environment quality that is
directly associated with occupant productivity

[28]

2020 White-Box (Energy Plus) Controlling demand response in an entire building Energy-saving while maintaining occupants? ther-
mal comfort levels and meeting the demand response
target

[29]

2019 White-Box(TRNSYS) Investigating the impacts of interzonal airflow, air
leakage, and ventilation

Low price and convenient access to numerous build-
ing types

[30]

2019 White-Box (Energy Plus) Estimating, evaluating, and diagnosing electrical en-
ergy exhaust, measuring energy maintenance, and
estimating annual CO2 emission

A simple reflection of system performance [31]

2019 White-Box (TRNSYS) Forecasting the efficiency of desiccant-based ther-
mal/cooling systems

An individual-friendly, interactive, components-
based software package involving the developing de-
mands of the various users

[32]

2017 White-Box (ESP-r) Implementing a two-node thermoregulatory frame-
work

Strength, versatility, and home energy maximization [33]

2016 White-Box (Energy Plus) Modeling HVAC running faults Simple execution, high capacity, versatility, and appli-
cability

[34]

2015 White-Box (Energy Plus) Reducing HVAC energy consumption by preserving
thermal comfort for the occupants

Excellent sophistication and verification and continu-
ous modification of the energy simulation system for
entire buildings

[35]

2020 Gray-Box Predicting the AHU supply air temperature for two
buildings

Virtual calibration and measurement with HVAC fault
detection

[36]

2020 Gray-Box Optimizing HVAC energy consumption Applicability to buildings with more complicated
HVAC systems

[37]

2017 Gray-Box Thermal building modeling More efficient representation of building dynamics [38]

2016 Gray-Box Generating low-order models for analysis and control
of surveyed buildings

Possibility to exchange inputs and outputs by main-
taining problem balance

[39]

2015 Gray-Box Fourier series
model (FSM)

Modeling lighting plug sub-meter energy consump-
tion in modern commercial buildings

Simplicity and possibility to directly copy to other
buildings of the same type

[40]

2020 Black-Box (ARX-NN) Predicting indoor temperature in buildings Accurate simulation of the building thermal behavior
with limited data

[41]

2020 Black-Box Presenting an energy-saving-oriented air-balanced ap-
proach

Absence of knowledge requirements on the duct pa-
rameters and minimization of the air balancing com-
putational costs in large-scale duct systems

[42]

2018 Black-Box (ARX, ANN) Specifying the best behavior and performance of resi-
dential HVAC models

Low parameter requirements and short computation
time

[43]

2017 Black-Box (ANN) 1- Identifying abnormality from the unexpected resid-
ual model 2- Comparing benchmarking efficiency
among identical equipment running under different
conditions

Quick identification of deviations in performance and
suggestion of appropriate maintenance tasks before
possible failures

[44]

2016 Black-Box Monitoring the performance of the HVAC system Minimization of energy wastage and peak load. [45]

2015 Black-Box (ARX, ARMAX,
Box-Jenkins, and Output
Error (OE))

Identifying the main inputs and the downstream and
upstream neighbors within each subsystem to deter-
mine the parameter values before performing regres-
sion analysis

Management of the building structure complexity, se-
lection of the subsystem inputs, and solution of the
input collinearity problem

[46]

2014 Black-Box Estimating thermal conduct in different buildings Reusability [47]

2013 Black-Box Optimizing the operating costs in buildings using a
small collection of data

Comprehensiveness, simplicity, and incremental oper-
ation

[48]

2012 Black-Box (ANN) Modeling the non-linear data relationships Low parameter requirements [49]

controller to control both superheat temperature and two-phase
flow length in an HVAC evaporator using the sliding mode.

C. Nonlinear control methods

A control system with at least one nonlinearity is called a non-
linear controller. This article briefly describes three example
nonlinear control methods such as robust sliding mode control
(SMC), backstepping control, and Lyapunov-based nonlinear
control has been provided. Several papers have applied robust
control methods to improve efficiency and airflow precision

in HVAC systems [72]. Sliding-mode control is assumed to be
robust for linear and nonlinear nondeterministic systems [72].
The robustness analysis of sliding-mode schemes, mainly dy-
namic schemes, requires more significant consideration for cases
of deterministic nonlinear systems. Shah et al. [73] have de-
signed and compared SMC with a PID controller to ensure the
robust presentation of AHU for the achievement of low energy
consumption in buildings. In a nonlinear system, there is dif-
ferential input/output plus higher uncertainty; and the system
order and relative order are not essentially equivalent. The sta-
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bility analysis and solution existence of a closed-loop system are
dependent on a generalized Lyapunov theorem. For the provi-
sion of the nonlinear model of an HVAC-refrigeration system, a
robust control method based on a super-twisting sliding-mode
controller has been designed and implemented [74]. The simu-
lation results demonstrated that the super-twisting algorithm
does not suffer the chattering problem in the standard sliding
mode, and is robust against parameter uncertainty [74]. In [75],
a feedback linearization for an MIMO HVAC system has been
provided and the state variables have been decupled from dis-
turbances. Then the backstepping method was applied to the
HVAC system and compared to the PID controller. The results
demonstrated its effectiveness in output regulation, disturbance
decoupling in the existence of slowly time-varying loads, oscil-
lation removals, and offset. A new method has been presented
for capacity control and superheat of HVAC-refrigeration sys-
tems [76]. A nonlinear low-order evaporator model has been
presented and used in a backstepping controller.
Through Lyapunov analysis, the stability of the method has
been demonstrated theoretically [76]. In [77], a comprehensive
description of the nonlinear control system design, sliding con-
trol mode, and fundamental of the Lyapunov theorem has been
provided.

D. Hybrid control methods

By combining two or more control methods, a hybrid control
approach can be developed. Several hybrid controllers have
been proposed for the control of HVAC systems such as Linear
Quadratic Tracking (LQT)-PID control [78], PI-neural control
[79], Fuzzy-PID control [80], Artificial Neural Network (ANN)-
based MPC [81], and Learning-Based Model Predictive Control
(LBMPC) [82].
Fiorentini et al. have been developed a hybrid MPC method
that uses a new high-level/low-level technology for the overall
predictive control of residential buildings equipped with the
HVAC system [83]. The results demonstrated that the controller
could select an appropriate operating mode to achieve various
desired objectives [83].
A new adaptive PI controller for HVAC systems has been pre-
sented in [84] where a first-order plus dead-time model has been
adopted for the HVAC system. The recursive least squares (RLS)
method has been used to update the HVAC system model pa-
rameters along with exponential forgetting and zero-frequency
model-matching. Compared to the adaptive PI controller based
on the Ziegler-Nichols (Z-N) tuning strategy and the H∞ adap-
tive PI controller, the new adaptive control method is powerful,
stable, and fast in response [84]. A combined PID cascade con-
trol method developed with industrial PID has been designed
to achieve better performance in the central air conditioning
system compared with the Ziegler-Nichols method [85]. The
simulation results demonstrated that the controller is adaptive
to system changes, and provides fast responses [85]. A hybrid
model used for controlling indoor thermal comfort in HVAC
systems has been presented in [86], [87]. By combination of neu-
ral networks (NNs) and fuzzy system methods, a new method
called FCM (fuzzy cognitive maps) has been developed in [88],
and [89], which benefits from both approaches.

E. Artificial Intelligent control

This type of control method has been discussed as a general case,
focusing on the unique case of Machine Learning (ML) methods,
especially RL and MAS.

E.1. General case

Three intelligent control methods, neural networks, knowledge-
based systems, fuzzy logic, and numerous combinations thereof
have been used widely to control HVAC systems [90–93]. Chen
et al. have been presented information concerning the evolution
of AI methods from 1997 to 2018 for upgrading the performance
of HVAC systems [90] (including the operation decision envi-
ronment (ODE) architecture, knowledge-based system (KBS) for
predictive control, native fuzzy KBS at the supervisory level [91],
GA, SNN, ANN [92] [93], hybrid fuzzy-PID control [94], adap-
tive fuzzy PID control, fuzzy neural network, adaptive ANN
model, fuzzy multi-criteria decision-making method (DMM),
support vector machine (SVM), MAS, combination of rough set
(RS) theory and ANN for cooling load prediction, combination
of evolutionary programming (EP) and particle swarm opti-
mization (PSO), convolutional artificial neural network (CANN),
linear RL control, regression model development for prediction,
recurrent neural network (RNN), ward-type ANN [95], opti-
mization via RNN, fuzzy-PID schema development for model
predictive control (MPC) [96], ANFIS [97], wavelet-based ANN
[98], GA-based fuzzy PID control, principal component analysis
(PCA), multi-objective GA, autoregressive model with exoge-
nous terms (ARX), radial basic function (RBF) network, super-
visory control and data acquisition plus home intelligent man-
agement system, hidden Markov model (HMM), layered HMM,
user-oriented control based on behavior prediction, case-based
reasoning (CBR) model, nonlinear multiclass SVM, HMM, and
kNN model, short-term smart-learning electrical load algorithm,
bottom-up approach, deep reinforcement learning (DRL)-based
algorithm [99], Elman neural network, distributed economic
model predictive control (DEMPC) [100], MAS [101], and CBR
for energy management and decision-making) [9]. Kozák has
presented advanced control methods and constructions based
on optimality, intelligence, and robustness. The significant ideas
that have been noted in his article included optimal predictive,
hybrid predictive, neural network, robust, and fuzzy logic con-
trol [102]. Dounis has focused on designing a multi-agent control
system (MACS) in HVAC systems [6]. The results demonstrated
that the MACS could successfully manage the user’s preferences
for indoor air quality, energy conservation, thermal, and illumi-
nance comfort [6]. A review of intelligent control methods for
HVAC systems has been presented in [103].
Ahmad et al. have classified computational intelligence (CI)
methods based on their applications in HVAC systems [104].
They have reviewed some of them by removing their hybrid
techniques from their diagrams to maintain clarity. They have
found that metaheuristic algorithms, such as GA PSO and ACO,
are the most common CI methods due to their various specifica-
tions and search capabilities [104].
Yuan et al. have investigated and briefly reviewed an RL tech-
nique on the control of HVAC system energy [105]. RL can
function in both model-free and model-based environments.
The common advantage of RL is that the agent (learner) can
take optimal actions using trial-and-error standards regardless
of the supervisor (teacher), which fits the purpose of the control
problem [106].

E.2. Agent-based RL control methods

The indoor conditions interact with the field operation of an
autonomous agent to control the HVAC system [107], [108]. Ref-
erences [109], [110] have proposed a novel deep RL framework
to optimize HVAC system control [111], [112]. Agent-based
[28], [113] and multi-agent control [114], [115] methods have
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been applied in many fields comprising control applications and
buildings [116], [117]. An intelligent agent is a structure that can
understand things in its environment (e.g., from a sensor) and
then applies some simple or complex rules to take various ac-
tions [118], [119]. These agents are capable of working together
(cooperate/compete) either directly via negotiation and commu-
nication or indirectly via action on the environment [120], [121].
The idea of agent-based control is best understood through as-
surance of the best results by MAS in HVAC system control
[122]. Al-Daraiseh et al. have provided a platform structure for
MAS control of HVAC systems [123].
The results of several studies have shown that the HVAC system
could maintain the desired room temperature upon selecting the
heat supply with the most cost-effective heat generation process.
The main features of MAS, including the autonomous nature,
learning capability, cooperation, and intrinsic distributed nature,
have been summarized in references [124], [125]. Timilehin et al.
[126] have presented the scope for an MA-coordinated posses-
sion disclosure system for demand-driven control applications
in buildings, including HVAC, to obtain higher system energy
efficiency and to realize the smart grid.
To investigate the application of the RL control method to build-
ing energy, a review has been presented in [127]. Fig. 3 shows
how MAS can be used for building energy control [128]. The
Markov decision process (MDP) property of MASRL has been
explained widely in matrix game-playing [129], [130].
The advantages of MASRL include information exchange, flexi-
bility, skill-learning among several agents, communication and
distribution of experience, and autonomy. Moreover, if one or
more agents fail to function in the system, the remaining agents
will still react optimally [131]. The research and studies asso-
ciated with the application of multi-agent systems to HVAC
control in buildings have been comprehensively reviewed in
[132]. The authors have concluded that MAS provides an essen-
tial change in how automation problems and building HVAC
controls can be approached. MAS is a common technique for
the realization of distributed control/services [133].
MAS offers a chance to implement a diversity of new software-
based techniques, providing far greater flexibility in building
processes. Table 2 summarizes the advantages and limitations
of some of the HVAC control methods.

4. MODELLING OF WIDE AREA FUZZY CONTROLLER
IN THE SYSTEM UNDER STUDY

This section presents the proposed HVAC system model in de-
tail, along with a block diagram of its MATLAB subsystems
applied to residential buildings. The TSF controller is applied to
the presented HVAC system model for evaluation of its perfor-
mances.

A. HVAC system model
In this paper, the HVAC system RLF model is used to evaluate
the performance of the proposed HVAC system model. The
RLF model is an accurate hybrid model with many variables
that controls temperature and air humidity conditions. It
combines the physical and empirical modeling methods using
the residential heat balance (RHB). However, in the proposed
HVAC model, only the temperature is controlled and the air
humidity conditions effects are ignored. This minimizes the
sub-blocks of the proposed HVAC model, simplifies the system,
and eliminates the temperature-humidity decoupling problem.
The performance of the proposed HVAC model is compared

 

 

Fig. 3. MAS for building energy control.

with by the RLF model in terms of thermal conditions only.
Moreover, the TSF controller is applied to the proposed model
and the RLF model and the results are compared with each
other.
To model the performance of an HVAC system in a thermal
study, one must apply the energy conservation law, where
the rate of energy in the overall storage system can be defined as:

dEs

dt
= ∑i

•
Ein − ∑i

•
Eout (1)

The right side of Eqn. 1 indicates the net energy transfer rate.
The HVAC system model can be represented by many nonlinear
partial differential equations related to heat transfer, including
partial derivatives with respect to time and space. Most of these
equations are very difficult to solve and need to be simplified
[134]. The proposed HVAC system model comprises two sub-
system models: the heat exchange and the conditioned building
space model. These two models are simulated using the equa-
tions derived in detail, as shown in Appendix (A).

B. Block diagram of the model

The complete block diagram of the model can be obtained using
the connection of all the subsystem. The combination of the
subsystem block diagrams is shown in Fig. 4.
According to Fig. 4, the number of input and output variables
are six, and one, respectively, as listed below.
Input variables.
The flow rate of chilled water supply to the heat exchanger.
1. Drr(s): Damper ratio for return air.
2. Dr f (s): Damper ratio for fresh air.
3. To(s): Perturbations in outside temperature.
4. K1: Open/Closed windows and doors.
5. K2: On/Off lights.
6. Ts(s): Supply temperature.
Output variable.
Tr(s): Room temperature or conditioned space temperature.
In Fig. 4, the mathematical descriptions for the block diagrams
G1,1,G1,3, G2,1, and G2,4 are given in the appendix (A).
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Fig. 4. Subsystems model of the HVAC system block diagram.

B.1. Application of the model to a residential building

For implementing the model transfer function, the parameters
of the HVAC system are assumed to be known, as shown in
Table 3. The plan of the building, shown in Fig. 5, is used for the
evaluation the performance of the HVAC system model [135].

B.2. TSF controller model

Many studies have used fuzzy logic controllers for HVAC sys-
tems to enhance the occupants’ comfort levels and energy-
saving purposes [137], [138]. In this paper, the TSF controller
is used due to its main advantages such as decreasing over-
shoot, reducing tuning time, online auto-tuning, and speed-
ing up system response [139], [140]. The TSF controller is ap-
plied to both types of the HVAC system (the proposed and
RLF model). The TSF control tuning process is carried out with
two inputs: 1) the error: Error=(Tr(desired) − Tr( f eedback)) where
Tr(desired) the desired set-point temperature Tr, and Tr( f eedback):
the measured indoor temperature and 2) the error variation:
∆Error = d(Tr(desired)−Tr(feedback))

dt .
Moreover, the TSF controller has a single output, i.e. supplied
chilled water (Ch.W.Flow), obtained from summation of the
chilled water coming from both main cooling and pre-cooling
coils for the RLF model and the supplied chilled water coming
from the main cooling coil for the presented HVAC model. The
general schematic for control of an HVAC system is shown in
Fig. 6. Three linguistic variables are used for the TSF mem-
bership functions (Big Negative, Zero, and Big Positive). The
algorithm inputs/outputs, membership functions, and rules of
the TSF controller are generated using the MATLAB M-file code.
The input membership functions are shown in Fig. 7, and the
controller rules are presented in Table (4). As shown in Fig. 7,
the membership functions for input variables are triangular.
The output membership functions include a first-order poly-
nomial form, i.e., the Takagi-Sugeno first-order fuzzy model.
A singleton with the vector [a b c] is the resulting fuzzy inter-
ference model. For tuning the fixed parameters of the [a b c]
vector, the Gauss-Newton method is used, where c is the shifted
parameter, and a and b are the TSF input parameters.

5. RESULTS AND DISCUSSIONS

For performance evaluation of the proposed model, a residential
building has been selected. The building model is the typical
single-zone house that has a simple construction. The overall
area is 220 m2, and the volume of the whole house is 616 m3,
excluding the garage. The climatic data and information of this
building are related to Basra’s city in southern Iraq [141].
The conditions of natural ventilation (HVAC system off mode)
have been applied to the house model. Therefore, the indoor
conditions have been influenced only by the outdoor weather
conditions. For every hour within 24 hours, the indoor tempera-
ture behavior of the HVAC system models have been obtained
and compared with the indoor temperature [87], The results are
shown in Fig. 8. As shown in Fig. 8, the simulated indoor tem-
perature for two HVAC system models can track the variation
of outdoor temperatures.

The Tr(t) variable, the plant output that is the simulated of
the indoor temperature, is shown in Fig. 9, for the proposed
HVAC system and RLF, where the outdoor temperature, To(t),
is considered to be 36(◦C). The TS fuzzy controllers have been
applied to the two types HVAC system models. Fig. 10 shows
the TS fuzzy surfaces for both models. The HVAC systems
have been operated by the TS controllers to follow the indoor
temperature (Tr) set-points, which has changed from 22 to 24
(◦C) in 8.334 hrs within the 24 hrs of the day, as shown in Fig. 11.
It can be seen that both HVAC system models have satisfactory
behavior results under indoor temperature variations, while
the proposed HVAC system model has a better performance as
compared with the RLF model.

The cooling coil valve position signals for the RLF and pro-
posed HVAC models have been used to compute their en-
ergy consumption. Fig. 12 shows chilled water valve position
(open%) for the RLF and proposed HVAC models. The energy
consumption can be calculated using iterative methods in MAT-
LAB. The cumulative consumed energy has been calculated
using Eqns. (5) and (6), explained in Appendix (A), for the pro-
posed HVAC system model. for the RLF model, the cumulative
consumed energy has been computed using the equations pre-
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Fig. 5. Plan of the selected building [134].

 

 

Fig. 6. General schematic used to control an HVAC system.

sented in [142].
It can be seen from Fig. 12, that the valve signals for two models
have been saturated in the period of 13 to 15 hrs.
The simulation results for the cumulative consumed energy of
two models are shown in Fig. 13. As shown in Fig. 13, the RLF
system model has exhibited higher energy consumption than
the proposed HVAC system model. This is due to uninterrupted
process of cooling to meet the indoor thermal comfort demands.
In the RLF model, the chilled water supplied is divided between
two coils, including the main cooling coil and the pre-cooling
coil. This set has high energy consumption. Whereas in the
proposed HVAC, only one cooling coil is used for the heat ex-
changer, the same as the main cooling coil.

 

 

  
(a)  

 

(b) 

 
Fig. 7. TSF controller input membership functions: (a) First
input (Error), (b) Second input (∆Error).

According to Fig. 13, the energy consumptions within 24 hrs for
both models in usual conditions are: 148 kWh/day for the RLF
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Table 2. A general comparison among HVAC system control
strategies.

Control method Advantages Disadvantages

Hybrid control

Finding solutions to problems
that cannot be handled by indi-
vidual controllers.

The intelligent control requires
a large amount of data for the
training process, causing the
challenge to tune the other con-
trol methods.

Mixing the advantages of intel-
ligent/soft control methods and
others.

Obtaining superior control as
compared to separate use of
each control method.

AI control

Providing HVAC systems with
high accuracy, fast operation,
and high efficiency.

The number of input variables
is limited

Handling enormous amounts of
data and large numbers of input
variables.

Performance estimation re-
quires an enormous amount of
data.

Allowing the exact model to be
unnecessary.

Stability is nondeterministic.

Making credible predictions. Processing is carried out with
long runtime.

The method is sometimes inap-
propriate for real-time HVAC
applications.

Feed-forward control
Providing indemnity for disrup-
tions before affecting the pro-
cess results

The steady-state offset is so hard
to remove.

Maintaining the stability of the
control system.

A model and a sensor are neces-
sary for handling disturbances.

Feedback control

Providing fast response, low
cost, wide application, and a
very simple structure.

The method is inefficient, as the
set-point cannot always be prop-
erly tracked.

Providing efficiency with all dis-
ruptions.

In the long run, flexibility and
efficiency are lost.

Functioning with minimal sys-
tem model knowledge.

The stability of closed loops is
influenced.

Maintenance is required.

Parameter setting is extremely
difficult.

The method is not appropriate
for complex models or nonde-
terministic data systems.

Performance is low.

Nonlinear control

Covering nonlinear models. There are complexities in obtain-
ing Lyapunov functions.

Handling the parameters of
slowly time-varying/non-
deterministic systems models.

Difficulties are involved in the
integration of the nonlinear ob-
server with HVAC.

The method is sensitive to pa-
rameter changes.

The operational range of state
feedback is limited.

Stability is hard to prove.

There need to be calculations or
additional measurements for all
state variables.

The method is appropriate only
to stable processes.

If all state variables are not mea-
surable, nonlinear observers are
required.

system and 133.114 kWh/day for the proposed HVAC system.
The simulation results also indicate that the proposed HVAC
system model has achieved an energy-saving of 10.06% com-
pared with RLF model, which demonstrates that the proposed
HVAC model is more energy-saving, and more efficient than the

Table 3. HVAC system model components [136].
Component Value Component Value Component Value

ṁa 0.84
kg/sec.

MHe 10kg ∆Tw 5◦C

cpa 1.005J/kg.◦C cpHe 0.4 J/kg.◦C cpw 4200
J/kg.◦C

K 0.7 A 173.6m2

∆x 0.4m ] of lamps 50 lamps

Table 4. TSF rules.

∆ Error / Error Big Negative Zero Big Positive

Big Negative (1) Big Negative Big Negative Zero

Zero (2) Big Negative Zero Big Positive

Big Positive (3) Zero Big Positive Big Positive

 

Fig. 8. Changes in indoor temperature concerning a variety of
outdoor temperatures.

 

 

 

Fig. 9. The indoor temperature Tr concerning the constant
outdoor temperature.

RLF model.

6. CONCLUSION

In this paper, various modeling of HVAC is examined, and their
characteristics are categorized and compared. Then, the HVAC
control methods have been reviewed comprehensively. By pre-
senting a new categorization for various control approaches of
HVAC systems, their main features have been extracted and
compared to each other from different aspects.
Meanwhile, an HVAC system model has been proposed, and
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Fig. 10. TSF controller surfaces for the RLF and proposed
HVAC systems.

 

 

 

 

 

 Fig. 11. Comparison of the RLF and proposed HVAC in terms
of the indoor temperature Tr under the TSF controller.

 

 

 

 

 

 
Fig. 12. Chilled water valve position for the RLF and proposed
HVAC system models.

 

Fig. 13. Energy consumed by the RLF and proposed HVAC
models.

simulations have been made to apply the Takagi-Sugeno fuzzy
approach to the two types of HVAC system models: the pro-

posed HVAC system and the RLF models. The simulation results
for the proposed HVAC system and the RLF models have been
analyzed from different aspects. The results demonstrate the
efficiency and robustness of the proposed HVAC system model
compared to the RLF model in terms of energy saving.
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A. APPENDIX A

A. Heat exchanger model
Based on the energy flow, heat exchanger control volume can
assess the latent energy that is absorbed by the main cooling coil
using Eqn. 1.

MHecpHe
dTs(t)

dt =
•

ma cpaTm(t)−
•

ma cpaTs(t)

+
•

mw kcpwTwin − •
mw kcpwTwout

(2)

Twout − Twin = ∆T = 5 − 10 = −5
Where: MHe is the mass of the heat exchanger (kg), cpHe, cpa,
and cpw (J/kg.◦C) are the specific heat of the heat exchanger,

and air and water, respectively,
•

mw is the mass flow rate of
chilled water at time t (kg/sec.), Tt(t)&Ts(t) are the temperature
of the mixing and out supply air at time t (◦C), respectively,
Twout&Twin are water out and in heat exchanger temperature

(◦C), respectively, and
•

ma is the mass flow rate of outside air at
time t (kg/sec.).
Taking Laplace transform on both sides of the equation, assum-
ing zero initial conditions, and simplifying the expression, the
transfer function of the heat exchanger temperature ratio of the
supply air can be given as:

Ts(s) =
Tm(s)
(τ1s+1) +

•
mw cpw∆Tw
•

ma cpa(τ1s+1)
(3)

•
ma =

A∗h∗ρ∗#o f .air.replaced.times(=4)
3600 = 0.84 kg/ sec .

τ1 =
MHecpHe

•
ma cpa

= 4.7382 sec .

Where: τ1 is the time delay for the controlled object (s), and
Tm(s) = DrrTr(s) + Dr f To(s).
Here, Drr and Dr f are damper ratios for return and fresh air,
which are 0.75% and 0.25%, respectively. Tr and To are the room
and output temperature at time t (◦C), respectively.

Ts(s) =
Drr Tr(s)+Dr f To(s)

(τ1s+1) +
•

mw cpw∆Tw
•

ma cpa(τ1s+1)
(4)

Ts(s) =
•

mw 4200 ∗ −5
0.84 ∗ 1.005(4.7s + 1)︸ ︷︷ ︸

G1,1

+
0.75 ∗ 22
(4.7s + 1)︸ ︷︷ ︸

G1,2

+
0.25To(s)
(4.7s + 1)︸ ︷︷ ︸

G1,3

B. Conditioned space building model
The building construction thermal mass has a flywheel influ-
ence on the prompt load. The conditioned space is enclosed by
walls, windows, ceilings, and doors. Therefore, the components
include air space, lighting, furniture, and occupants generating
heating load. By applying the energy and mass conservation
laws to the conditioned space control volume, the heat balance
in the conditioned space building is given by:

•
Qr =

•
Qs +

•
Qwd/dr +

•
Qwal +

•
Qcel +

•
Ql (5)

Where:
•

Qr = Marcpar
dTr
dt ,

•
Qs = ∑j mascpa (Ts − Tr),

•
Qwal =

∑j
KA
∆x (To − Tr),

•
Qwd/dr = ∑j mavcpa (To − Tr),

•
Qcel = 0.6

•
Qwal

and
•

Ql = 40Nol .
mas = mav =

•
ma .

The simplified transfer function for the conditioned space tem-
perature ratio of room/out air is given by:

Marcpa
dTr(t)

dt = ∑j mascpa (Ts(t)− Tr(t))+

∑j mavcpa (To(t)− Tr(t))+

∑j
KA
∆x (To(t)− Tr(t))+

0.6 ∗ ∑j
KA
∆x (To(t)− Tr(t)) + 40Nol

.

Taking Laplace transform on both sides of the equation, assum-
ing zero initial conditions, and rearranging the expression, the
transfer function for the conditioned space temperature ratio
can be given as:

Tr(s) =
mascpaTs(s)

( KA
∆x +2mascpa)(τ2s+1)

+
mavcpaTo(s)

( KA
∆x +2mascpa)(τ2s+1)

+ KATo(s)(1+0.6)
∆x( KA

∆x +2mascpa)(τ2s+1)
+ 40Nol

( KA
∆x +2mascpa)(τ2s+1)

(6)

Where: τ2 is the time delay for the controlled object(s).
τ2 =

Marcpa
KA
∆x +2mascpa

, τ2 =
Ab∗h∗ρ∗cpa
KA
∆x +2mascpa

, τ2 = 381.5791 sec .

Tr(s) =
0.84 ∗ 1005 ∗ Ts(s)(

0.7∗173.6
0.4 + 2 ∗ 0.84 ∗ 1005

)
(381.5791s + 1)︸ ︷︷ ︸

G2,1

+

0.84 ∗ 1005 ∗ To(s)(
0.7∗173.6

0.4 + 2 ∗ 0.84 ∗ 1005
)
(381.5791s + 1)︸ ︷︷ ︸

G2,2

+

0.7 ∗ 173.6 ∗ 0.6 ∗ To(s)

0.4 ∗
(

0.7∗173.6
0.4 + 2 ∗ 0.84 ∗ 1005

)
(381.5791s + 1)︸ ︷︷ ︸

G2,3

+

40 ∗ 50(
0.7∗173.6

0.4 + 2 ∗ 0.84 ∗ 1005
)
(381.5791s + 1)︸ ︷︷ ︸

G2,4
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