A Single-Phase Grid-tied PV based Trans-Z-Source Inverter Utilizing LCL filter and Grid Side Current Active Damping

Majid Hosseinpour* and Navid Rasekh

1Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
*Corresponding author: hoseinpour.majid@uma.ac.ir

As grid-connected Photovoltaic (PV) based inverters are being used more, these systems play a more important role in the electricity generation by distributed power generators. Power injection to the grid needs to meet predefined standards. In this work, a PV based inverter consists of a Trans-Z-Source network performing as DC-DC power conversion level, is connected to the grid through a LCL filter. The connection through an LCL filter offers certain advantages, but it also brings the disadvantage of having a resonance frequency. A systematic mathematical design procedure for PR controller parameters along with active damping factor is presented and the overall control system leads to a considerably low value of grid current THD. Meanwhile the Maximum Power Point Tracking (MPPT) of the PV arrays is obtained by a modified INC method. Simulations in various conditions are carried out in MATLAB/Simulink environment and results depict suitable performance of the system with designed parameters.

Keywords: Trans-Z-Source Inverter, PV systems, PR controller, LCL filter, Active Damping

http://dx.doi.org/10.22109/jemt.2019.169380.1150

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>switching period</td>
</tr>
<tr>
<td>T_{nth}</td>
<td>none-shoot-through duration</td>
</tr>
<tr>
<td>T_{sh}</td>
<td>shoot-through duration</td>
</tr>
<tr>
<td>D_{sh}</td>
<td>shoot-through duty cycle</td>
</tr>
<tr>
<td>B</td>
<td>boost factor</td>
</tr>
<tr>
<td>n</td>
<td>Transformer turn ratio</td>
</tr>
<tr>
<td>L_1</td>
<td>Inverter side filter inductance</td>
</tr>
<tr>
<td>C</td>
<td>filter capacitance</td>
</tr>
<tr>
<td>L_2</td>
<td>grid side filter inductance</td>
</tr>
<tr>
<td>U_{sc}</td>
<td>output of the MPPT block</td>
</tr>
<tr>
<td>K_p</td>
<td>proportional gain</td>
</tr>
<tr>
<td>K_r</td>
<td>resonance gain</td>
</tr>
<tr>
<td>ω_{PRc}</td>
<td>bandwidth around the resonance frequency</td>
</tr>
<tr>
<td>ω_1</td>
<td>fundamental frequency</td>
</tr>
<tr>
<td>K_{AD}</td>
<td>active damping factor</td>
</tr>
<tr>
<td>ϕ</td>
<td>angle between currents of inverter side and grid side inductances</td>
</tr>
<tr>
<td>V_g</td>
<td>RMS value of the grid voltage</td>
</tr>
<tr>
<td>I_{ref}</td>
<td>RMS value of the reference current</td>
</tr>
<tr>
<td>T_{1f}</td>
<td>magnitude of the open loop Transfer function at fundamental frequency</td>
</tr>
</tbody>
</table>

PM | desired phase margin for the system |

1. Introduction

Increasing tendency toward generation of electricity using renewable energy resources like solar power and wind power has motivated scientists and researchers to study Distributed Power Generation (DPG) and develop it as an alternative for fossil based energy resources. As the cost of solar panels are still high, it is important to make more power use of these panels by improving its power conversion efficiency. Due to nonlinear V-I characteristic in each weather condition, photovoltaic (PV) array has an individual maximum output power operating point. Various techniques have been proposed in the literature to track the Maximum Power Point (MPP). The two frequently used maximum power point tracking (MPPT) methods are Perturb-and-Observe (P&O) and Incremental Inductance (INC) [1].

In a grid connected PV system, the output voltage of the PV array is connected to the AC grid through an inverter. In traditional Voltage Source Inverters (VSI) the DC voltage is converted to AC voltage and the output of the VSI is less than input DC voltage. This leads to additional DC-DC boost converter in case voltage boost is required. However both switches of each phase leg can’t be switched on simultaneously, because short circuit destroys the device[2]. The disadvantages of traditional VSI are eliminated by emerging of Z-Source inverters [3] in which an additional shoot-through state along with non-shoot-through state and active state are applied using different modulation techniques [4, 5].

Z-Source inverters cannot operate in bidirectional power flow mode and the voltage gain is obtained in large shoot-through time.
These issues and limits led to introduction of a Transformer based inverter structure called Tran-Z-Source [6]. In this inverter topology, higher boost gain is achievable with the same shoot-through duty cycle and modulation index compared with Z-Source inverter. There have been other modified and developed structures based on Z-Source inverter and its operation mode in shoot-through state in the literature like Y-Source Impedance Network [7], quasi Y-Source boost DC-DC converter [8], quasi impedance source [9] and a high performance quasi Z-Source converter for photovoltaic applications has been proposed in [10]. If the proposed structures are compared in terms of efficiency, cost and volume, Trans-Z-Source inverter functions quite well in most of the considered terms [6, 11]. Therefore, this structure is chosen for DC-DC conversion level along with an H-Bridge inverter in this paper.

DPG systems need power electronics converter as an interface between the energy source and the grid/consumer. The output of the Trans-Z-Source converter and H-Bridge inverter consists of three levels, therefore, to meet harmonic standards like IEEE std 1547 [12] an output filter is needed. Among different filter types, LCL filter has superior performance at high frequencies in comparison with L or LC filters and it is not as complicated as high order filters [13]. LCL filter parameter design is another issue that affects on output power quality directly. In [14] and the recent work in [15] the parameter design of LCL filter design is thoroughly discussed considering grid standards for the quality of injected power.

One of the troubling constraints of LCL filter is the resonance phenomenon, which can cause stability problems. So damping is required to suppress filter resonance. Passive damping methods require resistance connection either in parallel or series with filter capacitor, but this resistance leads to power loss, which is not desirable. Active damping methods use control approaches to achieve the same goal. Compared with passive damping, active damping methods have attacked more attention due to their flexibility and lower damping power losses. However, the control complexity and the cost of the sensors will be increased [16].

The two main types of AD can be categorized to single loop and multi loop methods. Multi loop AD methods include a virtual resistor [17]-[19], capacitor current feedback [20]-[25], capacitor voltage feedback [26]-[29], and LC-trap voltage feedback [30]. One of the most popular active damping methods is the capacitor current feedback which results in suitable stability characteristic [31]. Similar to the capacitor current feedback active damping method, the derivative feedback of the capacitor voltage can also induce effective active damping [26]-[28]. Using an LLCL filter, a LC-trap voltage feedback method is introduced in [30] and indicated that the introduced method had a wider damping region in comparison with the capacitor current feedback active damping. However, as the grid voltage may experience a sudden and large change, it is difficult to choose a suitable feedback coefficient to ensure a satisfactory damping effect under different grid voltage conditions [31].

The main aim of DPGs is to provide suitable power quality to the grid, so choosing appropriate controller to control current injected to the grid be of high importance to deal with resonance frequency caused by LCL filter.

Proportional Resonance (PR) controller can tackle this issue by providing infinite gain at the intended frequency and it can track sinusoidal waveform reference with zero steady state error [32]. A grid tied inverter with LCL type inverter using PI and PR controllers as the injected current regulator and considering active damping of filter capacitance current has been proposed in [23] in which a systematic design procedure is proposed for tuning the PI controller considering AD but the design procedure is not elaborate for PR controller and a step by step design procedure for PR compensator along with capacitor current active damping is missing. A capacitor-current feedback active damping method is proposed in [33] to increase the system critical frequency greatly and to obtain a wider damping region for all possible LCL resonances. Despite the ability in damping region expansion, this method is not systematic and step-by-step procedure. A systematic method considering active damping and PR controller has been proposed in [34] to design control parameters. The feedforward gain of the grid voltage effect point and its regarding gain is vague as the PR controller cannot track voltage and current error in the same point. In this paper, a systematic design procedure is presented to design PR controllers’ parameters as well as filter capacitor current feedback coefficient. Complexity and ambiguity of mentioned previous works has been tried to be revised.

In the area of grid connected PV systems, a two level sensorless grid tied system with constant power generation control is proposed in [35] which applies a LCL filter. A LCL grid connected VSI applying inverter side current control with generalized predictive control is also proposed in [36]. A grid tied single-phase power conditioning system for Trans-Z-Source based inverter is proposed in [11], which has applied a L filter controlling the current injection to the grid by a PR controller to meet grid codes. The grid current THD in [11] less than 3% and as such systems are usually used in weak grids, they’re highly exposed to grid voltage fluctuations which leads to varying grid side inductance, the quality of the injected current to the grid might not be sufficient.

Considering the advantages and disadvantages of the previous works, in this paper a single-phase LCL-type PV based Trans-Z-Source inverter applying grid current control along with active damping has been proposed. The main novelty of this paper is introducing a feasible and systematic procedure to design proportional resonant controllers’ parameters elaborately as well as filter capacitor current feedback coefficient. The designed control coefficients to PV based power conditioning system will result considerable THD reduction of the injected current to grid.

The rest of this paper is organized as follows. In section 2, the principles of Trans-Z-Source inverter is discussed. The power injection control of the grid-connected system is presented in section 3. In section 4, the control scheme and step-by-step design procedure of the controllers are investigated. Simulation results are given in section 5 and a comparison of obtained results with other researches is presented in section 6. Finally, section 7 concludes this paper.

2. Principles of Trans-Z-Source Inverter Performance

There have been several Transformer based topologies which are derived from different topologies i.e. voltage fed quasi Z-Source, current fed quasi Z-Source [37, 38], voltage fed Z-Source and current fed Z-Source [3, 38]. In this paper voltage-fed Trans-Z-Source [6] is considered to function as DC-DC converter.

Trans-Z-Source inverter is capable of operating in both shoot-through state and non-shoot-through state. In the shoot-through state, either the upper and lower switches of each leg or two legs (T1&T2 or T3&T4 or all the switches) are on to produce the desired ac voltage. Table 1 summarizes switching modes containing two active states, two zero output voltage states and five different shoot-through modes.

![Fig. 1. A single-phase Trans Z-Source based inverter](image-url)
The purpose of all MPPT techniques is to extract maximum possible electric energy from photovoltaic arrays. As shown in Fig. 2, the employed MPPT algorithm is based on the Incremental Conductance (INC) method in which the inputs are the measured PV voltage and current values. A Low Pass Filter (LPF) is applied on the measured PV voltage and current to have a better sample.

Table 1. Switching modes in a single phase Trans-Z-Source inverter

<table>
<thead>
<tr>
<th>Switching modes</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shoot-through</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shoot-through</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shoot-through</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Shoot-through</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Active</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zero</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zero</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Voltage boost in Trans-Z-Source converter occurs at shoot-through mode. If T, T_{sh}, and T_a represent switching period, non-shoot-through duration and shoot-through duration, respectively, then voltage boost happens in T_{sh}. Consequently, shoot-through duty cycle is the ratio of T_{sh} and T ($D_{sh} = T_{sh} / T$). The relationship between input voltage of the H-Bridge inverter (V_{in}) and input DC voltage (V_{dc}) is $V_{in} = BV_{dc}$. B is the boost factor which is derived from Trans-Z-Source equations considering the average voltage of both inductors to be zero over one switching period in the steady state. Thus, the capacitor voltage will be [6]:

$$ V_{cap} = \frac{1 - D_{sh}}{1 - (1 + n)D_{sh}} V_{dc} \tag{1} $$

Considering governing equations of Trans-Z-Source inverter in both shoot-through and non-shoot-through modes, the boost factor is calculated as following [6]:

$$ B = \frac{1}{1 - (1 + n)D_{sh}} \tag{2} $$

As depicted in (2) B is dependent on shoot-through duty cycle and Transformer turn ratio. The more each of them be, the more gain is expected at the output.

3. Power injection control of the grid connected system

As shown in Fig. 1 the system is composed of a voltage boost level, which is DC-DC Trans-Z-Source network and the boosted voltage is fed to an H-Bridge. To ensure power injection to the grid with good quality, a control system is needed to obtain MPP and inject power with unity power factor along with controlling grid current THD according to grid standards. MPPT plays an important role in the control system. In the next subsection, the applied MPPT method in this system is discussed.

3.1. MPPT Technique

Because of the non-linear output characteristics of the PV array, the tracking of the MPP at various environmental conditions can sometimes be a challenging task. Various MPPT methods have been proposed in the literature. Among all, the Perturbation and Observation (P&O) [39] and Incremental Conductance (INC) [40] are the most frequent techniques that have been applied in different PV systems.

The extraction of maximum possible electric energy from photovoltaic arrays is the common and final purpose of all MPPT control methods. As shown in Fig. 2, the employed MPPT algorithm is based on the INC method in which the inputs are the measured PV voltage and current values. A Low Pass Filter (LPF) is applied on the measured PV voltage and current to have a better sample. A variable value of D_{sh} is determined by the MPPT algorithm and the output of the MPPT is $U_{sc} = 1 - D_{sh}$ which controls the shoot-through mode of the switching modulation.

Simple boost method is used as the modulation technique [3], in which the control signal is V_{ref} that will be discussed in the next subsection and a direct line that is the output of the MPPT block (U_{sc}).

3.2. Injected current to the grid control

A PV system is connected to the grid to deliver power according to the grid standards. Control of the power flow to the grid is an issue that should be addressed.

Voltage of DC-link capacitor is a good criterion to indicate the power flow. When this voltage exceeds its reference value, the control system should lower the shoot-through duty cycle and in case the reference voltage has higher value, the shoot-through duty cycle should be increased by the control system so that the stability of the system be ensured.

As shown in Fig. 3, the voltage of Trans-Z-Source network capacitor is sampled and compared with its reference value. Then the error signal is controlled by a PI controller to produce the amplitude of the reference current. To achieve unity power injection, a Phase Locked Loop (PLL) block derives the phase of the grid voltage and multiplying it to the value of the output of the PI controller, and it also produces the reference current (i_{ref}) for injected grid current control. By subtracting the grid sampled current from i_{ref} the error signal is applied to a Proportional Resonance (PR) controller. To ensure good quality power injection an active damping method is also employed. The parameter design of the active damping factor and PR controller is discussed in the next section.
As resistances of filter inductances and capacitor are neglected through design procedure, they are not shown in Fig. 3. The equivalent block diagram of the system is shown in Fig. 4. As can be seen, the actual injected current to the grid is differentiated from the reference current, which is calculated by the upstream power control. The error goes through a PR controller to create reference voltages for the inverter.

To compensate filter resonance peak, a feedback of filter capacitor current is added to these references. Design of controller parameters and capacitor current feedback coefficient is discussed in the following section.

4. Design of PR Controller and Active Damping

4.1. Control Scheme Modelling

The transfer function of a non-ideal PR controller is shown by

\[
G_{i}(s) = \frac{K_{m}G_{Pr}(s)}{CLs^{2} + K_{m}K_{AD}Cs + 1}
\]

\[
G_{z}(s) = \frac{CLs^{2} + K_{m}K_{AD}Cs + 1}{Ls^{2} + (L_{1} + L_{2})s}
\]

\[
G_{Pr}(s) = K_{p} + \frac{2K_{r}s}{s^{2} + \omega_{r}^{2}}
\]

\[
G_{Pr}(s) = K_{p} + \frac{2K_{r}s}{s^{2} + 2\omega_{r}Cs + \omega_{r}^{2}}
\]

\[
K_{AD} \text{ is the active damping factor and } G_{Pr}(s) \text{ is PR controller Transfer function. According to Fig. 5, the open loop Transfer function is calculated as following:}
\]
Substituting $i_{s1}(s)$ from (10) to (16), E_a can be expressed as:

$$E_a = \frac{T(j\omega)G_{pr}G_{ji}}{1 + T(j\omega)} \frac{1}{\cos \varphi} - 1$$

If $T_{f1} \geq 40\text{dB}$ then $1 + T(j\omega) \approx T(j\omega)$, so (14) can be rewritten:

$$E_a = -\frac{T(j\omega)}{1 + T(j\omega)} \frac{1}{\cos \varphi} \approx -\frac{1}{\cos \varphi} - 1$$

According to (18) and Fig. 6, to achieve zero error $\cos \varphi = 1$ which means $\varphi = 0\,^\circ$. As the phase of the reference current is defined by a phase locked loop (PLL) of the grid voltage, $i_{ref}(s)$ and $V_g(s)$ have the same phase ($\theta = 0\,^\circ$).

4.2. Proportional – Resonant Controller

4.2.1 Proportional Gain (K_p)

The resonance frequency of LCL filter can be obtained by equation (19):

$$f_{res} = \frac{1}{2\pi \sqrt{\frac{L_1 + L_2}{L_1 L_2 C}}}$$

The crossover frequency (f_c) value is usually chosen lower than switching frequency (f_m) to prevent the effect of attenuating high frequency noise. Resonance frequency of the LCL filter is typically constrained in the range of $f_m/4$ to $f_m/2$ in order to suppress harmonics and function with a good dynamic. To fulfil appropriate design and suitable performance of the LCL-type grid connected Trans-Z-Source inverter, f_c is chosen a value lower than $f_m/10$. Since f_c is about ten times smaller than f_m and it is also smaller than resonance frequency of LCL filter, the impact of the capacitor can be overlooked [42], so the open loop Transfer function of the system can be derived as:

$$T(s) \approx \frac{K_p K_m G_{pr}(s)}{(L_1 + L_2)s}$$

PR controller equation can be simplified since the cut-off frequency is greater than the fundamental frequency, therefore the resonance term of PR controller is ignored and (21) is concluded.

$$G_{pr}(j\omega) = K_p + K_r = K_p$$

The open loop Transfer function can be rewritten as follows:

$$T(j\omega) \approx \frac{K_p K_m G_{pr}(s)}{(L_1 + L_2)j\omega}$$

The amplitude of system frequency response is zero in cut-off frequency and it can be used to calculate proportional gain.
\[
20\log|G(j2\pi f)| \approx 20\log \frac{K_p K_m K_f}{(L_1 + L_2) j\omega} = 0 \tag{23}
\]

\[
K_p = \frac{2\pi f_j(L_1 + L_2)}{K_p K_m} \tag{24}
\]

4.2.2 Resonant Gain (\(K_r \))

Considering PR controller Transfer function as (7), in cut off frequency (\(f = f_j \)) (7) can be rewritten as:

\[
G_{Pr}(j\omega) = K_p + \frac{2K_c \omega_{PRc}(j\omega_j)}{(j\omega_j)^2 + 2\omega_{PRc}(j\omega_j) + \omega_j^2} = K_p + K_r \tag{25}
\]

According to (20) and (24) it is inferred that:

\[
|T(s)|_{\omega=\omega_j} \approx \frac{K_p K_m (K_r + K_f)}{(L_1 + L_2)(j\omega_j)} \tag{26}
\]

Considering (15) leads to (27) and (28)

\[
T_{f_1} = 20\log [T(j\omega_j)] = 20\log \frac{K_p K_m (K_r + K_f)}{(L_1 + L_2)(j\omega_j)} \tag{27}
\]

\[
K_r = \frac{2\pi(L_1 + L_2)}{K_p K_m} \left(\frac{f_j}{10^\frac{20}{20}} - f_j \right) \tag{28}
\]

By substituting \(j\omega_j \) for \(s \) in (7):

\[
G_{Pr}(j\omega_j) = K_p + \frac{2K_c \omega_{PRc}(j\omega_j)}{(j\omega_j)^2 + 2\omega_{PRc}(j\omega_j) + \omega_j^2} \tag{29}
\]

As \((j\omega_j)^2 + 2\omega_{PRc}(j\omega_j)\) is far greater than \(\omega_j^2 \), so the term \(\omega_j^2 \) can be ignored and \(G_{Pr}(s) \) will be:

\[
G_{Pr}(s) = K_p + \frac{2K_c \omega_{PRc}}{s} \tag{30}
\]

Assuming desired phase margin for the system to be PM, it can be inferred that:

\[
\pi + \angle T(j\omega_j) = PM \tag{31}
\]

Using (8) together with (28) and (29), \(K_r \) can be expressed as:

\[
K_r = \left(\frac{L_1 + L_2}{L_C} - 2\pi L_f f_c^2 - K_{PRc} f_c \tan(\text{PM}) \right) \frac{\pi f_j K_p}{w_{PRc}} \tag{32}
\]

\[
K_{AD} = K_{ADc} f_c + \left(\frac{L_1 + L_2}{L_C} - 2\pi L_f f_c^2 \right) \tan(\text{PM}) \tag{33}
\]

4.2.3 Capacitor Current Feedback Coefficient (\(K_{AD} \))

By substituting (24) and (28) in (31), \(K_{AD} \) is calculated as:

\[
K_{AD} = \left(\frac{L_1 + L_2}{L_C} - 2\pi L_f f_c^2 \right) \frac{K_{PRc} f_c}{w_{PRc}} \tan(\text{PM}) \tag{34}
\]

The gain margin (GM) of the system at resonance frequency is calculated as following:

\[
GM = -20\log\left|T(j\omega_j)\right| \tag{35}
\]

Substituting \(s = j\omega_j \) into (6) it’s inferred that:

\[
G_{Pr}(j\omega_j) = K_p + \frac{2K_c \omega_{PRc}(j\omega_j)}{(j\omega_j)^2 + 2\omega_{PRc}(j\omega_j) + \omega_j^2} \tag{36}
\]

As the denominator of the part, which contains \(K_r \) is far greater than the numerator part, this part can be ignored and (35) can be rewritten:

\[
G_{Pr}(j\omega_j) = K_p \tag{37}
\]

Substituting (24) and (36) into (8) in \(s = j\omega_j \) \(T(j\omega_j) \) will be:

\[
T(j\omega_j) = \frac{A}{B} \frac{2\pi f_j(L_1 + L_2)}{-(\omega_j)^2 (L_C K_{ADc} K_m) - j\omega_j(L_1 C \omega_j^2 + (L_1 + L_2))} \tag{38}
\]

As \((K_{ADc} K_m)^2\) is far greater than \(4\omega_j^2 L_1^2\), the latter term can be ignored, so \(T(j\omega_j) \) can be simplified to (39).

\[
T(j\omega_j) = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} 2\pi f_j L_1 \\ K_{ADc} K_m \end{bmatrix} = \begin{bmatrix} A \\ B \end{bmatrix} \tag{39}
\]

Considering (34) and (39), the minimum value of \(K_{AD} \) is expressed by (40):

\[
K_{AD} = 10^{-20} \cdot \frac{2\pi f_j L_1}{K_m} \tag{40}
\]

4.2.4 Design Considerations

The magnitude of the open loop Transfer function at fundamental frequency, \(T_{f_1} \), is the starting point for controller parameter design. As mentioned in (18), \(T_{f_1} \) should be greater than 40 dB. In this paper \(T_{f_1} \) is supposed to be 45 dB.

After calculating \(K_p \) and defining \(T_{f_1} \), the next step is to calculate minimum resonant gain \(K_r \) by equation (28). Then the upper boundary of \(K_{AD} \) is obtained using (33). The lower boundary of \(K_{AD} \) depends on GM and cut-off frequency rather than intrinsic parameters of the system. By applying (40) and supposing the \(GM = 5 \text{dB} \) at resonance frequency, the minimum value of \(K_{AD} \) is obtained. After all, when the range of \(K_{AD} \) is defined, and the suitable value of \(K_{AD} \) is chosen, the upper boundary of \(K_r \) is calculated using (32). It should be noted that, by decreasing the value of \(K_{AD} \), the phase margin of the open loop system increases. To choose a suitable value for \(K_r \), it should be taken into account that greater \(K_r \) leads to smaller GM.

5. Simulation Results

In this section, PV arrays are set as shown in Table 2. The LCL filter parameters are considered as Table 3. As the switching frequency is 10 kHz, the resonance frequency of the filter should be within the range of \(f_m/4 \) to \(f_m/2 \). The resonance frequency of LCL filter is 2516 Hz. To fulfill appropriate design and suitable performance of the grid connected LCL single-phase Trans-Z-source inverter, \(f_c \) is chosen a value lower than \(f_m/10 \). Therefore, the cut-off frequency is set...
to be 630 Hz. Using (24) \(K_p \) becomes 0.7265. By employing (28) the lower boundary of 11 is calculated for \(K_p \). The upper boundary for the active damping coefficient using (33) is obtained as 0.3. Equation (40) gives the lower boundary of 0.041 for \(K_{ad} \). \(K_{ad} \) is chosen to be 0.045 to achieve sufficient phase margin for the system. After definition of \(K_{ad} \), the upper limit of \(K_p \) is calculated using the defined value of \(K_{ad} \) and (32), so \(K_p \) is in the range of 11 to 130. Considering suitable phase margin and gain margin, \(K_p \) is set to be 60 (about half of the maximum limit).

Fig. 7 shows the open loop bode diagram of the system. As can be seen, using designed parameters leads to a phase margin of 61.3 degrees and gain margin of 5.3 dB.

Table 2. Parameters of the solar panel at 25º C and solar irradiance of 1000 W/m²

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_{mp})</td>
<td>30.44 A</td>
</tr>
<tr>
<td>(V_{mp})</td>
<td>78.9 V</td>
</tr>
<tr>
<td>(P_{max})</td>
<td>3075 W</td>
</tr>
<tr>
<td>(I_{sc})</td>
<td>32.84 A</td>
</tr>
<tr>
<td>(V_{oc})</td>
<td>98.7 V</td>
</tr>
<tr>
<td>(N_s)</td>
<td>3</td>
</tr>
<tr>
<td>(N_P)</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 3. System parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Voltage (RMS)</td>
<td>110 V</td>
</tr>
<tr>
<td>Grid frequency</td>
<td>60 Hz</td>
</tr>
<tr>
<td>Switching frequency</td>
<td>10 kHz</td>
</tr>
<tr>
<td>filter capacitance (C)</td>
<td>2200 (\mu)F</td>
</tr>
<tr>
<td>Transformer turn ratio (n)</td>
<td>2</td>
</tr>
<tr>
<td>Inverter side inductance (L₁)</td>
<td>1 mH</td>
</tr>
<tr>
<td>Filter capacitance</td>
<td>20 (\mu)F</td>
</tr>
<tr>
<td>Grid side inductance (L₂)</td>
<td>0.25 mH</td>
</tr>
</tbody>
</table>

A comparison between the system with and without active damping scheme is illustrated in Fig. 8. Sharp rise of frequency response magnitude, due to LCL filter resonance can be seen around resonance frequency. As is shown, this sharp rise is completely softened using active damping. In Fig. 9 at \(t=0.4 \) s active damping is disabled and the grid current control will not work.

As depicted in Fig. 10 the MPPT method applied in this system has 91% efficiency obtaining 2770W of the nominal power (3075W) of PV arrays.

One of the two main goals of the control system is to inject power to the grid fulfilling grid standards. As shown in Fig. 11 a sinusoidal current with frequency of 60 Hz is injected to the grid and Fig. 12 confirms the unity power factor of the injected power as there is zero phase shift between grid voltage and grid current. Fig. 13 shows that THD of the injected grid current is 1.24%, which is a considerably low value.

Fig. 7. Open loop bode diagram of the system

Fig. 8. Open loop bode diagram of the system with and without active damping

Fig. 9. Grid Current (the Active damping is disabled at \(t=0.4 \) s)

Fig. 10. PV power of the system with 91% efficiency
control system should maintain system stability during temperature changes and irradiance changes. In Fig. 14 the temperature is risen from 25 ºC to 45ºC at t=0.4 s. Fig. 15 shows that the control scheme can maintain system stability during temperature change at t=0.4 s.

Fig. 16 depicts the obtained PV power during irradiance change from 1000 W/m² to 850 W/m². The control system can keep the system in stable mode as shown in Fig. 17 in which the grid is controlled in the new condition caused by irradiance change at t=0.4 s. Therefore, it can be concluded that in both cases, the control system performs well and the system is stable against temperature and irradiance change.

The voltage stress of the Trans-Z-Source inverter switches, which are shown in Fig. 18, are a suitable value and the switches are not under high voltage stress. The Trans-Z-Source capacitor voltage is an important part of the control method. As pointed out in Fig. 19 the capacitor voltage ripple is acceptable which leads to satisfying performance of the grid side current control.
As Distributed Power Generation (DPG) systems may be exposed to weak grid, it is important for the system to maintain its stability during grid voltage fluctuations. In the following four scenarios, the grid voltage amplitude changes. Voltage sag is the common case, so three cases in which the grid voltage drops by 0.1 p.u. (Fig. 20), 0.2 p.u. (Fig. 21) and 0.3 p.u. (Fig. 22) respectively, have been considered and in all cases the voltage variation starts at \(t=0.4 \) s and ends at \(t=0.55 \) s. As grid voltage swell is rare in weak grids, a case where 0.05 p.u. voltage swell is also considered which is depicted in Fig. 23. The THD of the injected current during grid voltage variation has been stated in the captions of figures.

In the following two figures, the injected current control of the system has been investigated under grid side inductance change. In the first case which is shown in Fig. 24 the grid side inductance value is doubled between \(t=0.4 \) s and \(t=0.55 \) s and as depicted in Fig. 25, the second one shows the injected current to the grid, while the grid side inductance is half of its primary value. In both cases, the system maintains its stability and the control part performs well against variation of grid side inductance.
converter, therefore as shown in Table 5 the THD of the injected current may be slightly more than systems with batteries as input source.

7. Conclusion

Due to development of grid-tied PV based inverters as Distributed Power Generators, the control of injected power to the grid becomes more important. In this work a control scheme for a PV based Trans-Z-Source inverter which is connected to the grid through LCL filter is proposed and also a systematic method for designing the controller parameters and active damping factor is also provided. The control method performs well on MPPT, the injected power meets the grid codes, and the grid current THD is considerably reduced compared with similar works. Simulation results have been performed during weather change condition to analyze the performance of the system in such circumstances.

References