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Zero-energy buildings (ZEBs) have emerged as a promising design approach to address environmental
concerns and achieve long-term cost savings for governments and customers. However, geographical and
climate situations like being or difficult-to-access locations, as well as regions well-suited for renewable
energy, have attracted attention to off-grid ZEBs. These off-grid ZEBs provide an effective solution for
customers residing in such regions by harnessing the concept of supplying building demand through a
standalone energy system independent of urban electricity infrastructure. Passive design, particularly
through the use of envelope thermal insulation, plays a crucial role in enhancing the energy efficiency of
buildings. This paper presents a two-stage optimization model of risk-based off-grid ZEB planning in hot
climate regions, which encompasses of sizing the standalone energy system and designing the required
thermal insulation. At the upper level, the focus is on identifying the most cost-effective capacities for
the energy resources and determining the appropriate parameters for insulation design. The lower-level
problem, embedded within a scheduling model, extracts the expected annual operation cost in order to
ensure the feasibility of the sizing problem and meet the annual electric demand. The robust approach as
the risk management tool is employed to mitigate the inherent uncertainty associated with the building
demand. Furthermore, the two-stage problem is tackled through a hybrid algorithm, composed of nu-
merical metaheuristic and mathematical programming methods. Moreover, an industrial campus in Kish
Island is selected as the simulation case study to validate the proposed approach in creating an off-grid
energy-efficient system. The standalone energy system of DG-PV-storage integration results in an 8%
reduction in planning cost compared to the only-DG system, with a 9% decrease in DG capacity. Addi-
tionally, incorporating insulation design using XPS material leads to a further overall cost reduction of
22%, accompanied by a reduction of 47 m2 in PV panel area.
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NOMENCLATURE

i, Ωins Set of insulation types

h hour

y Planning year

l External wall layer index

ρins Insulation price ($/m3)

CCDG Capital cost of DG ($/kW)
MCDG Maintenance cost of DG ($/h)
CCPV Capital cost of PV ($/kW)
MCPV Maintenance cost of PV ($/m2)
CCST Capital cost of storage ($/kW)
MCST Maintenance cost of storage ($/kWh)
intr Interest rate
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in fr Inflation rate

ρDG Operation price of DG ($/kWh)

ηST Efficiency of storage

TED Total electric load (kW)

ηPV Efficiency of PV

Gh Hourly solar irradiation (kW/m2)

CDH Cooling degree hour (C)

Γ Budget of uncertainty

R Thermal resistance (m2.K/W)

Th Hourly temperature (C)

λw Thermal conductivity

WWR Window to wall ratio

Aw Insulating area (m2)

xw Insulation thickness (m)

ψDG DG capacity (kW)

ΦPV PV capacity (kW)

ΦST Storage capacity (kW)

PDG DG power (kW)

ZDG Binary state variable of DG

ui Binary variable vector of insulation selection

zch Charge state of storage

zdc Discharge state of storage

Pch Charge power of storage

Pdc Discharge power of storage

CST Energy capacity of storage

APV Area of PV array

∆E Reduced cooling demand

qh, δh, M Auxiliary decision variables used Robust modeling

1. INTRODUCTION

A. Zero energy buildings
A zero-energy building (ZEB) is a structure that is designed and
built to generate as much energy as it consumes over the course
of a year. This is achieved through a combination of energy-
efficient design strategies, renewable energy sources, and on-site
energy generation. The goal of zero-energy buildings is to mini-
mize the reliance on fossil fuel-based energy sources and reduce
greenhouse gas emissions. These buildings often incorporate
features such as solar panels, high levels of insulation, efficient
lighting and appliances, and advanced building automation
systems. By optimizing energy use and utilizing renewable
energy, zero-energy buildings can significantly reduce energy
costs and have a positive environmental impact. Governments
have increasingly shown their support for the development of
ZEBs due to various reasons associated with energy issues. The
combustion of fossil fuels as a means of energy production sig-
nificantly contributes to the emission of greenhouse gases, which
are prime drivers of climate change. ZEBs, on the other hand,
operate on renewable energy sources and exhibit high levels
of energy efficiency. As a result, they effectively minimize the
carbon footprint of buildings, thereby aiding in the mitigation
of climate change. Additionally, dependence on imported en-
ergy sources can expose countries to fluctuations in prices and

geopolitical tensions. By investing in ZEBs and other alterna-
tive energy forms, governments can reduce their reliance on
fossil fuels, consequently enhancing energy security. Lastly, the
escalating costs of energy can impose substantial burdens on
both households and businesses, and this is where ZEBs provide
considerable relief. By reducing energy consumption, ZEBs can
effectively decrease energy bills, making energy more affordable
for all parties involved [1–3].

One essential aspect of the concept behind ZEBs revolves
around passive design. Passive design entails the utilization of
design strategies that maximize natural sources of heating, cool-
ing, and lighting in order to minimize the reliance on mechanical
systems and reduce energy consumption. The primary objective
of passive design is to create indoor environments that are both
comfortable and energy-efficient, ultimately reducing the carbon
footprint of the building. Passive design strategies encompass
several methods, including optimizing the orientation of the
building [4], insulating walls, roofs, and floors [5–7], insulating
windows [8], thermal mass such as concrete and brick [9, 10],
solar reflecting paints for walls [11–13], daylighting [14, 15] and
shading devices, such as awnings and blinds [16–21].

When it comes to meeting the energy demands of ZEBs, it is
desirable to rely on clean and carbon-free renewable resources,
such as photovoltaic (PV) units. These resources not only con-
tribute to reducing the operation costs but also pose a lower
environmental impact compared to fossil fuel-based resources
[22]. Hence, efficient sizing of these resources is crucial in creat-
ing a cost-effective ZEB, considering the current high investment
costs associated with renewable units like PV [23]. The studies
on various climatic conditions and their influence on the opti-
mal passive-active design of ZEBs have been addressed in [24].
Additionally, authors of [25] proposed a machine learning-based
approach to mitigate the optimal energy management of ZEBs,
particularly focusing on renewable generation forecasting. Fur-
thermore, the integration of a multi-pane glazed all-glass PV
system and battery storage in ZEB design, taking into account
building anatomy, has been investigated by [26].

Authors in [27] investigated a multi-objective optimization
design strategy for zero-energy residential buildings, focused
on lowering thermal load and investment costs and extracting
a higher PV power output. This approach utilizes the paramet-
ric design tool offered by the Grasshopper platform, as well as
the Non-Dominated Sorting Genetic Algorithm II. Ref. [28] im-
plemented a dynamic simulation through an integrated energy-
economic analysis to assess the feasibility of new Net ZEB offices
in different Italian climate zones.

Optimal design of zero-energy PV-integrated buildings was
addressed by [29, 30], focusing on the climate changes, global
horizontal irradiation and meeting demand. The optimal inte-
gration of renewable PV and hydrogen energy storage units to
power a ZEB was studied by [31, 32]. The transient behavior
of such an energy system evaluated the thermal comfort and
represented the role of hydrogen storage in hot water provision
for the occupants of the building.

Several diverse criteria can inform the planning of the energy
system and the design of ZEBs [33]. These criteria include but
are not limited to: minimizing costs and energy consumption
[34], considering economic and environmental aspects within
a fuzzy multi-criteria framework while accounting for uncer-
tainties [35], reducing lifecycle costs and lifecycle energy con-
sumption [36], minimizing the overall cost and energy loss while
maximizing thermal comfort [37]. To enhance the energy effi-
ciency, thermal comfort, and visual comfort of a ZEB, it has been
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explored that optimal retrofitting can be achieved through in-
tegrating photovoltaic systems and controlling passive design
parameters such as envelope insulation, heating, ventilation
and air conditioning (HVAC) systems, shading, and windows
[38, 39]. Moreover, authors in [40] proposed a comprehensive
framework for retrofitting existing buildings to transform them
into ZEBs. The framework outlines step-by-step procedures
for successful retrofitting planning, which involve data collec-
tion, life cycle cost calculations, building simulations, and multi-
criteria decision-making based on the analytic hierarchy process
(AHP). The study conducted in [41] focused on achieving a
grid-interactive near-ZEB design by employing a multi-objective
approach. The researchers utilized the glowworm swarm algo-
rithm to enhance the optimization problem and find the most
optimal solution. Ref. [42] assessed the feasibility of a biomass-
driven cogeneration system for a grid-connected ZEB, with the
objective of meeting the energy demands, including electricity,
hot water, cooling, and heating throughout the year. The plan-
ning problem was modeled within a multi-objective framework
using nondominated sorting genetic algorithm II (NSGA-II).

Ref. [43] investigated the optimal sizing of PV systems to
create a ZEB without concerning the impact of passive design
tools like insulation. Ref. [44], conducted a risk-based planning
of a standalone energy system along with optimal selection of
the insulation material to reach a cost-effective ZEB. However,
the type of insulation material used for energy-saving enhance-
ment can optimally impact the total cost of ZEB creation [45, 46].
Also, the factors like thermal inertia and comfortability are af-
fected by optimally selecting the insulating material and type
[47]. Authors in [48] developed a multi-criteria approach to
rank the insulation material and obtain the optimum thickness
values used for ZEB planning. Ref. [49] carried out an optimal
decision-based passive design of a building by considering the
inherent uncertainties and controlling the design parameters
and insulation thickness as the main term. Ref. [50] dealt with
risks associated with the uncertainties in future costs to address
the optimal and cost-efficient design of a ZEB.

B. Contribution
After reviewing previous research on ZEBs, it becomes evident
that they can be categorized into various areas of study, includ-
ing optimal energy system sizing, multi-criteria design, analysis
of thermal behavior, impact of climate change on PV genera-
tion, optimal retrofitting, and optimal passive design to enhance
energy efficiency. Also, recent studies have employed various
metaheuristic optimization algorithms to address the design
challenges of ZEBs, employing either single or multi-objective
approaches. However, these studies lack a comprehensive and
cohesive framework that provides a holistic view of standalone
energy system design and the influence of insulation design on
the sizing problem. Additionally, the sizing problem extends
beyond considering investment costs alone. It should be noted
that achieving optimal scheduling of the energy system while
accommodating the demands of passive cooling necessitates the
utilization of a well-defined programming model. Furthermore,
they fall short of providing a risk analysis to account for the
effects of uncertainty on overall planning. These two aspects
complicate the optimization modeling and introduce significant
nonlinearity into the ZEB planning problem.

This paper aims to investigate the optimal planning of a
standalone energy system for an electrically off-grid ZEB, con-
sidering the impact of passive design. The concept of this ZEB
is implemented in an industrial campus situated on Kish Island,

with the objective of achieving self-sufficiency and isolation from
the electric utility grid. The planning of the standalone energy
system entails determining the appropriate sizes for the diesel
generator (DG), PV, and energy storage units, which are inte-
grated to meet the campus’s electricity demand. It is important
to note that the presence of the DG enhances the system’s reli-
ability, albeit at the expense of fuel operation costs and carbon
emissions for the campus owner.

In tropical regions, the cooling demand in buildings consti-
tutes a significant portion of the electricity load. In addition
to the standalone energy system, passive design measures can
help reduce the cooling demand and interact with the sizing
problem. Passive design refers to selecting cost-effective insula-
tion materials, determining their thickness, and calculating the
area required on the external walls of the building. The capacity
of the energy system must meet the total electrical demand of
the ZEB throughout the year. Therefore, employing an optimal
thermal insulation design can lead to a significant decrease in
cooling demand and reduce the overall capacity requirements.

Furthermore, some parameters exist in this problem, like the
electrical demand of the buildings that are inherent to uncer-
tainty and put the long-term planning at risk. To cope with
these uncertainties, different methods like Conditional Value-at-
Risk (CVaR), Variance, and Shortfall as the scenario-based risk
management methods have been introduced [51]. However, a
Robust modeling framework is implemented in this paper to
mitigate the uncertainty of the annual electrical demand, which
regards the worst-case scenario of the electrical demand in the
off-grid ZEB planning problem. Notwithstanding the low flexi-
bility compared to stochastic optimization methods like CVaR,
Robust optimization imposes a lower computational burden
[52].

Due to the complexity of the ZEB planning problem, (as will
be discussed later), the authors of this paper propose a hybrid
solve approach, which uses particle swarm optimization (PSO)
as the metaheuristic optimization method and mixed-integer
linear programming (MILP) as the mathematical programming
method. This hybrid PSO-MILP approach represents a bi-level
optimization model, which offers cost-effective planning solu-
tions for off-grid ZEB creation. At the lower level, the approach
utilizes MILP to address the yearly scheduling problem per-
taining to the standalone energy system. Meanwhile, the up-
per level employs the PSO algorithm to optimize the overall
planning problem. Additionally, the authors incorporate the Ro-
bust approach to enable optimization of the long-term planning
problem under different risk strategies employed by decision-
makers. The lower level problem is solved using the Robust
MILP (RMILP), converting the optimization process into the
hybrid PSO-RMILP.

According to the stated contents, the main objectives of this
paper are listed below:

• a two-stage optimization approach to model the ZEB plan-
ning problem

• optimal sizing of standalone energy system under the effect
of optimal insulating design

• a hybrid PSO-RMILP algorithm to solve the ZEB planning
problem under risk management

The rest of the paper is structured as follows. Section 2 defines
and formulates the problem and gives an explanation of the
proposed optimization method. Section 3 evaluates the results



Research Article Journal of Energy Management and Technology (JEMT) Vol. 8, Issue 2 132

by performing the simulation for an isolated building located on
Kish Island, and finally, the conclusion is provided in section 4

2. PROPOSED METHODOLOGY

A. Problem formulation
In this paper, optimal long-term planning of off-grid ZEB for
an isolated energy system is studied. This problem consists of
three parts, the passive planning of the building, sizing of the
integrated energy resources, and scheduling of this standalone
system to have the least operation cost. This optimal scheduling
is performed concerning the saved energy amount and deter-
mined DG-PV-storage sizes. The whole planning of the off-grid
ZEB is modeled as below with the objective function in (1) and
its relevant equations and constraints in (2)-(20).

minTPC = φins + φPV + φPV + φST + φopr (1)

where
φins = ∑i∈Ωins

uiρ
ins
i xw

i Aw (2)

∑i∈Ωins
ui = 1 (3)

φDG = CCDGψDG +
Ny

∑
y=1

Nh

∑
h=1

MCDGψDGPWFy (4)

φPV = CCPVψPV +
Ny

∑
y=1

Nh

∑
h=1

MCPVψPV PWFy (5)

φST = CCSTψST +
Ny

∑
y=1

Nh

∑
h=1

MCSTψST PWFy (6)

φopr =
Ny

∑
y=1

Nh

∑
h=1

ρ

DG

(aDGPDG
h,y + bDGψPV)PWFy (7)

PWFy = ( 1+int_r
1+inf _r )

y (8)

Subject to

zDG
h,y .Pmin

DG ≤ PDG
h,y ≤ zDG

h,y .Pmax
DG (9)

zch
h,y.Pmin

ST ≤ Pch
h,y ≤ zch

h,y.Pmax
ST (10)

zdc
h,y.Pmin

ST ≤ Pdc
h,y ≤ zdc

h,y.Pmax
ST (11)

CST
h,y = CST

h−1,y + ηST Pch
h,y − Pdc

h,y/ηST (12)

zch
h,y + zdc

h,y ≤ 1 (13)

Pmax
ST = αmaxψST , Pmin

ST = αminψST (14)

PDG
h,y + PPV

h,y + Pdc
h,y ≥ Pch

h,y + TÊD(h,y) − ∆Eh,y (15)

PPV
h = APVηPVηConGh (16)

∆Eh = 0.001× CDHh × (ETTV0
h − ETTV1

h )× Aw/COP
(17)

CDHh =

 Th − Tb Th > Tre f

0 Th > Tre f

(18)

ETTV0
h = (1−WWR)×U0

w + WWR×U f

WWR× SF× SC× CF
(19)

ETTV1
h = (1−WWR)×U1

w + WWR×U f

WWR× SF× SC× CF
(20)

U0
w = 1

∑
Nl
l=1 Rl

(21)

U0
w = 1

∑
Nl
l=1 Rl+

xw
λw

(22)

The objective function in (1), calculates the total planning cost
(TPC) that is quantified into five terms, insulation cost φins, DG
(capital and maintenance) cost φDG, PV cost φPV , storage cost
φST , and DG operation cost φopr. The cost pertaining to insulat-
ing external walls is defined in (2) and depends on the insulation
material type selected from the given set Ωins, insulation thick-
ness, and the maximum insulation surface implemented in the
building. u is a binary decision variable vector that is 1 if the
insulation material type i is selected. According to (3), just one
insulation type can be selected. The costs pertaining to the sizing
of DG, PV, and storage units in (4)-(6) include the capital invest-
ment cost and the maintenance cost based on their selected size.
Equation (7). represents the operation cost of the DG through
the lifetime horizon. The parameters aDG and bDG are the fuel
consumption coefficients with values of aDG=0.246 L/kWh and
bDG=0.08145 L/kWh [53]. Also, the parameter PWF denotes
the present worth factor (8). DG output power is bounded by
inequality (9). Binary variable zDG

h,y determines the on/off states
of the DG unit. Inequalities (10) and (11), stand for the limitation
in the charge and discharge power of the storage system. As
well as (9), two binary decision variables zch

h,y and zdc
h,y define

the charge and discharge states of the storage. Capacity update
of the storage is formulated in (12). Constraint (13) indicates
that the storage can take one of the charge, discharge, or idle
states in each hour. Minimum and maximum charge/discharge
power rates of the storage are determined based on the specific
percentages of the selected storage size αmin and αmax as (14).
Constraint (15) states that the generation capacity of the building
should be as enough as the hourly generation is greater than
the hourly demand. TÊD is the forecasted total hourly electrical
demand. PV output power is calculated by (16) and depends on
its total area, PV efficiency, converter efficiency ηCon and solar
irradiation. Variable ∆E stands for the reduced amount in the
hourly cooling load of the building and is defined as (17) and is
calculated by the envelope thermal transfer value (ETTV) index
[54]. This index expresses the kW amount of thermal load im-
posed on the building by heat transfer from the ambient to the
building indoors through each square meter of the envelopes.
The superscripts 0 and 1 respectively denote the external walls
without insulation and with insulation. CDH as the cooling
degree hour equals 0 for the ambient temperatures less than the
reference temperature and equals their difference for other cases
(18). The ETTV index is defined for two cases of uninsulated
and insulated as (19) and (20), in which Uw and U f are thermal
transmittance values of walls and fenestration (W/m2), WWR is
the window-to-wall ratio of the building, SF is the solar factor,
CF is the solar correction factor and SC is the shading coefficient
of fenestration. The thermal transmittance of walls for the two
aforementioned cases and depending on the external wall layers
is calculated by (21) and (22). R is the thermal resistance of the
materials in the walls that is equivalent to the ratio of material
depth to its thermal conductivity λ (and this is valid for the
utilized insulation material).
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Fig. 1. Steps of the PSO-MILP algorithm

B. PSO-MILP algorithm
The abovementioned problem formulation is a mixed-integer
nonlinear programming model with a relatively high degree of
nonlinearity. To simplify the problem, the annual consumption
of the building, annual solar irradiation, and the annual ambient
temperature are assumed as the forecasted amounts for all the
planning years. As this is a large-size problem and hard to
solve because of its high nonlinearity, the authors propose to
split the problem into a bi-level form (23). The upper level (UL)
determines insulation material type, its thickness and maximum
area, PV size, and energy storage size concerning the operation
cost calculated in the lower level (LL) problem. The LL problem
is a MILP model considering the UL variables as parameters. It
should be noted that since this problem is carried out for an area
with almost unchanged annual electric demand, it is assumed
that the scheduling of the off-grid ZEB for one year serves the
goal.

UL :



Min TPC(u, xw, Aw, ψPV , ψST , ψopr)

s.t.(15)− (21)

LL :

 Min φopr

s.t.(8)− (14)

(23)

To solve this problem, a hybrid PSO-MILP method is proposed.
PSO accounted as the family member of metaheuristic evolution-
ary algorithms is appropriate to numerically solve complicated
nonlinear optimization problems [55]. The basis of PSO is in-
spired by the birds’ motion and reaches the optimal solution
by randomly generation of primary solution population and
updating them in each iteration as (24). In these two equations,
Xt

i and Vt
i are thei′thgenerated solution vector (particle position)

and their respective velocity vector in iteration t.pbest and gbest

respectively denote the best and global solutions and ω, c1, c2,
rt

1, rt
2 are the PSO parameters.

Vt+1
i = ωVt

i + c1rt
1(pbest − Xt

i ) + c2rt
2(gbest − Xt

i )

Xt+1
i = Xt

i + Vt+1
i

(24)

Considering X=[u,xω ,Aω ,ψPV ,ψST ] as the particle position struc-
ture, PSO in the UL generates the random solutions and itera-
tively updates them to reach the global best position. For each
solution generated in the UL, the LL problem with the MILP
model is solved by taking these solutions as its input parame-
ters. The output of the LL is the annual operation cost of the
building that is used in the calculation of the TPC mentioned
before. This method dramatically reduces the running time of

the simulation. Fig. 1, depicts the whole process of the hybrid
PSO-MILP algorithm used to solve the off-grid ZEB planning
problem.

C. Robust optimization
Since the proposed off-grid ZEB planning is long-term, consider-
ing the uncertainties and their impact on the TPC seems to be of
importance. To avoid further complications, the uncertainty is
taken into consideration for the annual total electrical demand
and ignored for other parameters like solar insolation and tem-
perature. This implies a proper risk-based optimization model
to manage the risks and deal with the demand uncertainty as the
most influential factor in the off-grid ZEB planning. Also, the LL
annual scheduling is a large problem on an hourly basis that can
make implementing stochastic optimization methods so diffi-
cult. To this end, Robust optimization [56] as a non-probabilistic
method is used in this paper to concern the worst-case scenario
of the total electrical demand in the planning problem. Unlike
the probabilistic methods that are on the basis of the probability
distribution functions, the uncertain parameter in Robust opti-
mization is modeled by an interval set as an unknown variable
limited within a specific bound. This is shown for hourly to-
tal electrical demand in (25) that TÊDstates the actual demand,
TÊDh denotes the forecasted demand and Dmin

h ,Dmax
h indicate

the boundaries of the demand.

TÊDh ∈ S(TEDh) = {Dmin
h ≤ TEDh ≤ Dmax

h } (25)

After decomposing the primary planning problem into a bi-level
problem, it is possible to apply the Robust optimization ap-
proach to the LL scheduling problem. By considering the annual
generation-demand inequality in (15) and its reformulation as
(26)-(28) below, the deterministic LL problem is converted to a
Robust MILP (RMILP) with the help of strong duality. Thus,
the main off-grid ZEB planning problem is solved through the
hybrid PSO-RMILP method.

PDG
h + PPV

h + Pdc
h ≥ Pch

h + (TEDh + M.Γ + qh)− ∆Eh (26)

M + qh ≥ (Dmax
h − Dmin

h ).δh (27)

M ≥ 0, qh ≥ 0, δh ≥ 1 (28)

In these new constraints, Γ is the Robust controlling parameter
known as the budget of uncertainty. This parameter here is
defined between [0,1] and sets the risk strategy of the planner.
The value of 0 gives the previous deterministic model, while the
value of Γ = 1 stands for the highest conservatism or risk-averse
strategy of the planner. Also, the continuous decision variables
M, qh, δh are deduced from the implementation of the strong
duality concept.

3. RESULTS AND DISCUSSIONS

The proposed approach is examined on an existing industrial
campus in Kish Island [44], shown in Fig. 2, which includes two
office buildings and two industrial buildings. The main goal
of the decision-maker is to upgrade these buildings within the
off-grid industrial campus to electrically self-sufficient off-grid
ZEBs. It is assumed that the buildings’ rooftops are insulated
before, and the external walls are the candidate locations. Also,
all the external walls are assumed to have the same structure as
depicted in Fig. 3. They are constructed of three layers of inner
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Fig. 2. Industrial campus in Kish Island

Fig. 3. Wall structure of the buildings within the campus

plaster, composite wall, and otter plaster with depths amounts
shown in the figure and thermal conductivity values of 0.87, 0.45,
and 1.4 W/mK respectively. The daily total solar insolation and
maximum temperature in Kish Island for the period between
20/03/2019 and 19/03/2020 are both respectively represented
in Fig. 4 and Fig. 5. Although the related temperature data is
given in a daily manner, each value can be assumed as the same
for 24 hours of the day to calculate the CDH. These two data are
available and accessible in [57]. Also, the total electrical demand,
including the cooling demand, is recorded by TDL104 as a data
logger device. Fig. 6 shows the pure annual electrical demand
of the campus within the same period in the time step of 1 hour.
The inflation and interest rates are respectively 8% and 12% too.
The reference temperature to calculate the CDH is assumed to be
26o C. The shading coefficient, solar factor, and solar correction
factor are 0.4, 210.92, and 1, respectively. Also, the COP value is
equal to 3.5. Each office building has a floor area of 300 m2 with
a height of 3 m, while the two industrial buildings have the same
area of 800 m2 and a height of 7 m. The WWR parameter for the
office buildings is 0.068 and for the industrial buildings is 0.089.
Table 1 gives the required data about the distributed energy
resources that can be installed and utilized on the campus. It is
assumed that the minimum and maximum storage power rates
are 5% and 30% of the selected capacity, respectively. Also, the

Fig. 4. Daily total insolation in Kish island

Fig. 5. Daily temperature of Kish Island for one year

Fig. 6. Hourly total electrical demand through one year
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Table 1. Required data for distributed energy resources

Parameter Value Parameter Value

DG capital cost

($/kW)
1521

PV maintenance

cost ($/m2)
5.2

DG fuel cost

($/L)
1.2 PV efficiency 0.20

DG maintenance

cost ($/h)
0.05

Storage capital

cost ($/kW)
200

PV array capital

cost ($/m2)
519.7

storage maintenance

cost ($/kW)
300

Table 2. Required insulation data

Insulation type
Thermal conductivity

(W/mK)
Cost ($/m3)

Expanded polystyrene

(EPS)
0.036 188.42

Extruded polystyrene

(XPS)
0.029 304.23

Foamed polyvinyl

chloride (PVC)
0.024 400

available insulation types to be used in this problem with their
relevant thermal conductivity and cost are listed in Table 2. As
discussed in the previous section, the problem is solved in the
bi-level framework, the upper level is optimized through the
PSO in MATLAB software, and the lower level optimization
solution is achieved using the CPLEX solver in GAMS. Also,
the PSO algorithm is solved by an initial population of 70 and
a maximum iteration of 100. The problem is solved for four
case studies as below, which make a comparison and verify the
validity of the introduced method.

A. DG-based planning of the off-grid ZEBs
In this case study, it is aimed by the decision-maker to supply
the electrical demand of the campus by just installing a DG unit.
Optimal sizing of the DG for the planning horizon of 20 years
(equivalent to the building lifecycle) and concerning the required
demand results in a cost of $7.56 million. This cost contains the
investment cost of buying and installing the DG and its annual
operation and maintenance costs. The optimal size of the DG
is 196 kW which is almost equal to the maximum amount of
the total electrical demand in the industrial campus. This type
of planning enhances the operation cost and greenhouse gas
emission (as an environmental issue), despite its highly reliable
energy provision with an appropriate capacity selection.

B. DG/PV/storage-based planning of the off-grid ZEBs
This case study lets the decision-maker assess the off-grid ZEBs
planning by optimally sizing the DG/PV/storage units. Table 3
shows the results pertaining to the selected capacity of the three
energy resources. As it is clear, the chosen capacity of the DG

Table 3. Optimal capacity of the distributed energy resources
for case study 2

DG

capacity

PV

array area

PV

capacity

Storage

capacity

178 kW 887 m2 117 kW 60 kWh

Fig. 7. Scheduled DG output power during one year for case
study 2

has a lower value than the one obtained in the previous case
study, and this directly refers to the high operation cost incurred
by the DG throughout the planning period. Thus, the shortage
of generation capacity by lowering the DG size is compensated
by locating the PV-storage system with adequate capacity at the
site of the campus The TPC of $6.93 million is obtained for this
case study, which is composed of a total investment cost equal to
744770 $ and operation and maintenance costs of $6.19 million.
Fig. 7 represents the annual DG output power that is expected to
be scheduled in 8760 hours of a year. Fig. 7 shows the scheduled
power of the storage in which the positive values denote the
charge state and the negative values denote the discharge state.
As it is seen, the major part of the campus electrical demand
is provided by the DG. The PV-storage system supplies the
remaining part of the demand, but there is an important point
that should be noted.

Fig. 9 shows the output power of the PV system along with
the charge/discharge power of the energy storage for hours
between 3800-3850. It can be realized from this figure that the
PV’s highest output power coincides with the charge hours of
the storage, which means that the PV output power charges

Fig. 8. Scheduled storage output power during one year for
case study 2
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Fig. 9. PV/storage output powers for hours between 3800-
3850

Table 4. Results pertained to the insulating of the buildings

Building
Insulation

material type

Insulation

thickness (cm)

Insulating

surface (m2)

Office XPS 17.81 274

Industrial XPS 7.53 1020

the storage. On the other hand, the DG capacity is inadequate
relative to the demand in some hours of the year, which implies
the installation of a PV with a considerable area along with
high-power storage to fill this gap.

C. DG/PV/storage planning beside the buildings passive de-
sign

In this case study, the DG/PV/storage planning is evaluated be-
side the optimal insulation of the four buildings. This insulation
as the passive design of the buildings is performed in the first
year of the planning and lets the campus owner utilize two types
of insulation material at the most for the office and industrial
buildings. The initial population number of 70 and iteration
number of 100 are applied for this case study, and Fig. 10 shows
the convergence process of the total planning cost through the
PSO algorithm. Table 4 represents the insulating results on the
external walls of the four buildings, including the selected mate-
rial type, thickness, and maximum insulating surface for each
type. The material type, XPS, with the lowest price, is selected
to insulate the external walls of the office and industrial build-
ings. However, their optimum thickness values are different,
and thicker insulation is implemented for the office buildings.
In addition, the insulation surfaces for the office and industrial
buildings are respectively 274 and 1020 m2, equivalent to the
external wall areas of these buildings, excluding their window
areas. There is an essential point that the insulating cost is
directly related to the multiplication of the insulation surface
and thickness. However, the priority and prominence of the
insulation surface in the obtained optimal solution are evident.
In other words, the algorithm tries first to maximize the insu-
lation surface and then selects the optimum thickness to lessen
the total planning cost. Its reason can be found in Fig. 11, where

Fig. 10. TPC convergence through the iterative process of the
PSO

Fig. 11. Annual cooling load reduction in kW versus insula-
tion surface and thickness

the total insulating-dependence annual cooling load reduction
is represented versus the insulation surface and thickness. It is
seen that in higher insulation surfaces, the amount of reduced
cooling load is increased, and also it is clear that the reduction
of cooling load by insulation is less independent of the thickness
rather than the surface. On the other hand, insulating the ex-
ternal walls just incurs the capital cost. It does not include the
operation and maintenance cost, unlike the distributed energy
resources with a higher investment cost and substantial opera-
tion and maintenance cost for a long-term period. This results
in installing thicker insulation on the external wall of the office
building with a lower insulating surface and the insulation with
a thickness of about 8 cm is utilized for the industrial buildings.
The optimal sizes of the distributed energy resources are given
in Table 5. By comparing the obtained results in the previous
case study, it can be observed that apart from the energy stor-
age, the DG capacity and PV area are reduced. This stands for
utilizing the insulation that reduces the total electrical demand
and consequently lowers the size of installed energy resource
capacity. The obtained TPC in this case study is $5.38 million,
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Table 5. Optimal capacity of the distributed energy resources
for case study 3

DG

capacity

PV array

area

PV

capacity

Storage

capacity

172 kW 840 m2 168 kW 60 kWh

Table 6. Results pertained to the insulating of the buildings for
risk-averse strategy

Building
Insulation

material type

Insulation

thickness (cm)

Insulating

surface (m2)

Office XPS 11.93 274

Industrial XPS 11.73 1020

and the cost-saving amount compared to the case without pas-
sive cooling is equal to $1.55 million. This amount belongs to
cost-saving over the planning period of 20 years.

D. Robust off-grid ZEB planning
In previous case studies, the budget of uncertainty was 0 to solve
the problem deterministically. The last subsection evaluates the
risk-based off-grid ZEB planning by applying the Robust opti-
mization approach. As well as subsection 3, the DG/PV/Storage
system is intended to supply the electrical demand of the in-
dustrial campus actively, and the external wall insulating is
aimed at passive cooling of the buildings. By implementing
the PSO-RMILP method and setting the uncertainty budget on
its maximum amount (Γ=1), the acquired planning results are
given in Tables 6 and 7. Note that the total electrical demand is
assumed to be bounded within 96% and 105% of its forecasted
amount just for simplicity. As the decision-maker adopts the
highest conservatism, it is observed that the insulation thickness
is increased for industrial buildings with a larger area by about
4 cm. However, the thickness value for the office buildings is
reduced compared to the deterministic model, which can be
justified since the insulation cost is reduced for office buildings
with much lower insulating surfaces. In addition, the optimal
DG size and PV area faced a considerable increase by taking the
risk-averse strategy, and these all led to the TPC of $5.91 million.
Compared with the obtained result in the deterministic-based
off-grid ZEB planning, the TPC is increased by $523060 belong-
ing to incurred costs over the 20 years. Also, Fig. 12 represents
the TPC variation for a different budget of uncertainty values of
0, 0.3, 0.5, 0.8, 1. The increasing pattern is evident in this figure,
as the uncertainty budget is increased from 0 to 1, which verifies
the validity of the applied PSO-RMILP method.

In the end, Table 8 gives a general comparison between the
discussed case studies. Looking at this table, the first case study

Table 7. Optimal capacity of the distributed energy resources
for risk-averse strategy

DG

capacity

PV array

area

PV

capacity

Storage

capacity

190 kW 892 m2 178 kW 60 kWh

Fig. 12. TPC variations for different values of budget of uncer-
tainty

Table 8. Optimal capacity of the distributed energy resources
for risk-averse strategy

Case

study

DG

size

(kW)

PV array

area

(m2)

Insulation

thickness

(cm)

Reduction

in cooling

demand

TPC

(m$)

office Indus

#1 196 - - - - 7.56

#2 178 887 - - - 6.93

#3 172 840 17.81 7.53 22293 5.38

#4 190 892 11.93 11.73 23857 5.91
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imposes the largest DG size and TPC for the assumed lifecycle.
The second case improves the TPC by adding the PV-storage
system to supply a part of the electrical demand. In case #3,
implementing the passive design and installing the insulation
on the external walls of the buildings results in lowering the an-
nual cooling demand of the campus and consequently reducing
DG/PV sizes. Thus, the TPC is considerably decreased relative
to the other cases. By applying the Robust approach and con-
sidering the conservatism in the off-grid ZEB planning, the TPC
and the capacity of energy resources are raised to meet the load
error.

4. CONCLUSIONS

The shift towards ZEBs represents a significant acknowledgment
by stakeholders of the urgent need to transition towards a
more sustainable and resilient energy system. This system
must possess the capacity to effectively tackle the ongoing and
complex energy challenges that societies currently confront.
Such challenges include the need to reduce carbon emissions,
enhance energy security, and improve energy affordability
and access. The adoption of ZEBs is an important step in this
direction, as it represents a holistic approach to building design
and operation that maximizes energy efficiency, minimizes
energy waste, and generates or procures renewable energy to
meet energy demands. One special kind of ZEB is the off-grid
buildings that are operated independently of utility power
infrastructure. This paper proposed cost-effective and off-grid
ZEB planning for an industrial campus at Kish Island. It is
worth noting that the proposed approach is more applicable to
the self-sufficiency of existing buildings in tropical regions with
relatively low fluctuations in temperature and is not suitable
for regions with considerable seasonal climate changes. The
proposed planning demonstrates the intrinsic relationship
between the optimal sizing of the standalone energy system and
the optimal passive design, thereby facilitating the creation of a
truly ZEB. Lowering the thermal demand through the external
walls’ insulation can mutually affect the sizing problem and
reduce the investment cost. Thus, a two-stage optimization
model with a hybrid PSO-MILP algorithm was proposed to
mitigate the nonlinearities and ensure the adequacy of the
energy system throughout the year. The key aim of this planning
was to determine the insulation material types installed on
the external walls, calculation of their optimum thickness and
surface such that

• the TPC is reduced in comparison with the planning with-
out utilizing the insulation

• the installed energy resource capacity is enough to supply
the total electrical demand

Also, the PSO-RMILP algorithm was proposed in this paper to
deal with the high non-linearity of the primary problem and
manage the inherent risk by applying the Robust optimization
approach. It was observed that in the deterministic model (Γ=0),
the selected sizes for both the DG and PV were decreased, and
this refers to the passive reduction of the cooling demand by
external wall insulating. However, adopting the risk-averse
strategy (Γ=1) increased the installed DG size, PV array area,
and insulation thickness. Although this conservatism caused the
increase in the TPC, the whole capacity of the energy resources
is determined to meet the unexpected demand errors during the

planning period. The design of ZEBs extends beyond incorporat-
ing an independent energy system and can encompass various
energy sources such as plug-in electric vehicle parking, hydro-
gen storage systems, and combined heat and power (CHP) units.
This aspect introduces the concept of designing multiple energy
carrier systems to achieve ZEB status. The optimal design of
these energy systems, which enables power-to-x (P2X) flexibility,
directly influences insulation design. This correlation between
heat production units and insulation design reduces heat load
with lower risk. Furthermore, ZEBs require fewer urban infras-
tructure resources to meet the demand for alternative energy
carriers. A standalone energy system with appropriate design
and capacity can result in reduced utility bills (including gas
and water) throughout the year. However, it should be noted
that the initial purchase and installation costs of energy sources,
variable weather conditions, and annual increases in electricity
prices pose limitations to conducting research on this subject.
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