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The optimum use of energy carriers is one of the important factors affecting the sustainable growth and
development of countries. Therefore, monitoring energy consumption is of considerable importance. En-
ergy monitoring with Statistical Process Control (SPC) methods provides a breakdown of energy usage
and makes it easier to perceive trends to reduce consumption. A review of the literature shows that previ-
ous research has addressed detecting change’s time in consumption. Developing these methods in spatial
and temporal aspects of changes in energy consumption, which means detecting the time and location
of changes simultaneously, would be able to provide more accurate diagnostic information. In this pa-
per, a novel spatiotemporal framework based on the extension of the generalized likelihood ratio (GLR)
and T2 control charts are used for monitoring the electricity consumption of eight-time series related to
eight western cities in Mazandaran province, North of Iran, from March 21, 2019, to August 21, 2019. Due
to the presence of autocorrelation in electricity consumption data, a model-based approach is proposed
to reduce the autocorrelation’s effect on chart performance. The performance of the proposed charts in
identifying significant deviations in electricity consumption was evaluated, which indicates the greater
diagnostic power of the GLR chart in detecting the time and location of changes. Application of the
recently-established spatiotemporal surveillance mechanisms for energy consumption monitoring is the
main contribution of this study it would enable practitioners to analyze discrepancies of usage patterns
better and make policies for continual improvement of the regional management of electricity distribu-
tion.
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NOMENCLATURE

Abbreviation

ARL Average run length

ARMA Autoregressive moving-average

ACF Autocorrelation function

CUSUM Cumulative sum

EWMA Exponentially Weighted Moving Average

GLR Generalized likelihood ratio

MCUSUM Lower Control Limit

MEWMA Multivariate Exponentially Weighted moving aver-
age

MLE Maximum likelihood estimator

PACF Partial autocorrelation function

SPC Statistical process control

UCL Upper Control Limit

INDEX

i,j Index of regions

K Number of sample
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L Temporal lag operator

M Number of observation

N Number of observation

p Order of autoregressive model

q Order of moving average model

t Index of time

τ Shift time

hGLR Control limit of GLR

Sxx (p-1)×(p-1) Sub matrix of s

T2
p|1, 2, ..., p−1 Approximation of individual observations in

Phase I

W Spatial weight matrix

xi,xj Observed value

Xi Sample vector

X̄ Sample mean vector

X(p−1)
i Mean vector of the first p-1 variable

Yt Observed value

µ0 Mean vector before shift time

µ1 Mean vector after shift time

∑0 Covariance matrix

1. INTRODUCTION

Energy has the largest share of world trade and has a special
place in all human activities. Due to the high energy consump-
tion per capita and the increasing limitations in accessing energy
resources, energy consumption management is of considerable
importance. Energy management is systematic monitoring, op-
timization and control of energy consumption to save energy
and reduce energy costs. Energy monitoring is a chain of re-
lated concepts, including forecasting, modeling, controlling and
analyzing energy consumption which can be investigated by
various techniques such as designing measurement devices, in-
troducing software, using statistical process control (SPC) tools,
etc., with the aim of optimizing consumption and providing
accurate information for management decisions at micro and
macro levels. Some studies in this field are to be discussed below
and briefly shown in Table 1.

Rizzo et al. extended an autonomous system for monitoring
water consumption in smart houses which used turbine flow
sensors and ZigBee technology to send consumption volume to
users [1]. Hameed and Barnouti developed an Internet of Things
intelligent (IoT) device for tracking energy consumption, mon-
itoring the time in which a generator operates and calculating
how much fuel is used. Finally, some suggestions on how to
avoid waste of resources have been outlined through an analysis
of the collected data using Apriori decision making algorithm
[2]. In order to predict electricity demand at an Italian health-
care facility, Zini and Carcasci have developed a monitoring
approach based on machine learning which takes into account
the correlation of weather conditions, time and health activities
[3]. Melendez et al. have developed a web service module for
tracking the energy consumption of buildings, using the Mul-
tivariate Principal Component Analysis (MPCA). To identify
these unexpected energy use patterns, two control charts, in-
cluding T2 and Q, have been applied [4]. Stuart et al. based on

half-hourly electricity consumption data, proposed a methodol-
ogy to find opportunities for electricity saving in school build-
ings in the United Kingdom [5]. The method involves using
a cumulative sum (CUSUM) control chart for monitoring time
series data and identifying temporal changes in consumption.
To monitoring energy consumption in the melting furnaces of a
foundry, Puranik used the CUSUM chart to identify abnormal
changes in the process quickly [6]. Braga et al. used a multi-
channel structure for modeling and estimating the building’s
energy consumption profile during a predetermined cycle, and
then applied CUSUM chart for monitoring and detecting any
unusual behavior in energy demand [7]. Shamsuzzaman et al.
demonstrated the design and application of an economical X̄
control chart based on Duncan’s model to monitor and iden-
tify anomalous power loss in the transmission and distribution
systems [8]. In another study Shamsuzzaman et al., proposed
the combined X̄ & Exponentially Weighted Moving Average
(EWMA) scheme for monitoring the carbon emissions of indus-
trial facilities and comparing the performance of the proposed
scheme with a basic chart including X̄, EWMA, and a basic X̄
& EWMA, which showed its better performance in reducing
the expected total cost [9]. Houidi et al. focused on detecting
changes in Home Electrical Appliances in a Non-Intrusive Load
Monitoring context by extending some excited change detector
algorithms, including Bayesian Information Criterion (BIC), the
CUSUM, and the Hoteling T∧2 test, in the multidimensional
case [10]. Faisal et al, proposed a modified CUSUM chart based
on a link relative variable transformation technique to increase
its sensitivity for detecting small and moderate shifts. Average
run length (ARL) was considered to evaluate its performance
with a conventional chart, which indicated the overall good de-
tection of the proposed scheme. A real-world example from the
electrical engineering process was considered as an application
of the proposed chart [11]. Golmohammadi and Golestan, fo-
cused on investigating energy consumption monitoring in an
Iranian cement factory. They considered the clinker production
process, which consumed more than 90% of the total energy con-
sumption, and used I-MR control chart to detected significant
shifts in the process [12].

As seen in the literature review, using SPC tools for moni-
toring energy has been investigated from different aspects to
control and improve consumption. So SPC tools can be used
successfully to continuously monitor the consumption data and
identify unusual changes on time. Control charts are one of
the most common process control tools used for monitoring the
qualitative characteristics of the process, identifying shifts in
the process, and finding assignable causes of variation [13]. The
advantage of using control charts is in identifying any changes
in the pattern of consumption and then taking corrective actions
by using accurate information about the causes of the change
and the pattern of change in consumption to return the process
to in-controlled state. This can be applied like a PDCA cycle
throughout the life of the process. SPC techniques, including
control charts, are widely used in the manufacturing industry
for monitoring qualitative characteristics of processes, their ap-
plication to the energy sector presents unique challenges. One of
the main limitations is related to the availability and standard-
ization of energy consumption data. Unlike the manufacturing
sector, where the quality characteristics of a product can be eas-
ily defined and measured, energy consumption data may be
more difficult to access and standardize. This poses challenges
in selecting the appropriate control chart and identifying the
distribution of the data, testing the stationary of time series, and
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Table 1. Overview of the reviewed studies

Reference Purpose Technique/method used Application

[5]
Monitoring energy consumption and

identifying its changes
SPC/ CUSUM chart

School buildings in the

United Kingdom

[6] Monitoring energy use performance SPC/ CUSUM chart
Melting furnaces of the

foundry industry

[7]
Monitoring, assessing and tracking

energy consumption
SPC/ CUSUM chart

An educational complex of

a Brazilian University

[4]

Monitoring buildings energy

consumption and detecting

anomalies in consumption

A web service module based on

MPCA and using T2 and Q charts
A large office building in France

[11] Monitoring industrial processes

Modified CUSUM based on a

link relative variable

transformation technique

Electrical engineering process

[12] Monitoring Energy Consumption SPC/ I-MR chart
The clinker production process

in an Iranian cement factory

[2]

Monitoring and controlling

energy consumption and working

time of the generator and calculating

the amount of consumed fuel

An effective IoT smart device An electricity generator

[10]

Non-Intrusive Load Monitoring for

analyzing electrical signals of Home

Electrical Appliances

BIC, the CUSUM, the Hotelling

T2 test
Residential buildings

[8]

Monitoring and identifying anomalous

power loss in the transmission

and distribution systems

SPC/ X̄ Chart
Electricity consumption

of subscribers

[9] Monitoring carbon emissions SPC combined X̄ & EWMA Industrial sector

[1] Monitoring water consumption Building an autonomous water meter Smart houses

[3]
Monitoring and analyzing electricity

consumption
Machine Learning method A healthcare facility in Italy
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ensuring the independence of observations.
The focus of energy monitoring studies using control charts

is identifying temporal change in consumption, while the nature
of energy data will be affected by various factors such as geo-
graphical location, climatic conditions, population dispersion,
etc., so considering the spatial dimension of data, which enables
decision makers to manage the trend of consumption changes
better, can be useful for monitoring energy consumption.

Recently many researchers have focused on spatiotemporal
monitoring methods which have good performance in the rapid
detection of defects in a process with sequential spatial data.
Using spatiotemporal methods allows for the identification of
both the spatial location of a defect and the time change at which
the process shift has occurred. Some of this method’s application
is in detecting the occurrence of production faults, monitoring
disease spread, and monitoring network system. Jiang et al
proposed an MCUSUM method based on regression-adjusted
clusters for spatiotemporal monitoring in a public health ap-
plication to quickly detect any changes in disease incidence
rates and take necessary actions for improving that [14]. To
monitoring network system, Wang et al. proposed spatiotempo-
ral control schemes based on the Multivariate Spatiotemporal
Autoregressive model [15]. Derenski et al., Presented a method-
ology for spatial and temporal analysis of electricity and gas
consumption in public schools in Los Angeles County. They
investigated consumption trends by considering structural char-
acteristics such as types (elementary, middle, and high), size, age
and environmental factors. Results showed that correlations be-
tween electricity and gas consumption are time dependent [16].
Megahed et al., proposed a spatiotemporal approach based on a
generalized likelihood ratio chart for monitoring image data to
detect change time and change location in grayscale images of
manufactured tiles. In their work, an image is divided into some
partially overlapping regions, and average pixel intensities of
them were monitored [17]. He et al., extended the spatiotem-
poral approach by using a multivariate generalized likelihood
ratio chart for multiple change detection problems [18]. Koosha
et al. extracted features from image data using a nonparametric
regression method based on wavelet transform, and utilized a
generalized likelihood ratio control chart for detecting simultane-
ously change point and fault location [19]. Zuo et al., proposed
an EWMA and region growing for monitoring grayscale images
of industrial products [20]. Colosimo and Grasso, presented a
spatiotemporal method based on the spatially weighted Princi-
pal Component Analysis (ST-PCA) for monitoring video image
data to quickly detect the time and the location of defects during
the process. Their method was applied for detecting defects in
metal additive manufacturing processes [21].

The usual structures of control charts are based on the as-
sumption that the generated data of the process is independent
of normal distribution [13]. Unfortunately, in the real world,
some of these assumptions are ignored, which can lead to a
decline in the performance of the control chart. An important
but frequently overlooked assumption of SPC charts is the inde-
pendence of observations, which means observations have auto-
correlation. Noorossana and Vaghefi show that the average run
length of control charts is affected when the independence as-
sumption is violated and makes them invalid [22]. Furthermore,
a process with serially correlated data may signal inaccurately
and make control charts less effective. Different procedures
have been proposed by researchers for monitoring autocorre-
lated processes. The use of residual-based control charts which
are a natural extension of conventional statistical process con-

trol charts is the most popular method. For example, Sheu et
al. extended the EWMA control chart for monitoring a pro-
cess with autocorrelation in which a first-order autoregressive
process is fitted to observation [23]. Khusna et al. proposed a
residual-based maximum MCUSUM chart for autocorrelated
process [24]. Žmuk applied three types of residual-based control
charts, including I-chart, EWMA, and CUSUM for monitoring
the performance of short-term stock. The result showed a better
performance of the residual-based CUSUM chart for accessing
the highest portfolio profits [25].

A literature review on energy consumption monitoring us-
ing SPC techniques shows that in most cases, researchers use
univariate statistical control methods, especially univariate con-
trol charts. While the relationship of energy consumption in
different geographical areas indicates a spatial correlation of
observations. Therefore, using multivariate control charts for
monitoring energy consumption in different regions (countries,
provinces, cities, etc.) simultaneously is recommended. Further-
more, previous research for monitoring energy consumption has
focused on detecting the time of changes, whereas extending
these methods to include both spatial and temporal aspects of
energy consumption, can obtain more precise diagnostic infor-
mation.

The aim of this paper is energy consumption monitoring by
a novel spatiotemporal framework based on the extension of
the GLR and T2 control charts by considering the autocorrela-
tion of consumption data. So the application of the recently-
established spatiotemporal surveillance mechanisms for energy
consumption monitoring is the main contribution of this study
and would enable practitioners to better analyze discrepancies
of usage patterns and make policies for continual improvement
of the regional management.

According to the published reports of the Statistics Center of
Iran, 32% of the total electricity consumption is related to the
household sector. Therefore, monitoring household electricity
consumption is essential. So this paper present a case study of
household electricity consumption in eight-time series related
to eight western cities in Mazandaran province, North of Iran,
from March 21, 2019, to August 21, 2019.

The remain of content is arranged as follows: In Section 2,
monitoring autocorrelated data based on the residual-based con-
trol chart and also the multivariate T∧2 and GLR residual control
charts are described. In Section 3, in a real-world case study,
the electricity consumption of eight western cities in Mazan-
daran province is considered and the results of spatiotemporal
monitoring of multivariateT∧2 and GLR residual control charts
along with a comparative assessment of proposed charts with
one of the conventional chart used for monitoring energy, are
presented. In section 4, the performance of charts are evaluated
and finally, concluding remarks and conclusions are discussed
in section 5.

2. RESIDUAL-BASED CONTROL CHART

As previously mentioned, the performance of statistical process
control charts is significantly affected by the presence of auto-
correlation in time series data, so using the appropriate method
for monitoring this data is of importance.

In general, there are two main approaches for dealing with
autocorrelation between observations at different points in a
time series and controlling autocorrelation processes, including
a model-based approach and a model-free approach [26]. In
the model-free approach, instead of using the original autocor-
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related data, the average of the data sets is used. Because this
leads to the approximate independence of observations and the
loss of autocorrelation, in the model-based approach, by fitting
an appropriate time series model based on the autocorrelation
structure of observations, the autocorrelation of observations
will be eliminated and the residuals of the model will be ob-
tained, which are expected to be uncorrelated. Then by using
a residual-based control chart, the independent residuals are
monitored. The method’s details are described below.

Autoregressive moving-average (ARMA) models include a
strong class of static time series models which are effectively
used for modeling a variety of autocorrelated processes. In
this model, the future value of a linear functional variable is
considered from a number of previous observations and random
errors. An autoregressive-moving average model of order (p, q)
is defined by

ARMA (p, q) : ∅ (L)Yt = θ (L) εt (1)

Where Yt is the observed value in time t, εt is an uncorrelated
innovation process in time t; Φ(L) = (1−Φ1L−Φ2L2 − ...−
ΦpLp) is the autoregressive process; θ(L) = (1− θ1L− θ2L2 −
...− θpLp) is the moving average process and L is the temporal
lag operator.

One of the necessary conditions for using ARMA models
is the stability of the time series. ARMA models have been
developed to be used even when time series are unstable. In
this situation, by differencing the time series of order d (mini-
mum number of differences), it converts to the stationary model
denoted by ARIMA (p,d,q).

Box and Jenkins [27] used a three-step method to model an
appropriate autocorrelation process. Their method includes
providing an experimental model by analyzing historical data,
estimating unknown parameters of the model, and finally eval-
uating the suitability of the model. They proposed using the
autocorrelation function (ACF) and the partial autocorrelation
function (PACF) as basic tools for identifying the orders of AR
and MA terms in an ARIMA model. After determining the ex-
perimental time series model, its parameters are estimated using
the least-squares method, and then the value of each observation
is predicted using the previous observations. By differencing the
actual and the prediction values, the residuals will be obtained.
If the fitted ARIMA model has the necessary qualifications, the
residuals will be independent and identically distributed (i.i.d)
with a mean of zero and a standard deviation of σ2. In this way,
control charts can be easily used for the residuals. But if the resid-
uals aren’t i.i.d, it is necessary to fit a more appropriate model,
so the Box-Jenkins methodology should be iterated. To become
more familiar with the approach of using time series models
and monitoring the residuals with control charts, Noorossana
and Saghaei [28] showed the flowchart of this methodology in
Figure 1.

In the following subsections, the structures of the multivari-
ate T2 and GLR residual control charts are briefly discussed.
In examining energy consumption with location-based data,
analyzing the spatial autocorrelation of regions is of special im-
portance. Tobler’s first law of geography is described by spatial
autocorrelation: “Everything is related to everything else, but
nearby things are more related than distant things” [29]. Spa-
tial autocorrelation analyzes whether an observed value of a
variable in one region affects the same variable in the adjacent
regions or not. If this effect is positive and the increase of one
variable in a region causes the increase of the same variable in
the neighboring regions, this type of correlation is called positive

spatial autocorrelation, and if the existence of the variable has a
negative effect on the same variable in neighboring areas, this
type of autocorrelation is called negative spatial autocorrelation.
If there is no special relationship between the variables in adja-
cent areas, it is said that there is no spatial autocorrelation. The
Moran’s I is a common test for measuring spatial autocorrelation
developed by Patrick Alfred Pierce Moran [30], which is defined
as

Moran′s I = ∑n
i=1 ∑n

j=1 WijCij

S2 ∑n
i=1 ∑n

j=1 Wij

=
∑n

i=1 ∑n
j=1 Wij(xi−x̄)(xj−x̄)

S2 ∑n
i=1 ∑n

j=1 Wij

(2)

Where,Xi ,Xj are the observed values of regions i , j and n is the

number of regions,S2 = ∑n
i=1(xi−x̄)

n and W is the spatial weight
matrix that is defined based on adjacent neighbors. Under the
null hypothesis of no spatial autocorrelation, the expected value
of Moran’s I is E (I) = −1

N−1 . Moran’s I values typically range
from 1 to +1. When its value is close to 1 and significantly
greater than E(I), indicates positive spatial autocorrelation; when
it is close to -1 and less than E(I), it indicates negative spatial
autocorrelation, and when the value near 0 indicates no such
autocorrelation

A. The Hotelling T∧2 Residual Control Chart

The most common multivariate quality control chart is the
Hotelling T2 chart, introduced by Harold Hotelling in 1947 [31].
The T2 control chart can find shifts in the process mean when
two or more related variables are being evaluated simultane-
ously. This chart is especially popular in multivariate control
charts compared with the multivariate moving average con-
trol (MEWMA) chart and the multivariate cumulative sum con-
trol (MCUSUM) chart due to its simplicity of understanding.
Also, because of its similarity to the univariate Shewhart Control
Chart, in the presence of autocorrelation, this chart is trans-
formed into the T2 residual chart to account for the correlation
that affects the process.

Let Xi = (x1i, x2i, ..., xni)
′ i = 1, 2, 3, ..., n, It be an observation

from a normal p-variate distribution with an unknown mean
vector and covariance matrix. There are two basic versions of
the hoteling T∧2 chart: one for subgrouped data and one for
individual observations; for more details, see [13]. In this study,
we are concerned with individual observations, and the T∧2
statistic for each individual observation is as follows:

T2
i = (Xi − X̄)′S−1(Xi − X̄) (3)

Where X̄ the sample’s mean vector, and S is the sample covari-
ance matrix. Also, the UCL in phase 1 is calculated as below:

UCL =
(m− 1)2

m
βα,p/2,(q−p−1)/2 (4)

where q = (2(m− 1)2)/(3m− 4). If, T2
i > UCL the chart signals

at the time i, and ith observation are considered as an out-of-
control point.

As the estimation of the covariance matrix for individual
observations is a significant issue, Holmes and Mergen [32] sug-
gested the estimation of the variance-covariance matrix by us-
ing the difference between consecutive pairs of observations,
which is defined as, S = V ′V

2(m−1) where vi = xi+1 − xi for
i=1,2,..,m-1 and V is a transpose matrix of m-1 difference vec-
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tors as


v1

v2
...

vm−1

 In spite of the popularity and easily of the

T∧2 chart, interpreting its out-of-control signals may be a prob-
lem. The main disadvantage of this chart is in determining
the deviated quality characteristics. In this regard, Mason et al.
[33] proposed the T∧2 decomposition method. This method de-
composes the T∧2 statistic into independent components, each
representing the contribution of an individual variable, as fol-
lows:

T∧2 = T2
p−1 + T2

p|1, 2, ..., p−1 (5)

In which the term T2
p−1 refers to the first p-1 variable of T2

statistic and

T2
p−1 =(
X(p−1)

i − X−(p−1)
i

)′
S−1

xx

(
X(p−1)

i − X−(p−1)
i

) (6)

Where X(p−1)
i is the mean vector of the first p-1 variable, Sxx

is (p− 1) × (p− 1) a submatrix of S, and T2
p|1, 2, ..., p−1 is an

approximation of individual observations in Phase I which is

computed based on (m−1)2

m β 1
2 , m−2

2
.

B. The GLR residual Control Chart
Using GLR charts, which are based on sequential likelihood-
ratio tests, is an attractive and convenient way to identify a wide
range of significant changes. It has been shown that these charts
are very attractive from both practical and theoretical points of
view. In the presence of autocorrelation, this chart is transformed
into the GLR residual chart to account for the correlation that
affects the process.

Let X be an observation from a p-variate normal distribution
with a mean vectorµ0 and a covariance matrix ∑0 when the
process is under control. Assume that µ0 and ∑0 have been
estimated from the samples of phase I. In this research, only
changes in the mean vector are considered, which means when
µ0 6= µl whereas ∑0 remains constant, it is assumed that the
process is out-of- control. We consider the situation where the
sample size is equal to 1, which means only one observation is
measured in each time interval. So, the kth sample is considered

as Xk=
(

x1k, x2k, x3k. . . ,xpk

)′
Assuming that an assignable cause occurs in the process

at an unknown time τ, causing a shift in the mean of quality
characteristics of subsequent samples. Up to the kth sample,
there is a series of samples (X1, X2, ..., Xk) , and the likelihood
function for sample k would be as follows:

Lø,k (µ0, µ1) =
ø
∏
i=1

f (Xi| µ0, Σ0)

×
k
∏

i=ø+1
f (Xi| µ1, Σ0)

(7)

Where µ0, µl are respectively mean vector before and after the
point τ and f () is the multivariate normal distribution’s proba-
bility density function. If k < τ, means no shift has occurred in

the process, and the likelihood function for k is as below:

L∞,k (µ0) =
k

∏
i=1

f (Xi| µ0, 0) (8)

Then the test statistic is

Rk =
logLø,k(µ0, µ1)
log L∞,k(µ0)

= max
0≤ø<k

k−ø
2 (µ̂1,ø,k − µ0)

′ −1
0
(
µ̂1,ø,k − µ0

) (9)

Where the maximum likelihood estimator (MLE) of µl is µ̂1,τ,k =
∑k

i=τ+1 Xi
k−τ
This chart signals at time k if Rk ≥ hGLR, where hGLR is the

control limit determined via simulations based on a specific
in-control performance.

In this research, spatiotemporal monitoring of electricity con-
sumption using the T∧2 and GLR residual charts is performed
in phase I. In statistical process control, understanding the pro-
cess and evaluating its stability are the main objectives of Phase
I. Phase I analysis is typically an iterative process. The control
limits that are initially obtained are considered experimental
limits and are revised repeatedly to ensure that the process is
under control. When all the statistics of the charts are within
the control limit, and there isn’t a systematic pattern, we can say
that the process is under control. On the contrary, the process is
considered to be out-of-control if at least one statistic gets out of
control limits. All out-of-control points are investigated, and if
any assignable causes are detected, at first, the corresponding
times (or observation or data) are saved for further investiga-
tion and then removed from the analysis. Then, based on the
remaining data, the mean vector and covariance matrix, are re-
estimated, the control limits are re-calculated, and the procedure
is repeated until all chart statistics are within control limits and
there are no assignable causes in the process or the number of
observations is at least 2. Therefore, by using the process of
identifying, rooting, removing and saving changes time repeat-
edly until reaching the in-controlled situation, the changes in
electricity consumption are identified using the proposed charts.

The advantages of using multivariate T∧2 and GLR residual
control charts for monitoring autocorrelated data include:

1- Improved sensitivity: By incorporating the autocorrelation
structure, these control charts can detect subtle shifts in the mean
vector and covariance structure, which may not be adequately
captured by conventional control charts.

2- Better interpretation: The use of residuals allows for a
more direct interpretation of deviations from the fitted model,
providing insights into the specific nature and patterns of the
observed abnormalities.

3- Timely detection: By monitoring the residuals in real-time,
these control charts enable prompt detection of out-of-control
conditions, facilitating timely corrective actions and interven-
tion.

Overall, the multivariate T∧2 and GLR residual control charts
offer a powerful approach for monitoring autocorrelated data,
including energy consumption data.

3. A REAL CASE STUDY

The western cities of Mazandaran province have been welcomed
by a large number of foreign tourists and domestic travelers
due to their privileged tourism opportunities, such as the sea,
forests, and pristine green villages. According to the published
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Fig. 1. Flowchart for residual-based control chart

information by the West Mazandaran Regional Electricity Distri-
bution Company, the population of this region is about 793,000.
There are about 693,000 electricity subscribers, including house-
hold, commercial, industrial, agricultural, and transportation, of
which about 574,000 of them are household subscribers, and is
considered as the most prominent consumer of electricity in the
west of Mazandaran province. Fifty-one percent of household
subscribers are the floating population, which plays a significant
role in increasing electricity consumption in this region due to
their presence in private villas and towns during holidays and
also ignoring optimal consumption during peak usage hours.

Based on the expert’s statements of West Mazandaran Re-
gional Electricity Distribution Company, several factors are in-
volved in the instability of the electricity network. One of the
most important and influential factors in electricity consumption
in the western cities of Mazandaran is non-native subscribers;
that due to the instability of their covered population, the con-
sumption of total subscribers cannot be accurately monitored,
which also caused the taken actions for acculturation optimal
electricity consumption have no effect on all subscribers. An-
other influental factor in increasing electricity consumption is
rising temperatures and also the entrance of the north current,
which moves from the sea to the mainland and brings moisture,
causing muggy weather in coastal areas that eventually leads to
increased use of cooling systems. In recent years, residents of
different provinces of Iran have witnessed frequent blackouts
of electricity due to the increased consumption of this energy
carrier.

In addition to the mentioned factors, some factors such as
outdated infrastructure, insufficient capacity, the lack of preven-
tive maintenance, which are related to the technical instability
of the electricity network, can also be involved in electricity con-
sumption, which has been ignored due to the focus of the article
on issues related to the consumption sector.

A. Data collection and analysis

In this subsection, the time series of electricity consumption in
western cities of Mazandaran province, including eight cities
(Ramsar, Abbasabad, Tonekabon, Kelardasht, Chaloos, Now-
shahr, Noor, and Mahmoudabad), which are collected from the
West Mazandaran Regional Electricity Distribution Company, is
investigated over 154 days from March 21, 2019, to August 21,
2019.

Initially, the time series related to each city should be ana-
lyzed. The first step in time series analysis is data standardiza-
tion which means rescaling the value distribution with a mean
of 0 and a standard deviation of 1. The second stage is deter-
mining trend and seasonality components and then removing
them to have a stationary process. Examinations indicate the
existence of a trend component in the studied time series that
can be eliminated by using the differentiation method. In the last
stage, by investigating ACF and PACF plots, the existence of au-
tocorrelation in time series data is confirmed. Accordingly, first,
using the Box-Jenkins method, an appropriate ARIMA model
is fitted to each time series based on their autocorrelation struc-
ture, and then the residuals are obtained, which are i.i.d and
stable. The residuals of ARIMA models related to eight cities
in each day are an 8-variate normal distribution represented by
Xk = [x1k, x2k, ..., x8k], k = 1, 2, 3, ..., 154 where xik is the residual
value obtained from the ARIMA model fitted to the first city at
time k. these residuals are considered as input data for charts.
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Fig. 2. Iteration results of the T∧2 chart

Table 2. Moran’s I result for in-control data of T∧2 residual
chart

Variable Morans’ I E(I) SE(I) Z(I) p-value

Electricity

consumption
0.4201 -0.000291 0.0195 22.751 0

B. Results of T∧2 residual chart
For the 154 observations under study with an 8-variate normal
distribution, T∧2 statistics and control limit are calculated ac-
cording to in Figure 2, T2 statistics related to times 90, 102, 110,
and 133 are out-of-control points. By removing these points and
saving those as changes time in consumption, T2 statistics and
control limit are re-calculated for the remaining 150 points. All
iterations of the T2 chart, until reaching the in-control situation,
are shown in Figure 2, Which can be concluded that after four
iterations and detecting 11 points as changes time in consump-
tion, the process will be in- control. The result of the Moran
test for in-control data is shown in Table 2 Based on Table 2, the
null hypothesis of no spatial correlation is rejected. In fact, the
results indicate positive spatial autocorrelation in the intensity
of electricity consumption in western cities of Mazandaran for
in-control data. Figure 3 shows the geographical distribution
of the average electricity consumption in the western cities of
Mazandaran province in the in-control conditions. It can be seen
that areas with higher consumption intensity have neighbors
with similar characteristics, which shows a positive correlation
in electricity consumption of cities and confirms Moran’s result.

C. Results of GLR residual chart
GLR statistics are calculated for all observations under study and
also using computer simulation and, considering the average
sequence length (ARL) equal to the specified value of 200, the
control limit is obtained. Similar to the results of the T2 chart,
the results of the total iteration of the GLR chart are presented in
Figure 5. It can be seen that after six iterations and detecting 20
points as changes time, the process will be in-control. The results
of the Moran’s I test for in-control data are shown in Table 3.

The results of Table 3 and also Figure 4, show a positive
correlation in the intensity of electricity consumption in these
cities in an in-control condition.

D. A Comparative assessment
One of the conventional methods of literature review that have
been used for monitoring energy consumption is the univariate
CUSUM chart. This chart is used for detecting the deviation of
the observed values obtained from the samples with the target

Table 3. Moran’s I result for in-control data of GLR residual
chart

Variable Morans’ I E(I) SE(I) Z(I) p-value

Electricity

consumption
0.4372 -0.0032 0.0203 24.131 0

Fig. 3. Geographical distribution of the average electricity
consumption in the western cities of Mazandaran province for
in-control data of T∧2 residual chart

Fig. 4. Geographical distribution of the average electricity

Fig. 5. Iteration results of the GLR chart



Research Article Journal of Energy Management and Technology (JEMT) Vol. 8, Issue 1 43

Fig. 6. The result CUSUM chart in Kelardasht

value by plotting the cumulative sum of deviations.
The CUSUM chart was first introduced by Page [34], who

defined CUSUM statistic as C+
i = max(0 , xi − (µ0 + k) + C+

i−1
and C−i = max(0 ,−xi + (µ0 − k) + C−i−1. Where Xi is the ob-
served quality characteristic,µ0 is the target value, k is the refer-
ence value, C+ and C−, are upper and lower CUSUM statistics,
which are initially set to zero. Control limit h is determined by
specific in-control ARL. If C+ and C− arises h, the related time
is considered as a change point.

As mentioned in the literature review, Stuart et al. [5], con-
sidered the time series model related to electricity consumption
data in an American school and, using a CUSUM chart, mon-
itored the residuals of the determined model. And in another
study, Puranik [6], has monitored electrical energy consumption
in melting furnaces of foundry using the CUSUM chart. In this
chart, in the situation of an existing out-of-control trend, only the
first out-of-control point in the trend is considered as a change
point.

In order to have a comparative assessment of T2 and GLR
residual charts with CUSUM, we first monitored the residu-
als of fitted ARIMA models related to each city with CUSUM
independently.

All results of CUSUM are shown in Figure. A in the appendix.
Based on the analysis related to the time and location of the
identified change points in GLR and T∧2, which are shown in
Table 5 in detail, the number of detected change points in GLR,
T∧2, and CUSUM in each city is briefly reported in Table 4. (For
more detail, see Table A in the Appendix). As can be seen in
Table 4, for Kalardasht, GLR detected 18 points as change time,
whereas T∧2 detected 10 points, all of which were detected by
GLR. CUSUM chart for Kelardasht in Figure 6, indicated 5
points as a changes time, whereas just 2 points related to [68,133]
are identified by both GLR and T∧2, and 3 other points at the
time [15,78,137] were detected by none of them. By observing
the results from other cities in Table 4, it can be seen that CUSUM
has identified extra points as change, compared to the GLR and
T∧2 Chart.

To evaluate and check the accuracy of the detected changes of
CUSUM, we used the MCUSUM chart, which is a multivariate
extension of CUSUM and is a conventional multivariate control
chart in SPC context, and relied on its results, which is shown
in Figure 7. The result of MCUSUM showed, 11 change is
occurred in time [68, 74, 90, 91, 93, 101, 107, 108, 133, 134, 135].
As shown in Table 4 for Tonekabon City, CUSUM detected 6
points related to [102,103,105,138,139,141] as changes time, in
which these points are in-control points in MCUSUM.

Fig. 7. The result of MCUSUM chart

By comparing the results of the CUSUM with the proposed
charts through the MCUSM chart, it can be said that due to the
existence of temporal and spatial correlation in the electricity
consumption data in different regions and the inability of the
CUSUM chart in considering this feature, CUSUM considered
some point as an out-of-control point whereas in MCUSUM
they are considered as in-control point and conversely. So the
CUSUM chart doesn’t have the required efficiency and ability
and is unable to correctly detect changes which may lead to
providing wrong information about the process.

4. EVALUATING THE PERFORMANCE OF THE RESID-
UAL T∧2 AND GLR CHARTS

In this section, the performance of the proposed charts in de-
tecting changes in electricity consumption is evaluated. For this
purpose, based on the statements of electricity experts, the actual
reasons for the changes in consumption during the period are
identified, along with the out-of-control points and the detected
locations of changes in the T∧2 and GLR residual charts, pre-
sented in Table 5. The second and third columns of Table 5 are
related to the change times identified by GLR and T∧2 residual
charts. The fourth column is T∧2 decomposition results, and
the fifth column is the graphs of the estimated mean vector in
out-of-control points against the in-control mean vector, which
respectively indicated the location of changes in T∧2 and GLR
residual charts. The reasons for actual changes in electricity
consumption are given in the last column.

In the T∧2 decomposition method, which determines each
city’s share in out-of-control points, the cities with a significant
share are considered locations of change. In the GLR method, as
proposed in [35], by plotting the estimated mean vector for out-
of-control points against the in-control mean vector, the cities
whose mean values have a difference from their in-control mean
values are considered as the locations of changes.

The results of Table 5 show that the T∧2 residual chart gen-
erally detected 11 out-of-control points as change times in con-
sumption, while the GLR residual chart, in addition to all de-
tected change times of the T∧2 residual chart, and was able to
detect 7 other points as change times in consumption. For exam-
ple, in row 13, on August 1, in which a change in consumption
was occured because of rising temperatures and humidity, just
the GLR chart was able to detect this change time.

In detecting location change in consumption, for example, in
row 2, on May 29, which was detected by both charts as a change
time, the T∧2 decomposition method identified Kelardasht with
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Table 4. number of change’s detected in each city

Chart Kelardasht Ramsar Chaloos Nowshahr Abbasbad Nur Mahmood abad Tonekabon

GLR 18 9 2 1 1 0 0 0

T∧2 10 3 2 1 1 0 0 0

CUSUM 5 8 5 2 3 4 4 6

a significant value of 30.468 as the location of change. In the GLR
method, the plotted graph of estimated and in-control mean vec-
tors shows that Kelardasht has the most significant difference
compared to its in-control value and is considered as a loca-
tion of the change in this method. In row 11, on July 6, that
change occurs because of rising temperature,T∧2decomposition
method detected Nowshahr and Chaloos as the locations of
change, whereas the GLR graph indicated that 5 cities, includ-
ing Nowshahr, Chaloos, Kelardasht, Mahmoudabad, and Nur
have changes in their consumption in compared to normal con-
sumption in which Nowshahr and Kalardasht with the most
significant change in consumption are considered as locations of
change.

In row 10, on July 5, based on the statement of electricity
experts, a change occurred because of the Holiday and the en-
trance of a floating population. T∧2 decomposition method
showed that Chaloos, Kelardasht, and Ramsar had the most
significant share of change while GLR detected 2 of these 3 loca-
tions including Kelardasht and Ramsar as locations with high
consumption whereas it can be seen that all other cities have
changed compared to their normal consumption.

By evaluating the results and comparing the identified
changes time with the actual time of changes, and based on the
statements of electricity experts, it can be stated the performance
of the GLR chart is better than the T∧2 chart in detecting times of
change in consumption. And also, it can be said that, in general,
both methods have almost the same performance in detecting
the location of changes, whereas in the GLR method, in addition
to detecting high-consumption locations, the locations that have
changes in their consumption in compared to the normal situa-
tion, are recognizable. Another advantage of the GLR chart is
that the estimations of the change time and out-of-control mean
vector are available after calculating the GLR statistic. This fea-
ture makes it a favorable option for practitioners. Therefore, it
can be said GLR residual chart has higher diagnostic power than
T∧2 residual chart, and also, in spatiotemporal monitoring of en-
ergy consumption, which requires high accuracy and sensitivity,
using a GLR residual chart is recommended.

5. CONCLUSION

In this article, a spatiotemporal framework based on control
charts was proposed for monitoring electricity consumption in
the western cities of Mazandaran province, North of Iran. Due
to the autocorrelation of spatial consumption data, a model-
free monitoring approach was proposed for control charts to
reduce the impact of autocorrelation on chart performance. In
this approach, by using the box and Jenkins method, appropri-
ate ARIMA models based on the autocorrelation structure of
time series data were presented, and the independent residu-
als were obtained and monitored by proposed T∧2 and GLR
residual-based control charts. The performance of the proposed
charts in identifying the actual time and location of changes was

evaluated. Results indicated a higher sensitivity and greater
diagnostic power of the GLR chart compared to the T∧2 chart.
Therefore, in spatiotemporal monitoring of energy consumption
which requires high accuracy and sensitivity, using a GLR resid-
ual chart is recommended. Spatiotemporal monitoring of energy
carriers based on Panel-VAR models and nonparametric spatial
regression models such as the Kriging method are interesting
subjects for future research.
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Table 5. Detected time and the location of changes in electricity consumption of Mazandaran province by T2 and GLR residual
chart. (* indicates significance at the 0.05 level based on the one-sided upper critical value: 3.80. the blue line and red line are repre-
sented for the in-control mean vector and the estimated mean vector of out-of-control points in GLR chart.)

Row GLR change time T∧2 change time
Changes location in T∧2

(T∧2 decomposition)
Changes Location in GLR Reason for change

1 May 27,2019 May 27,2019

Abbasabad 0.935

Chaloos 0.241

Kelardasht 30.468*

Mahmoudabad 0.297

Nowshahr 0.816

Nur 0.164

Ramsar 0.000

Tonekabon 0.646

Holiday and the entrance

of a floating population

2 May 29,2019 May 29,2019

Abbasabad 0.935

Chaloos 0.241

Kelardasht 30.468*

Mahmoudabad 0.297

Nowshahr 0.816

Nur 0.164

Ramsar 0.000

Tonekabon 0.646

Rising temperatures

3 June 2,2019 June 2,2019

Abbasabad 0.935

Chaloos 0.241

Kelardasht 30.468*

Mahmoudabad 0.297

Nowshahr 0.816

Nur 0.164

Ramsar 0.000

Tonekabon 0.646

Between holidays and the

entrance of a floating population

4 June 18,2019 June 18,2019

Abbasabad 0.935

Chaloos 0.241

Kelardasht 30.468*

Mahmoudabad 0.297

Nowshahr 0.816

Nur 0.164

Ramsar 0.000

Tonekabon 0.646

Entrance of the north stream

and increasing humidity
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Row GLR change time T∧2 change time
Changes location in T∧2

(T∧2 decomposition)
Changes Location in GLR Reason for change

5 June 18,2019 - -
Entrance of the north

stream and increasing humidity

6 June 21, 2019 June 21, 2019

Abbasabad 0.935

Chaloos 0.241

Kelardasht 30.468*

Mahmoudabad 0.297

Nowshahr 0.816

Nur 0.164

Ramsar 0.000

Tonekabon 0.646

Rising temperatures,

holiday and the entrance

of a floating population

7 June 24, 2019 June 2,2019 - Rising temperatures

8 June 26,2019 June 18,2019 -
Rising temperatures

(the hottest day of the year
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Row GLR change time T∧2 change time
Changes location in T∧2

(T∧2 decomposition)
Changes Location in GLR Reason for change

9 June 27-29,2019 - -
long weekend and the

entrance of a floating population

10 July 5, 2019 July 5, 2019

Abbasabad 0.371

Chaloos 25.262*

Kelardasht 4.737*

Mahmoudabad 2.946

Nowshahr 2.09

Nur 1.022

Ramsar 4.558*

Tonekabon 2.554

Holiday and the entrance

of a floating population

11 July 6, 2019 July 6, 2019

Abbasabad 0.341

Chaloos 7.477*

Kelardasht 0.000

Mahmoudabad 0.267

Nowshahr 19.540*

Nur 2.507

Ramsar 0.012

Tonekabon 0.176

Rising temperatures

12 July 31, 2019 July 31, 2019

Abbasabad 1.329

Chaloos 1.933

Kelardasht 29.494*

Mahmoudabad 0.943

Nowshahr 1.000

Nur 0.540

Ramsar 0.050

Tonekabon 0.068

Rising temperatures
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Row GLR change time T∧2 change time
Changes location in T∧2

(T∧2 decomposition)
Changes Location in GLR Reason for change
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Mahmoudabad 0.328

Nowshahr 0.000

Nur 1.016

Ramsar 3.384

Tonekabon 1.912

Rising temperatures and humidity,

holiday and the entrance of a

floating population
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Mahmoudabad 0.006
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Tonekabon 0.003

Rising temperatures and humidity
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Chaloos 1.908

Kelardasht 6.337*

Mahmoudabad 0.929

Nowshahr 0.963

Nur 1.104

Ramsar 0.864

Tonekabon 0.784

Rising temperatures and humidity,

holiday and the entrance of a

floating population
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Fig A. CUSUM chart result for all cities
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Table A. Detail of detected changes time by GLR, T2 and CUSUM chart’s for each city indipendently
Kelardasht Ramsar Chaloos Nowshahr Abbasabad Nur Mahmoudabad Tonekabon

Change Time
GLR T2 CUSUM GLR T2 CUSUM GLR T2 CUSUM GLR T2 CUSUM GLR T2 CUSUM GLR T2 CUSUM GLR T2 CUSUM GLR T2 CUSUM

15 *

68 * * *

70 * *

74 * *

75 *

76 *

77 * *

78 *

82 *

90 * * * *

91 *

93 * * * *

96 * * *

98 * *

99 * *

100 * *

101 * * * *

102 * * * *

103 *

105 *

106 * *

107 * * * * * *

108 * * * *

110 *

112 *

115 * *

133 * * *

134 *

135 * * * *

136 * *

137 *

138 * * * * * * * *

139 * *

140 *

141 * * *

142 *

144 *

Temporal Change 18 10 5 9 3 8 2 2 5 1 1 2 1 1 3 0 0 4 0 0 4 0 0 6
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