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In recent years, simultaneous optimization of two conflicted objective functions become an important topic in 

power system. In this paper, a multi-objective mixed-integer linear programming (MILP) based model is provided 

for economic-environmental scheduling of a smart apartment building. The first objective function is the 

operation cost of the building’s minimization. The minimization of the CO2 emission is considered as the second 

objective function. The proposed multi-objective problem is solved using the weighted sum approach and the ɛ-

constraint method. Then, min-max fuzzy satisfying approach is carried out to select the ideal win-win strategy 

from the obtained efficient results. The proposed MILP-based sample model is solved using General Algebraic 

Modeling System (GAMS) under CPLEX solver. Also, two scenarios, weighted sum approach and ɛ-constraint 

method scenarios, are used to analyse the efficiency of the proposed sample model. By comparing the obtained 

results, it can be concluded that with considering the ɛ-constraint approach, total operation cost of the building is 

reduced 24.78% by optimizing the model from economical perspectives. On the other hand, solving the proposed 

model from environmental perspectives led to a decline of 6.96% in CO2 emission. Also, the weighted sum 

approach shows a reduction of 25.11% and 10.73% as a result from economic and environmental points of view, 

respectively. 

Keywords: Multi-objective optimization model, Smart apartment building, CO2 emission, ɛ-constraint/weighted sum approach, fuzzy 

satisfying technique 
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Nomenclature 

Sets   

i  Index of smart appliances 

j  Index of smart homes 

  Index of smart appliances’ process time 

t  Index of time 

Parameter  

  Time interval duration (h) 

Gas  
Gas tariff (£/kWh) 

CHP , Boiler ,

Battery , 
Thermal  

The combined heat and power (CHP), 

boiler, battery storage system, and thermal 

storage system efficiencies (%) 

BatteryBCC  
Operation cost of the battery storage system 

(£/kWh) 

ThermalTCC  
Operation cost of the thermal storage 

system (£/kWh) 

t , 
Sell  

Cost of buying/selling power from/to the 

upstream grid (£/kWh) 

CHP  The CO2 intensity of the CHP electrical 

output (kgCO2/kWh) 

Boiler  The CO2 intensity of the boiler thermal 

output (kgCO2/kWh) 

UG

t  The CO2 intensity of the upstream grid 

(kgCO2/kWh) 

,

App

iP   Energy usage of the ith smart appliance at 

operation period   (kW) 

,

Demand

j tQ  Heat demand of each smart home (kW) 

CHP  Heat-to-power ratio of the CHP  

CHPL , 
BoilerL , 

BatteryL , 
ThermalL  

The CHP, boiler, battery storage system, 

and thermal storage system capacities (kW) 

BatteryLC ,
BatteryLD  

Charge and discharge limits of the battery 

storage system (kW) 

ThermalLC , Charge and discharge limits of the thermal 
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ThermalLD  
storage system (kW) 

BatteryBVS  Initial state of the battery storage system 

(kWh) 

ThermalTVS  Initial state of the thermal storage system 

(kWh) 

BatteryM ,
ThermalM , 
gridM  

Maximum capacities of the battery storage 

system, thermal storage system, and 

purchased power from the upstream grid 

(kW) 

,

Finish

j iT , ,

Start

j iT  The earliest starting time and latest 

finishing time of the ith smart appliance in 

the ith smart home (hours) 

iP  The processing time of the ith smart 

appliance in the ith smart home (hours) 

Variable  

,

CHP

j tP  Electricity output power of the CHP (kW) 

,

Boiler

j tQ  Heat output power of the boiler (kW) 

,

Thermal

j tTC ,

,

Thermal

j tTD  

The charge and discharge rates of the 

thermal storage system (kW) 

,

Import

j tP , 
,

Export

j tP   Imported/exported power from/to the 

upstream grid (kW) 

,

Battery

j tBC ,

,

Battery

j tBD  

Charge and discharge rates of the battery 

storage system (kW) 

,

Battery

j tBS  Amount of stored energy in the battery 

storage system (kWh) 

,

Thermal

j tTS  Amount of stored energy in the thermal 

storage system (kWh) 

Battery

tBTS  Total amount of stored energy in the battery 

storage system (kWh) 

Thermal

tTTS   Total amount of stored energy in the 

thermal storage system (kWh) 

, ,

App

j i t  Binary variable; equal to 1 if the ith 

appliance of the ith smart home be active at 

time t; otherwise 0 

,

Grid

j tX  Binary variable; equal to 1 if electricity is 

bought from the upstream grid by the ith 

smart home at time t; equal to 0 if electricity 

is sold to the upstream grid by the ith smart 

home at time t 

,

Battery

j tX  Binary variable; equal to 1 if battery storage 

system is charged at time t; equal to 0 if 

battery storage system is discharged at time 

t  

1. Introduction 

We urgently need to move towards a pollution free planet, to 
tackle climate change and to drive sustainable development. We can 
only do that with decisive actions in residential sector [1]. Homes 
that use energy supplied from fossil fuels are responsible for 
significant emissions of the CO2 gases [1]. For instance, in the 
European Union, buildings consume 40% of overall energy and 
emit 36% of total CO2 gases. In the United Kingdom emissions from 
households’ fossil fuel and electricity use are projected to rise by 
11% by 2035 compared with 2015 levels. Therefore improving the 
efficiency of services and appliances that use energy from fossil 
fuels in residential sector alongside taking the appropriate strategies 
will lead to CO2 emission reduction [1]. Other benefits include 

making energy more affordable, supply more secure and homes more 
comfortable [2].  

1.1. Literature review 

Part of the reviewed papers about the multi-objective problems in 
power system have been presented as follows: A multi-objective 
optimization model of hybrid system in the presence of demand 
response program has been presented in [3]. A master-slave parallel ɛ-
variable multi-objective approach has been utilized in [4] to minimize 
the non-smooth/convex operation costs of the hybrid power system 
and the gas emission at the same time. To maximize the occupants’ 
benefits and improve the energy efficiency, a multi-objective model 
considering retrofitting plan has been provided in [5]. To maximize 
the annual profit and minimize the annual capital cost of integrated 
solid oxide fuel cell and gasifier plant, a multi-objective model has 
been provided in [6]. A nonlinear multi-objective model has been 
provided in [7] to determine the optimal electricity generation, 

acquisition quantity, and blending ratio at the same time. Multi-
objective scheduling of microgrid has been minimized from cost and 
emission viewpoints in [8]. A review on multi-objective economic 
emission dispatch of CHP units is provided in [9]. In [10], the 
weighted sum method has been utilized to optimize the cost-emission 
optimization model of the hub system considering demand response 
program. A renewable-based hub energy system has been studied 
under economic and environmental constraints under compressed air 
energy storage system and demand response program in [11]. A 
particle swarm optimization-based model of CGAM problem has been 
provided in [12] to maximize the exergetic efficiency and minimize 
the total cost rate at the same time. A new multi-objective algorithm 
has been provided in [13] to coordinate the charge and discharge mode 
of the electric vehicles batteries and control the node voltage at the 
same time. Stochastic multi-objective model has been provided in [14] 
for optimal sizing of energy storage system in a microgrid under 
demand response and reliability constraints. 

    Literature reviews about the optimal energy management of the 
smart homes have been investigated as follows: To seek the best size 
of the residential solar system, a multi-objective model has been 
provided in [15]. To maximize the comfort level and minimize the bill 
cost, a multi-objective model of smart home has been provided in [16]. 
Robust scheduling of the smart home under market price uncertainty 
has been handled in [17]. The stochastic approach has been utilized in 
[18] for the optimal scheduling of the smart home under heat demand 
uncertainty. Risk-based scheduling of smart home considering market 
price uncertainty has been provided in [19]. Robust optimization 
method has been utilized in [20] for robust scheduling of smart home 
under solar irradiation uncertainty. Information gap decision theory 
method has been utilized in [21] for robust scheduling of smart home 
under market price uncertainty. Optimal scheduling of multi-smart 
apartment building considering exchange power capability has been 
provided in [22]. The authors have proposed an energy management 
model for a smart home including renewable energy sources such as 

photovoltaic cells in [23]. Also, optimal scheduling of the smart home 

in the presence of solar thermal storage system has been provided in 
[24].  

    Reviewed papers related to the multi-objective optimal 
scheduling of the smart homes considering both economic-
environmental factors have been summarized as follows: To minimize 
the bill cost and CO2 emission, a linear model of the smart home has 
been provided in [25]. A hub model of the smart home  considering 
economic-environmental factors utilizing weighting method has been 
provided in [26]. A ɛ-constraint method has been utilized in [27] for 
optimum scheduling of the smart home under economic-
environmental factors. 

It is noteworthy that general deterministic and non-deterministic-
based models of smart homes have been investigated and presented in 
details in Table 1.   

https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings
https://ec.europa.eu/energy/en/topics/energy-efficiency/buildings
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/671187/Updated_energy_and_emissions_projections_2017.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/671187/Updated_energy_and_emissions_projections_2017.pdf
https://ec.europa.eu/energy/en/topics/energy-efficiency/energy-efficient-products
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Table 1. Reviewed papers in the field of smart homes 
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1.2. Differences of weighted sum and ɛ-constraint approaches  

Generally advantages of the ɛ-constrained method over the 
weighted sum approach can be listed as follows [54]:  

• In the ε-constraint approach, by varying the ɛ value, different 
efficient solutions can be produced while in the weighted sum 
approach, running the model at different weights may result in the 
same efficient extreme solutions, so more rich representation of the 
efficient sets of solutions can be obtained with use of ɛ-constraint 
approach.  

• In the weighted sum approach, the scaling of the objective 
functions into a common scale has strong influence on the obtained 
results while in the ε-constrained method, the scaling is not 
necessary. 

• In ε-constrained method, the number of the generated 
efficient solutions can be controlled by properly adjusting the 

number of grid points (ε) which is not easy with the weighted sum 
approach.  

1.3. Contributions 

In this paper, a multi-objective optimization model is proposed 
for cost-emission performance of the smart apartment building. The 
proposed model is solved using ɛ-constraint approach and weighted 
sum method in two different scenarios. Then, to choose the best 
efficient possible solution among the obtained efficient solutions, 
fuzzy satisfying approach is utilized. Generally, obtained results 
denote the possibility of emission reduction and bill savings through 
better management and scheduling of energy sources and smart 
appliances. Based on the provided explanation, the novelty of this 
paper can be listed as follow: 

• Utilization of ɛ-constraint method and weighted sum 
approach to solve the multi-objective model and employing min-
max fuzzy satisfying approach to choose the ideal win-win strategy.  

1.4. Structure of proposed paper 

Rest of the proposed paper is arranged as follows: Section 2 
provides a basic mathematical formulation of the smart apartment 
building model. Utilized approaches, ɛ-constraint method and 
weighted sum approach, to handle the multi-objective model are 
described in this section, too. Input data and obtained results are 
presented in section 3. Finally, the paper is concluded in the last 
section. 

2. Problem formulation 

In this section, basic formulation of the smart apartment 
building model is studied through various sub-sections. 

2.1. Basic formulation of the smart apartment building 

The overall architecture of the proposed MILP-based model of 
the smart apartment building which contains 10 smart homes is 
demonstrated in Fig. 1. As shown in the mentioned figure, the smart 
meter measures and processes the records then transmits them to the 
upstream grid. On the other hand, the home energy management 
system controls and schedules smart appliances alongside the 
controllable distributed energy resources such as CHP and etc. In 
order to obtain an optimal scheduling strategy, home energy 
management system needs a variety of input data such as thermal 
demands, the characteristics of appliances and so on. 

 

 Fig. 1. Overall architecture of the smart apartment building model 

2.1.1. Minimizing the total operation cost of the smart apartment 

building 

The first objective function is minimization of the total operation 
cost of the smart apartment building which contains the operation cost 
of the CHP, boiler, battery storage system, thermal storage system and 
the cost/profit of buying/selling power from/to the upstream grid.  
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2.1.2. Cost versus CO2 emissions of the smart apartment building 

The second objective function is minimization of the total CO2 
emission which includes the emission of the CO2 by the CHP, boiler 
and the upstream grid. 
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(2) 

2.1.3. Energy balance constraints 

The produced electrical and thermal energy must be equal to 
their demands at each period of time.   
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2.1.4. CHP generator and Boiler constraints 

The capacity limitations of the CHP and the boiler can be 
expressed as follows [55, 56]:  
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2.1.5. Battery storage system constraints 

Proposed battery storage system plays a role of central battery 
storage system. So, each smart home within the smart apartment 
building can discharge the battery storage system as much as it has 
charged it by itself at the previous periods. The specialized 
constraints of the battery storage system are expressed using (7)-
(15).  

The stored energy in the battery storage system at each period is 
expressed using (7). Also, stored energy at each period could not 
exceed the specific level. In this regard, (8) is provided. To limit the 
discharge rate of the battery storage system by the amount of stored 
energy, (9) is provided.  
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To avoid the simultaneous charge and discharge of the battery 
storage system, (10) and (11) are provided.   
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In order to avoid the net accumulation at the end of the sample 

day, stored energy in the battery storage system at the end of the 
sample day should be equal to its initial amount. In this regard, (12) 
and (13) are provided. 
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To limit the charge and discharge rate of battery storage system by 
its designed capacity, (14) and (15) are presented.  
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It should be mentioned that the technical constraints of the thermal 
storage system are formulated similarly. 

2.1.6. Starting/finishing time of smart appliances 

A set of most common controllable smart appliances such as 
washing machine, dish washer, microwave, fridge, etc., have been 
considered in this model. Each smart appliance within each smart 
home is scheduled to be operated within the specific time interval

,

Start

j tT , 
,

Finish

j tT  which is set and determined by the residents of each 

smart home based on their priorities and preferences. The 
mathematical formulation of the mentioned statements are expressed 
as follows:  
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2.1.7. Upstream grid constraints 

To avoid the simultaneous exchange power between the smart 
apartment building and the upstream grid, (17) and (18) are provided.  

, ,

Import grid Grid
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2.2. Utilized approaches to solve the multi-objective model 

In single-objective mathematical programming problems, there is 
only one optimal solution that obtained through optimizing the model. 
In contrast, in multi-objective mathematical programming problems, 
there are more than just one objective function. In other words, there 
is a set of optimal solutions that are introduced as Pareto-optimal 
instead of one optimal solution. Generally, in multi-objective 
mathematical programming problems, different objective functions 
are required to be optimized simultaneously with considering sets of 
inequality and equality constraints. In this regard, several approaches 
such as weighted sum approach, ɛ-constraint approach, evolutionary 
algorithm, etc. have been utilized to handle the multi-objective 
problems. Each mentioned techniques has specific procedures for 
solving multi-objective problems. In this paper, the proposed multi-
objective smart apartment building model has been solved utilizing 
weighted sum approach and ɛ-constraint method which are explained 
with more details as follows:  

2.2.1. Weighted sum method 

In weighted sum approach, Pareto-optimal solutions are obtained 
by changing weighting factors within the specific intervals [10].  
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It should be noted that the provided multi-objective model 
involves two conflicted objective functions which are different in 
dimensions. To compare the obtained results with each other, the 
fuzzy satisfying approach is presented to change each objective 
function results into per unit values. This approach is explained with 
more details in subsection 2.2.3.  

2.2.2. Ɛ-constraint method 

The mathematical formulation of the ɛ-constraint method can be 
written as follows [3]:  
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As shown by (20), the second objective function is considered 
as constraint and bounded by ɛ which can be varied between the 

specific intervals (
min

2 ,
max

2 ). So, in this method, Pareto-optimal 

solutions are obtained through optimizing the first objective 

function by varying the ɛ value from
min

2 to
max

2 . 

Finally, the fuzzy satisfying approach is utilized to compare the 
obtained results. 

2.2.3. Fuzzy satisfying approach 

With the aim of comparing and selecting the ideal result among 
the obtained efficient results, the obtained results through weighted 
sum approach and ɛ-constraint method should change into per unit 
value. In this regard, min-max fuzzy satisfying approach is 
employed.  

The linear membership function for the nth solution of the ith 
objective function can be written as follows [3]:  
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Where
min

i and
max

i are considered as upper and lower bounds 

of the ith objective function. 
n

i indicates the ideal degree of the nth 

solution of the ith objective function.  

The normalized form of the provided conflicted objective 
functions can be written as follows:   
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The membership function of the nth solution can be expressed as 
follows:  

1min( ,..., )PNn n

N  =  (24) 

The ideal-chosen solution provides a win-win situation between 
the conflicted objective functions. Mathematical formulations of the 
mentioned statement is expressed as follows:  

max 1max( ,..., )Np  =  (25) 

Finally, it should be noted that the general flowchart of the utilized 
approaches, ɛ-constraint, weighted sum and min-max fuzzy satisfying 
approaches, are demonstrated in Fig. 2.  

3. Numerical simulation 

The proposed MILP-based model of the smart apartment building 
contains CHP, boiler, battery storage system, thermal storage system 
and smart appliances with the capability of exchanging power with 
upstream grid. The scheduling period in this paper is 24 hour with the 
time span of 30 minutes which started from 08:00 AM of the sample 
day and finish at 08:00 AM of the next sample day. It is noteworthy 
that, the proposed MILP-based model were conducted using GAMS 
[57] and CPLEX [58] software packages on an Intel(R) Core(TM) i7-
6500U 2.50 GHz CPU laptop with 8 GB of RAM.  

3.1. Input data 

Technical information of the CHP, boiler, battery storage system, 
thermal storage system, heat demand of each smart home, market 
price, cost of selling power to the upstream grid, and gas price are 
adopted from [17]. The technical data of the smart appliances are taken 
from [17], too. Finally, the CO2 emissions of the CHP, boiler and the 
upstream grid profile during the study period are provided in Table 2 
and Fig. 3, respectively [27].  

 

Fig. 2. Flowchart of the Ɛ-constraint, weighted sum, and fuzzy 

satisfying approaches 
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Fig. 3. The CO2 emission of the upstream grid profile 

Table 2. The CO2 emission of the CHP and the boiler 

 Unit Natural Unit Natural 

CHP  kg CO2/kWh 0.0396 0.5049 0.5445 

Boiler  kg CO2/kWh 0.0186 0.2923 0.3109 

3.2. Simulation results  

The multi-objective model of the smart apartment building has 
been studied in two scenarios. In the first scenario, operation of the 
smart apartment building has been investigated through weighted 
sum approach. Then, the same multi-objective problem has been 
solved with considering the ɛ-constraint approach in the second 
scenario. Obtained results of two scenarios are provided in Fig. 4. It 
should be noted that point B indicates the win-win strategy which 
was chosen by min-max fuzzy satisfying method. Also, due to linear 
nature of the proposed model, the obtained results are close and 
similar to each other in two scenarios. It should be mentioned that 
in this figure, point A indicates the lowest value of the CO2 emission 
(highest value of the total operation cost) and point C indicates the 
highest value of CO2 emission (lowest value of the total operation 
cost). For better analyzing, total operation cost of the smart 
apartment building in two scenarios, in three different points which 
have been described previously are presented in details in Table 3.  

 
Fig. 4. Pareto set for multi-objective smart building model 

For accurate and better explanation, output of different equipment 
within the smart apartment building in three points (A, B and C) and 
in two different scenarios have been illustrated by Figs. 5-13 and 
reported numerically in Table 4.  

The output power of the CHP and boiler are provided in Figs. 5 
and 6. By analyzing the obtained results, it can be realized that with 
optimizing the model from CO2 emission minimization viewpoints, 
the home energy management system tends to use more CHP than the 
boiler. For instance, in ɛ-constraint scenario, output power of the CHP, 
in point C in comparison to points B and A, is increased 68.71 kWh 
and 2.74 kWh, respectively. In contrast, output power of the boiler is 
decreased 88.88 kWh and 3.44 kWh, respectively. So, it can conclude 
that the simultaneous production of heat and electricity by the CHP 
causes the superiority of this equipment to the boiler.  

The charge and discharge rates and state of charge of the battery 
storage system are provided in Figs. 7 and 8, respectively. By 
analyzing the results, it can be understood that the charge and 

discharge rates of the battery storage system in Point A is higher than 
other points. For example, in ɛ-constraint scenario, charge rate of the 
battery storage system in points B and C is increased 7.68 kWh and 
19.02 kWh respectively in comparison to Point A. Also, in Points B 
and C, discharge rate of the battery storage system is increased 8.83 
kWh and 19.06 kWh, respectively. In other words, with minimizing 
the operation cost, the home energy management system tends to 
charge and discharge the battery storage system more which makes 
the emission of the CO2 to be increased.  

Table 3. Detailed operation cost of the smart apartment building 
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 £ £ 

Total cost 16.027 16.027 

The cost of produced power by CHP  5.953 5.953 

The cost of produced heat by the boiler 1.675 1.675 

The cost of discharged power by battery 
storage system  

0.024 0.024 

The cost of discharged heat by thermal 
storage system  

0.022 0.022 

The cost of imported power from the 
upstream grid 

8.351 8.351 

The profit of exported power to the 
upstream grid 

0 0 

 Kg Kg 

Total emission cost  132.266 132.266 

The CO2 emission of the CHP electrical 
output 

42.022 42.022 

The CO2 emission of the boiler thermal 
output 

16.399 16.399 

The CO2 emission of upstream grid 73.845 73.845 
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 £ £ 

Total cost 12.601 12.791 

The cost of produced power by CHP  5.848 5.848 

The cost of produced heat by the boiler 1.731 1.73 

The cost of discharged power by battery 
storage system  

0.058 0.046 

The cost of discharged heat by thermal 
storage system  

0.021 0.021 

The cost of imported power from the 
upstream grid 

4.971 5.175 

The profit of exported power to the 
upstream grid 

0.028 0.028 

 Kg Kg 

Total emission cost  134.367 134.086 
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The CO2 emission of the CHP electrical 
output 

41.280 41.277 

The CO2 emission of the boiler thermal 
output 

16.940 16.933 

The CO2 emission of upstream grid 76.147 75.876 

P
o
in

t 
C

 

 £ £ 

Total cost 12.002 12.056 
The cost of produced power by CHP  2.791 3.303 

The cost of produced heat by the boiler 3.360 3.086 

The cost of discharged power by battery 
storage system  

0.128 0.072 

The cost of discharged heat by thermal 
storage system  

0.016 0.016 

The cost of imported power from the 
upstream grid 

6.045 5.609 

The profit of exported power to the 
upstream grid 

0.339 0.032 

 Kg Kg 

Total emission cost  148.161 142.162 
The CO2 emission of the CHP electrical 
output 

19.7 23.317 

The CO2 emission of the boiler thermal 
output 

32.891 30.210 

The CO2 emission of upstream grid 95.570 88.635 

The charge and discharge rates and state of charge of the thermal 
storage system are provided in Figs. 9 and 10, respectively. By 
analyzing the results, it can be concluded that with minimizing the 
proposed model from CO2 emission viewpoints, the home energy 
management system tends to charge and discharge thermal storage 
system more and more, which makes the total operation cost to be 
increased as much as possible. For instance, in ɛ-constraint scenario, 
charge rate of the thermal storage system is increased 2.98 kWh and 
11.85 kWh respectively in Points B and A in comparison to Point 
C. Also, discharge rate of this equipment is increased 2.86 kWh and 
11.38 kWh in Points B and A, respectively.  

Table 4. Total obtained results within the 24 hour 
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The electrical output power of the 

CHP 

154.351 154.352 

The thermal output power of the boiler 105.502 105.505 

Charge rate of the battery storage 

system 

8.419 8.422 

Discharge rate of the battery storage 

system  

9.7 9.701 

Stored energy in the battery storage 

system 

62.777 62.707 

Charge rate of the thermal storage 

system 

39.786 39.786 

Discharge rate of the thermal storage 

system 

44.216 44.211 

Stored energy in the thermal storage 

system 

179.524 188.053 

Imported power from the upstream 

grid 

395.828 395.829 

Exported power to the upstream grid 0 0 
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Discharge rate of the thermal storage 
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42.689 41.349 
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Imported power from the upstream 
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Exported power to the upstream grid 1.9 1.9 
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The electrical output power of the 
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72.36 85.645 

The thermal output power of the boiler 211.639 194.383 

Charge rate of the battery storage 
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Discharge rate of the battery storage 

system  
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Stored energy in the battery storage 
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Charge rate of the thermal storage 

system 

27.389 27.938 

Discharge rate of the thermal storage 

system 

32.301 32.834 

Stored energy in the thermal storage 

system 

123.497 149.392 

Imported power from the upstream 

grid 

502.788 466.614 

Exported power to the upstream grid 22.6 2.125 

 

Fig. 5. The output power of CHP 
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Fig. 6. The output power of the boiler 

 

Fig. 7. Amount of stored energy in the battery storage system 

 

Fig. 8. Charge and discharge rates of the battery storage system 

 

Fig. 9. Amount of stored heat in the thermal storage system 

 

Fig. 10. Charge and discharge rates of the thermal storage system 

Imported/exported power from/to the upstream grid is provided in 
Fig. 11. As shown in this figure, with minimizing the provided model 
from CO2 emission viewpoints, the home energy management system 
tends to exchange negligible amount with upstream grid in 
comparison to minimize the provided model from the total operation 
cost viewpoints. For example, in point A, amount of exchanged power 
with upstream grid is zero. In contrast, in point B, amount of 
imported/exported power from/to the upstream grid is about 3.48 kWh 
and 1.9 kWh, respectively. Furthermore, amount of imported/exported 

power from/to the upstream grid in Point C is increased to 70.78 kWh 
and 2.125 kWh, respectively.  

The best-selected operation time for the first smart home’s laptop 
and the fourth smart home’s tumble dryer are selected randomly and 
represented in Figs. 12 and 13, respectively. For instance, the best 
operation time of a laptop which belongs to the first smart home, in 
Point B is set between 21:00-23:00 and 22:30-00:30 in two scenarios, 

respectively.  
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Fig. 11. Exchanged power with upstream grid 

 

Fig. 12. The operation time of the first smart home’s laptop  

 

Fig. 13. The operation time of the fourth smart home’s tumble 

dryer 

 

4. Conclusion 

In this paper, a multi-objective optimization model has been 
proposed for cost-emission scheduling of the MILP-based model of 
the smart apartment building which consists of advanced metering 
infrastructure, home energy management system, smart meter, in-
home display equipment, CHP, boiler, battery storage system, thermal 
storage system, and smart appliances. The aim of the proposed model 
is minimizing two conflicting objective functions namely total 
operation cost and CO2 emission. In the first scenario, the ε-constraint 
method is utilized to solve the provided model while weighted sum 
approach is used in the second scenario. After that, fuzzy satisfying 
method is employed to select the best possible solution among the 
obtained efficient solutions. By analyzing the obtained results, it can 
be realized that in ɛ-constraint approach, total operation cost 
experienced a fall of 4.03£ under economic point of view. Also, CO2 
emission is increased 6.96% from 148.16 Kg to 132.26 Kg. 
Furthermore, in weighted sum approach, total operation cost is 
decreased 25.11% under economic viewpoint, while CO2 emission is 
decreased 6.96% under environmental viewpoint. It should be 
mentioned that the developed MILP-based model of the smart 
apartment building is implemented using CPLEX solver in GAMS 

software. 

Notably, the cost-emission optimal scheduling of interconnected 
multi-smart apartment buildings considering power exchange 
capability among them alongside the overall electrical and thermal 
energy losses of each building with use of normal boundary 
intersection, lexicographic programming, and goal programming 

approaches can be considered as a challenging future work.  
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