Using the virtual resistance control method to reduction oscillations in the input LC filter of AC-DC rectifiers

Document Type : Original Article

Authors

Department of Electrical and Computer Engineering, University of Birjand, Avini Blvd., birjand, Iran.

10.22109/jemt.2022.342345.1385

Abstract

Using the virtual resistance control method to reduction oscillations in the input LC filter of AC-DC rectifiers

This paper examines an important topic called Total Harmonic Distortion (THD) of input current in ac-dc rectifiers. It is especially important in high-power electric vehicle charging stations, which causes oscillations in the power grid.Since the in the rectifiers the input LC filter has the role of filtering and reducing oscillations.In this paper, changes are applied to the rectifier controller, which makes the LC filter behave like an RLC filter.which causes the damping of the input current oscillations to the power grid. Since it does not use any real resistance, the efficiency of the converter does not decrease and losses do not increase. Therefore, it is called virtual resistance control method. It can be considered in series or parallel with inductor or capacitor.This research is to reduce oscillations in high power loads in steady state, which can reduce losses in the filters of the chargers. In the following, the simulation results of the battery charger rectifier are in steady state, And finally to validate it The proposed method has been implemented in a laboratory and the results have been displayed.

Keywords

Main Subjects


1. S. Haghbin, S. Lundmark, M. Alakula, O. Carlson,"Grid-connected integrated battery chargers in vehicle applications: Review and new solution". IEEE Transactions on Industrial Electronics. 2012 Feb 10;60(2):459-73.
2. M. Yilmaz, P.T. Krein,"Review of battery charger topologies, charging power levels, and infrastructure for plug-in electric and hybrid vehicles", IEEE transactions on Power Electronics. 2012 Aug 23;28(5):2151-69.
3. A. Khaligh, S. Dusmez,"Comprehensive topological analysis of conductive and inductive charging solutions for plug-in electric vehicles", IEEE Transactions on Vehicular Technology. 2012 Aug 13;61(8):3475-89.
4. SG. Jeong, WJ. Cha, SH. Lee, JM. Kwon, BH. Kwon. "Electrolytic capacitor-less single-power-conversion on-board charger with high efficiency". IEEE Transactions on Industrial Electronics. 2016 Jul 13;63(12):7488-97.
5. B.Whitaker, A. Barkley, Z. Cole, B. Passmore, D. Martin, TR. Mc-
Nutt, AB. Lostetter, JS. Lee, K. Shiozaki, " A high-density, high-efficiency, isolated on-board vehicle battery charger utilizing silicon carbide power devices". IEEE Transactions on Power Electronics. 2013 Aug 28;29(5):2606-17.
6. Urtasun Erburu, A., Berrueta Irigoyen, A., Sanchis Gúrpide, P., Marroyo Palomo, L. (2018). Parameter-independent control for battery chargers based on virtual impedance emulation. IEEE Transactions on Power Electronics, vol. 33, no. 10, pp. 8848-8858, Oct. 2018.
7. Fu, Y., Li, Y., Huang, Y., Lu, X., Zou, K., Chen, C., Bai, H. (2018). Imbalanced load regulation based on virtual resistance of a three-phase four-wire inverter for EV vehicle-to-home applications. IEEE Transactions on Transportation Electrification, 5(1), 162-173.
8. Urtasun, A., Sanchis, P., Guinjoan, F., Marroyo, L. (2019). Parameter-independent battery control based on series and parallel impedance emulation. IEEE access, 7, 70021-70031.
9. T. Mishima, K. Akamatsu, M. Nakaoka, " A high frequency-link secondary-side phase-shifted full-range soft-switching PWM DC–DC converter with ZCS active rectifier for EV battery chargers". IEEE Transactions on Power Electronics. 2013 Apr 12;28(12):5758-73.
10. M. Kwon, S. Choi, " An electrolytic capacitorless bidirectional EV charger for V2G and V2H application". IEEE Transactions on Power Electronics. 2016 Nov 18;32(9):6792-9.
11. KM. Yoo, KD. Kim, JY. Lee, " Single-and three-phase PHEV onboard battery charger using small link capacitor". IEEE Transactions on Industrial Electronics. 2012 Jun 4;60(8):3136-44.
12. L. Wang, B. Zhang, D. Qiu, " A novel valley-fill single-stage boost-forward converter with optimized performance in universal-line range for dimmable LED lighting". IEEE Transactions on Industrial Electronics.
2016 Dec 6;64(4):2770-8.
13. Y. Wang, N. Qi, Y. Guan, C. Cecati, D. Xu, " A single-stage LED driver based on SEPIC and LLC circuits". IEEE Transactions on Industrial Electronics. 2016 Sep 27;64(7):5766-76.
14. G.Moschopoulos, P. Jain, " Single-phase single-stage power-factor-corrected converter topologies", IEEE Transactions on Industrial Electronics. 2005 Feb 7;52(1):23-35.
15. S. Li, J. Deng, CC. Mi, " Single-stage resonant battery charger with inherent power factor correction for electric vehicles". IEEE Transactions on Vehicular Technology. 2013 May 30;62(9):4336-44.
16. JY. Lee, YD. Yoon, JW. Kang, " A single-phase battery charger design for LEV based on DC-SRC with resonant valley-fill circuit", IEEE Transactions on Industrial Electronics. 2014 Aug 28;62(4):2195-205.
17. NQ. Trong, HJ. Chiu, YK. Lo, CY. Lin, MM. Alam, " Modified current-fed full-bridge isolated power factor correction converter with low-voltage stress", IET Power Electronics. 2013 Oct 30;7(4):861-7.
18. C. Li, Y. Zhang, Z. Cao, XU. Dewei, " Single-phase single-stage isolated ZCS current-fed full-bridge converter for high-power AC/DC applications". IEEE Transactions on Power Electronics. 2016 Nov 1;32(9):6800-12.
19. SW. Lee, HL. Do, " Single-stage bridgeless AC–DC PFC converter using a lossless passive snubber and valley switching". IEEE Transactions on Industrial Electronics. 2016 Jun 7;63(10):6055-63.
20. WY. Choi, " Single-stage battery charger without full-bridge diode rectifier for light electric vehicles". Electronics letters. 2011 May 12;47(10):617-8.
21. WY. Choi, JS. Yoo, " A bridgeless single-stage half-bridge AC/DC converter". IEEE Transactions on Power Electronics. 2011 Apr 7;26(12):3884-95.
22. DS. Gautam, F. Musavi, M. Edington, W. Eberle, WG. Dunford , " An automotive onboard 3.3-kW battery charger for PHEV application". IEEE Transactions on Vehicular Technology. 2012 Jul 25;61(8):3466-74.
23. PQ. Sinusoidal, "Non sinusoidal, Balanced or Unbalanced Conditions". IEEE Std. 1459-2000. 2009 May.
24. KY.Kim, SH. Park, SK. Lee SK, TK. Lee, CY. Won, " Battery charging system for PHEV and EV using single phase AC/DC PWM buck converter". IEEE Vehicle Power and Propulsion. Conference 2010 Sep 1 (pp. 1-6). IEEE.
25. M. Pahlevaninezhad, P. Das, J. Drobnik, PK. Jain, A. Bakhshai, " A new control approach based on the differential flatness theory for an AC/DC converter used in electric vehicles". IEEE Transactions on power electronics. 2011 Sep 29;27(4):2085-103.
26. L.Huber, Y. Jang, MM. Jovanovic," Performance evaluation of bridgeless PFC boost rectifiers". IEEE transactions on power electronics. 2008 May 2;23(3):1381-90.
27. R. Metidji, B. Metidji, B. Mendil , " Design and implementation of a unity power factor fuzzy battery charger using an ultrasparse matrix rectifier". IEEE transactions on power electronics. 2012 Aug 10;28(5):2269-76.
28. X. Zhou, G. Wang, S. Lukic, S. Bhattacharya, A. Huang, " Multi-function bi-directional battery charger for plug-in hybrid electric vehicle application". IEEE energy conversion Congress and exposition. 2009 Sep 20 (pp. 3930-3936). IEEE.
29. DC. Erb, OC. Onar, A. Khaligh, " Bi-directional charging topologies for plug-in hybrid electric vehicles. In2010 Twenty-Fifth Annual", IEEE Applied Power Electronics Conference and Exposition (APEC) 2010 Feb 21 (pp. 2066-2072).
30. V. Monteiro, H. Gonçalves, JC. Ferreira, Jl. Afonso, JP. Carmo, JE. Ribeiro, " Batteries charging systems for electric and plug-in hybrid electric vehicles". InNew Advances in Vehicular Technology and Auto-
motive Engineering. 2012 Aug 1 (pp. 149-168). InTech.
31. OC. Onar, J. Kobayashi, DC. Erb, A. Khaligh, " A bidirectional high-power-quality grid interface with a novel bidirectional noninverted buck–boost converter for PHEVs". IEEE Transactions on Vehicular Technology. 2012 Apr 4;61(5):2018-32.
32. YJ. Lee, A. Khaligh, A. Emadi, " Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles". IEEE Transactions on vehicular technology. 2009 Jul 21;58(8):3970-80.
33. SY. Kim, HS. Song, K. Nam," Idling port isolation control of three-port bidirectional converter for EVs". IEEE Transactions on Power Electronics. 2011 Oct 14;27(5):2495-506.
34. JG. Pinto, V. Monteiro, H. Gonçalves, JL. Afonso , " Onboard reconfigurable battery charger for electric vehicles with traction-to-auxiliary mode". IEEE Transactions on vehicular technology. 2013 Sep 25;63(3):1104-16.
35. GY. Choe, JS. Kim, BK. Lee, CY. Won, TW. Lee,"A Bi-directional battery charger for electric vehicles using photovoltaic PCS systems". In2010 IEEE Vehicle Power and Propulsion Conference. 2010 Sep 1 (pp. 1-6). IEEE.
36. PA. Dahono," A control method to damp oscillation in the input LC filter". IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No. 02CH37289) 2002 Jun 23 (Vol. 4, pp. 1630-1635). IEEE.
37. PA. Dahono, YR. Bahar, Y. Sato, T. Kataoka, " Damping of transient oscillations on the output LC filter of PWM inverters by using a virtual resistor". In4th IEEE International Conference on Power Electronics and Drive Systems. IEEE PEDS 2001-Indonesia. Proceedings (Cat. No. 01TH8594) 2001 Oct 25 (Vol. 1, pp. 403-407). IEEE.
38. AK. Adapa , V. John, "Virtual resistor based active damping of LC filter in standalone voltage source inverter".In2018 IEEE Applied Power Electronics Conference and Exposition (APEC) 2018 Mar 4 (pp. 1834-1840). IEEE.
39. DS. Gautam, F. Musavi, M. Edington, W.Eberle, WG. Dunford, " An automotive onboard 3.3-kW battery charger for PHEV application". IEEE Transactions on Vehicular Technology. 2012 Jul 25;61(8):3466-74.
40. S. Kim, FS. Kang, " Multifunctional onboard battery charger for plug-in electric vehicles". IEEE Transactions on Industrial Electronics. 2014 Dec 4;62(6):3460-72.
41. K. Yao, Y. Wang, J. Guo, K. Chen, " Critical conduction mode boost PFC converter with fixed switching frequency contro". IEEE Transactions on Power Electronics. 2017 Sep 29;33(8):6845-57.