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The development of the reliable forecast model plays a vital role in describing the variability of the
time-series (very- to long-term) wind profiles of a particular climatic zone. In this paper, the time-series
multivariate forecasts and analysis of the air temperature, CNR, offshore/onshore wind profiles from
the lidar and meteorological measurements based on 2–autoencoding architectures are presented. The
historical datasets (lidar measurements and meteorological masts) of the selected multivariables at 5– and
10–minute intervals are collected. Two autoencoding architectures (Conv2D and GRU encoding-decoding
networks) in an unsupervised predictive operation are used for the time-series multivariable forecasting
(1-288 horizons) and analysis of the: wind speed and wind direction, sectorwise windrose, CNR and pre-
vailing air temperature. At the period of 48 timesteps, the time-series wind speed and direction variations
are analyzed in determining the measurement data height with the steadiest wind flows for optimal load-
ing of the large-scale wind turbine. Studied finding results of the offshore wind profiles at different
heights revealed the existence of a steadiest wind flow at 128.8 m height but driven by the atmospheric
effects. Also, the experimental findings revealed that the dominant wind flows of the onshore heights (10-
20m) are impacted by the local surface irregularities and atmospheric effects. Finally, the autoencoders
performance is reported for the experimental offshore and onshore wind flow for different heights with
and without the feature noise removal. Upon validation and evaluation of the autoencoders with actual
model, the GRU autoencoder produces better forecast of the time-series of the onshore station multivari-
ables, while the Conv2D and GRU architectures are needful for the predictions of the offshore station
multivariables. The proposed model architectures clearly shown to be an essential forecast tool in pro-
viding a more robust wind resource estimates from the time-series predictions of the multivariable input
sequences at a given location. Lastly, the combined station height dataset of 78.8–158.8 m with the Conv2D
autoencoder reported the generalized score errors (ME = 0.105 m/s and RMSE = 0.420 m/s; ME = -3.10 and
RMSE = 6.20) while the GRU score errors (ME = 0.019 m/s and RMSE = 0.396 m/s; ME = -2.90 and RMSE
= 7.90) for the predictions without the feature noise removal are reported. © 2023 Journal of Energy Management

and Technology
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NOMENCLATURE

NWP Numerical Weather Prediction

MASCOT Microclimatic Analysis System for Complex Lands

WAsP Wind Atlas Analysis and Application Program

CNR Carrier to Noise Ratio averaged

FEEMD Fast Ensemble Empirical Model Decomposition
EEMD Ensemble Empirical Model Decomposition
LSSVM Least Squares Support Vector Machine
EFG Enhanced Forget Gate network
OST1–OST4 Offshore Station Heights (1–4) from Lidar

System
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ST1–ST4 Onshore Station Heights of Meteorological Masts

Conv2D 2–D Convolutional Neural Network (CNN)

Val Validation dataset

Val-loss Validation loss

WndDir Wind Direction

Air-Temp Air Temperature

MAE Mean Absolute Error

ML Machine Learning

SCADA Supervisory Control and Data Acquisition System

CFD Computational Fluid Dynamics

MOS Model Output Statistics

LAT Lowest Atronomical Tide

ITSM Improved Time Series Method

ESN Echo State Network

FNN Feedforward Neural Network

RNN RecurrentNeural Network

SVM Support Vector Machine

D Dimensional

AGL Above Ground Level

GRU Gated Recurrent Unit

Pred. Prediction dataset

Min Minimum

WndSpd Wind Speed

CoD Coefficient of Determination

RMSE Root Mean Square Error

WFTs Wind Forecast Tools

ELM Extreme Learning Machine

1. INTRODUCTION

In recent years, the capacity of the utility-scale wind system
integration into the the electricity network has increased signifi-
cantly and has become the main source of the renewable energy
generation at a steady wind region. Due to the stochastic (in-
termittent) nature of the renewable resources (solar, wind and
ocean waves) caused by climate effects, the utility-scale pene-
trations of wind turbine output into the interconnected grid-
systems without the reliable forecast models have presented
some operational challenges [1–4]. Also, apart from the chal-
lenges of maintaining the grid-system stability caused by energy
resource intermittency, the negative impacts of climate effects
have been recorded in other fields (agriculture, health and en-
vironment) [5, 6]. Based on the climate impacts resulting into: -
1an energy resource flunctuation, 2sea level rising, 3soil erosion,
4high variations in the air temperature as well as 5the depletion
of the ecosystems, the reliability of the machine learning (ML)
in solving the time-series forecast problems of the air tempera-
ture and solar variations has been assessed at different locations.
Based on the comparisons of different ML skills in the literature
[7–13], the studied findings revealed that the ML model has
emerged as an essential prediction tool in the: natural hazards
assessment [7], solar system development and air-conditioning
[8–10], short-term load predictions for the power utilities [11],
cooling and energy consumption forecasting in the residential
buildings [12, 13], adaptive temperature control of the green-
house gases [14], assessment of the impact of the climate effects

Fig 1a: Block Diagram of a Conv2D Autoencoder (Unsupervised Predictive System) 
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Fig. 1. Fig 1a: Block Diagram of a Conv2D Autoencoder (Un-
supervised Predictive System)

on the photosynthetically active radiation [15], among others. In
maintaining the reliability of the grid-connected wind energy
systems, there has been a steady literature works in finding
a reliable forecast model architecture(s) that could utilizes the
combination of different spatial-temporal input feature datasets
(such as: - topographic, relative humidity, air temperature, so-
lar radiation, wind speed and direction, and atmospheric pres-
sure) of a climatic region in portraying the historical and fu-
ture wind power availability of a geographical multi-location
[16–18]. For an optimal scheduling of the wind farm outputs
into the transmission grid-network, the development of accu-
rate forecasting model has been reported in the literature to be
a crucial power tool in: 1planning operation of the electricity
market pricing [19–21], 2electricity sustainability [22–24] and
3determining the reliability of the connected grid-systems [25–
29]. The correlations and variations of the time-series of the
offshore and onshore wind speed profiles, and turbine energy
outputs at different climatic zones have been assessed in some
literatures [30, 31]. Based on the temporal and spatial resolu-
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Fig. 2. Fig 1b2: Schematic Diagram of an Autoencoder (Unsu-
pervised Predictive System) for onshore station

tions of the historical multivariate or/and univariate datasets
obtained from different locations and data sources (SCADA,
meteorological masts, numerical simulations, wind farm out-
puts, among others), a number of different wind forecast tools
(WFTs) within the context of the time-series estimation of the
wind speed or/and power outputs on the different time hori-
zons (very-short, short, medium and long-term) [32] have been
proposed but have deferred in model forecast skills. Also, to pro-
vide a more reliable estimates of the present or/and future wind
power availability over the given time and space, several works
have been made in reducing the uncertainty (model errors) of
the time-series forecasts by developing a single or combination
of different WFTs with various resolution input datasets such
as:- 1Physical Models (NWP with Kalman filter [33], MASCOT
[34, 35], CFD modeling [36], Prediktor “HIRLAM forecast with
the WAsP and MOS models [37]”, Previento [38]); 2Statistical
Models (VAR [39], ARIMA with ARCH [40], wavelet transfor-

mation with ITSM [41], univariate ARIMA and multivariate
NARX [42]); 3Machine Learning (ML) (ESN, FNN and the fuzzy
inference system [43]; FEEMD with LSSVM [44], EEMD with
the LSSVM [45], Wavelet RNN [46], ESN [47, 48], LSTM [49],
LSTM with the ESN [1], Spiking NN [50], ARIMA with Radial
Basis NN [51], EEMD with LSTM and EFG [51], CNN with GRU
and ANN [29], SVM [52], LSTM encoding-decoding network
model [53]); among others. Within the context of the onshore

a) 1-48 sampling period b) 49-96 sampling period c) 97-144 sampling period

d) 145-192 sampling period e) 193-240 sampling period f) 241-288 sampling period

Fig. 3. Fig 2: Time-series of actual offshore wind speed profiles
(m/s) at different measured heights (OST1 - OST4)

and offshore wind speed and power forecasting, a huge success
and breakthrough (superiority) of the ML over the Physical and
Statistical Models has been recorded in most recent times [54–
57]. Also, the spatial-temporal correlation ability (features input
extraction and model generalization) of the ML has been investi-
gated in time-series forecast problems [58, 59] and has proven
to be more accurate in model forecast skill than the physical
and statistical models. In the time-series wind forecast problems
using the various multivariate datasets, Chen et al [55] have
utilized the LSTM-CNN for the energy forecast solutions of mul-
tiple wind turbine systems at a wind farm location; Shabbir et al
[60] have utilized the RNN-LSTM in the wind energy forecasting
of Estonia; Huang et al [61] proposed the genetic algorithm (GA)
and LSTM model in a wind speed forecasting; Cali and Sharma
[62] have utilized the RNN-LSTM for short-term wind power
forecasting; Anushalini and Revathi [63] have investigated the
suitability of the LSTM model in the time-series wind power
forecasts; Fu et al [64] have considered an improved chicken
swarm algorithm optimization support vector machine (ICSO-
SVM) for the wind power predictions. Based on an improved
LSTM, Wang et al [65] proposed the wind power forecasting
model; Zhang et al [66] have proposed an hybrid decomposition
and robust ELM in time-series wind speed predictions. Further
to this; Kumar and Ali [67], Sharifzadeh et al [7], Sun et al [68]
and Demolli et al [69] have considered and compared a differ-
ent ML technique for the wind power forecasts based on the
different temporal datasets.

Although, the 1number and layout of the network layers in
a designed forecast model architecture, 2selected learning algo-
rithm(s) as well as the 3batch size of an input features dataset
are important parameters that positively infuence how the mul-
tivariate non-linear input features are processed/trained in the
model architecture, however, the two main limitations of the
WFTs in the time-series wind forecasting are as follow: 1poor
model performance (high deviation) for multivariate non-linear
input datasets scheduled on long-term forecast horizon and the
2network complexity (high computational cost and time) as a
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result of an increasing network layers. To solve (address) but
the time-series (long-term) forecast problem associated with the
model high deviation for a multivariate non-linear input feature
dataset, our wind study proposes two autoencoding architec-
tures that entail the combination of a 2–stage process for han-
dling the uncertainty of the multivariable non-linear forecasts.
In finding the baseline forecast architecture for: - 1describing
the variability (non-linear forecast solutions) and 2analysing the
time-series of the offshore and onshore wind profiles of a specific
climatic region, 2-different autoencoding architectures (Conv2D
and GRU encoding-decoding networks) in an unsupervised op-
eration are investigated and compared. Our proposed forecast
models have robust capability to adopt to self-learning from the
non-linear input features of the multivariables station datasets.
Sequel to this, our two autoencoding architectures are sequen-
tially arranged such that it accept a 3–variable input sequence
and also produce the hourly forecast of a 3–variable non-linear
output sequence for the considered onshore and offshore station
heights. Also, the feature noise technique is introduced allowing
for better improvement/modeling and forecasting processes of
the historical input data sequence(s). Hence, the objective of this
study is aimed at developing and evaluating the forecast accu-
racy skills of 2–different autoencoding architectures that could
be utilized for the time-series prediction (unsupervised ML) and
the analysis of the offshore, as well as in onshore station mutli-
variable profiles at different geographical zones. For this present

a) 1-48 sampling period b) 49-96 sampling period c) 97-144 sampling period

d) 145-192 sampling period e) 193-240 sampling period f) 241-288 sampling period

Fig. 4. Fig 3: Time-series of actual offshore wind speed varia-
tions (m/s) at different measured heights (OST1 - OST4)

study, the time-series forecasts and analysis of the offshore and
onshore station multivariables (1wind speed, 2direction, 3air-
temperature and 4CNR) of the lidar and meterological measure-
ment systems at 8–heights are carried out at a sampling period of
48–timesteps. The historical multivariable datasets of 5–min and
10–min intervals at two geographical zones are collected while
the input-feature noise correction is introduced/incorporated
into our proposed architectures for an enhanced model forecast
skill(s). Two autoencoding model architectures (Conv2D and
GRU encoding-decoding layers network) in an unsupervised
predictive operation are built in Tensorflow2.0 (Figures 1 and
S1). The sequentially arranged network layers of the Conv2D
autoencoder are built with a 4–D input data structure while
the sequentially arranged network layers of the GRU autoen-
coder are designed with a 3–D input data structure. At the
sampling of 48 timesteps, the Conv2D and GRU autoencoders in
the time-series predictions and analysis of a 3–D input variables
sequence (WndDir, WndSpd and CNR for the offshore station
heights; WndDir, WndSpd and Air Temperature for the onshore

heights) are proposed. Furthermore, our investigated autoen-
coders are evaluated with an independent dataset collected from
the remote 5–energy buildings. At different heights, our studied
findings of the wind profiles are compared in determining the:
1WndDir and WndSpd variation heights, and 2steadiest wind
height ideal for an optimum energy resource conversion. The
dominant wind flow (rose) driven by the atmospheric or/and
the local surface irregularities at the station heights (10–20 m)
are assessed as well. Lastly, the frequency distributions of the
offshore and onshore wind profiles with and without the feature
noise eliminations are compared. It is believed that this energy
study would provides a platform for investigating and demon-
strating the importance of the GRU and Conv2D autoencoders
in time-series multivariable predictions and analysis at different
geographical zones and heights.

a) 1-48 sampling period b) 49-96 sampling period c) 97-144 sampling period

iv) OST4 (153.8 m height)

ii) OST2 (103.8 m height)

i) OST1 (73.8 m height)

iii) OST3 (128.8 m height)

Fig. 5. Fig 4: Actual model comparisons of offshore wind roses
at different measured heights (OST1 - OST4)
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i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) Offshore Wind Speed (m/s) with Noise Removal (78.8 m)

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Offshore Wind Speed (m/s) without Noise Removal (78.8 m)

Fig. 6. Fig 5: Actual and Conv2D autoencoder plots of offshore
wind speed (m/s) without and with noise removal at OST1

2. DATASET COLLECTION AND DESCRIPTION

The data collection and description of the experimental offshore
and onshore stations at sampling time of 5–min/10–min (Col.
2 of Table 1a) and period (Cols. 3–4) are summarized in Table
1. The selected historical datasets of the station variables from
the: 1lidar measurements of the offshore heights (OST1–OST4)
and 2meteorological masts (ST1–ST4) of the onshore measure-
ments are summarized in the Col 6. The lidar measurement
systems are installed on Westermost Rough WindFarms (North
Sea of England) for the offshore wind data measurements at
GPS station (see Col. 5). The lense height of the lidar system is
referenced to a LAT positioning of 33.8 m height of which the
offshore measurements are obtained and adjusted to the new
heights (73.8, 103.8, 128.8 and 153.8 m). Meanwhile, the meteo-
rological sensors for the onshore stations in the Western Cape
of South Africa are installed on the masts AGL for which the
data measurements at different onshore station heights (Col. 2 of

Table 2) are obtained. The time-series multivariable datasets of

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) Offshore Wind Direction (Degrees) with Noise Removal (78.8 m)

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Offshore Wind Direction (Degrees) without Noise Removal (78.8 m)

Fig. 7. Fig 6: Actual and Conv2D autoencoder plots of offshore
wind direction (degrees) without and with noise removal at
OST1

each GPS station height (Col. 6) are obtained in 2–D data struc-
ture and used for the: 1autoencoder development, and 2analysis
of the offshore and onshore wind profiles at each station height.
For each offshore height (OST1/OST3/OST4), the total data
samples per station variable are reported in Col 7 of Table 1a
and pre-processed as the: 1training (Col. 8) and 2prediction
(Col 9) input data sequence (that is, 91.1 and 8.89 % of the total
data samples, respectively). For each onshore station height
(ST1/ST3/ST4), 94.6 and 5.40 % of the total sample datasets
are also preprocessed as: 1training and 2prediction input se-
quence datasets, respectively. Meanwhile, for the autoencoder
validation process, 91.1 and 100 % of the new samples are ob-
tained from the additional offshore (OST2) and onshore (ST2)
station heights, respectively. For the autoencoder model skills
evaluation, these are measured with independent evaluation
data (Res-Ev1–Res-Ev5) on an hourly basis (Cols 3–4 of Table
1c). A detailed information of the offshore station datasets as
well as the evaluation datasets of the selected station variables is
documented in the reports [70, 71]. The time-series of the actual
offshore wind speeds (m/s) and directions(degrees) for the total
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i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) Predicted CNR (dB) with Noise Removal

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Predicted CNR (dB) without Noise Removal

Fig. 8. Fig 7: Actual and Conv2D autoencoder plots of offshore
CNR (dB) without and with noise removal at OST1

sampling period of 1–288 steps at different measurement heights
(OST1 –OST4) are provided in Figs 2 and S2, respectively. For
the regular sampling period of 48 timesteps, the actual wind
roses (12-sectorwise wind flow) for the offshore station heights
(OST1–OST4) are summarized (Table 2, Figs. 4 and S4) while the
Fig. S5 summarizes the actual wind roses of the onshore stations
(ST1–ST4). From the figurative comparisons (time-series of the
offshore 1wind speed and direction, and 2sectorwise wind rose
for the height of 78.8 – 153.8 m), our findings (Figs. 3 and S3)
show that the offshore wind profiles of the lidar measurements
are subjected to the prevailing synoptic conditions of 78.8 – 128.8
m height but becomes steadier and ideal at above 128.8–153.8 m
height for optimal loading of the offshore wind energy turbines.
However, the onshore wind profiles of the stations (ST1–ST4)
show that the actual directions of wind flow (Fig. S5) are mainly
driven by the local effects and prevailing synoptic conditions,
with exception to ST4 with unidirectional wind flow. The sample
size of the time-series datasets of 3–variable per station height
(Cols 7–9 of Tables 1a) is reproduced from its original size of 2–D
input data structure (Col 2 of Table 1b) to a: 1new input data
array “4–D” for the Conv2D autoencoder (Cols 3–5 of Table 1b);
2new input data array “3–D” for the GRU autoencoder (Cols 6–8

i) OST1 (73.8 m height)

a) Actual wind rose
b) Conv2D predicted wind rose 

without noise removal
c) GRU predicted wind rose 

without noise removal

d) Conv2D predicted wind rose with noise 
removal

e) GRU predicted wind rose with noise 
removal

ii) OST3 (128.8 m height)

a) Actual wind rose b) Conv2D predicted wind 
rose without noise removal 

c) GRU predicted wind rose 
without noise removal

d) Conv2D predicted wind rose with noise 
removal

e) GRU predicted wind rose with noise 
removal

Fig. 9. Fig 8: Actual, Conv2D and GRU autoencoder compar-
isons of offshore wind roses at different measured heights
(1-288 steps)

of Table 1b). The input data configurations of the Conv2D and
GRU autoencoders are summarized in Cols. 3–8 of Table 1b.

3. METHODOLOGY

The workflow of the investigated autoencoding model architec-
tures in an unsupervised predictive operation are built in Tensor-
flow2.0 as depicted in Figs. 1 and S1. The sequentially arranged
layers of the Conv2D autoencoder (Fig. 1) was designed with
the 4–D input data array and 3–D output sequence structures
(‘WndSpd, WndDir and CNR’ for the offshore heights; ‘Wnd-
Spd, WndDir and Air_Temp’ for the onshore station). Also, the
sequentially arranged layers of the GRU autoencoder (Fig. S1)
was designed with a 3–D input data array and a 3–D output data
sequence structures. The block diagrams of the study models
of Fig. 1 (Conv2D autoencoder) and Figs S1 (GRU autoencoder)
are described in the section 3.3.1 and 3.3.2. In learning the dy-
namics of the non-linear input data sequence (input features),
the network optimizer of the Adamax version of the stochastic
gradient descent (training algorithms) for our autoencoding pro-
cesses was utilized, while the tanh function for the activation of
the input and hidden layers of each autoencoding process was
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iii) OST4 (153.8 m height)

a) Actual wind rose

b) Conv2D predicted wind rose without 
noise removal

c) GRU predicted wind rose without 
noise removal

d) Conv2D predicted wind rose with noise removal e) GRU predicted wind rose with noise removal

Fig. 10. Fig 8: Actual, Conv2D and GRU autoencoder com-
parisons of offshore wind roses at different measured heights
(1-288 steps)

utilized. Finally, the Conv2D and GRU autoencoding models
generate the time-series multivariable predictions for the 3–D
input sequence variables at the data sampling horizons of every
48–timesteps.

A. Lidar Wind Data Correction
For an accurate assessment of the offshore wind profiles from the
lidar measurement systems, data corrections were introduced.
The lidar lense height was considered and referenced to a
LAT positioning of 33.8 m height of which the measurement
datasets were taken and adjusted to the actual measurement
heights of 73.8, 103.8, 128.8 and 153.8 m ASL above LAT. That is,
the lidar data correction was carried out with the offset wind
direction value in determining the actual: 1. wind direction and
2. measurement height above the LAT as follow:

a)the actual wind direction for a new measurement height
(H) above LAT position was calculated from the lidar wind
direction of the measuring height with an offset wind direction
value:

Actual wind direction(0) =

lidar measured wind direction − o f f set wind direction value
(1)

b) the actual measurement height for an offshore station is
calculated by considering the configured measuring height with
the lidar lense height above LAT position (h = 33.8 m):

Actualmeasurementheight (m) =

con f iguredmeasuringheight + lidarheighto f thelense (h)
(2)

Aio =
(A(inp,i) − A(inp,min))

(A(inp,max) − A(inp,min))
(3)

where A(inp,i) is the actual measured datasets for the sta-
tion (> 0) at a given instance i;A(inp,min) and A(inp,max) are the

a) Actual Frequency Distribution at OST1

Fig 9: Actual, Conv2D and GRU model comparisons of frequency distribution of offshore wind speeds (m/s) at OST1

b1) Conv2D:  Predicted  Frequency Distribution 
without Noise Removal

b2) GRU:  Predicted  Frequency Distribution 
without Noise Removal

c1) Conv2D: Predicted  Frequency Distribution with 
Noise Removal 

c2) GRU: Predicted  Frequency Distribution with 
Noise Removal

Fig. 11. Fig 9: Actual, Conv2D and GRU model comparisons
of frequency distribution of offshore wind speeds (m/s) at
OST1

minimum and maximum values of the input variable dataset
(feature), respectively;Aio is the normalized dataset.

Next, the normalized/scaled-down input dataset of Eq. 3
was reshaped according to the autoencoder specification of ac-
cepting input sequence data into a 1st network layer. Using
the reshaping argumentation below, the 2–D normalized input
dataset was re-structured/re-calculated into a: 14–D input se-
quence dataset (Aio_Conv2D) for the Conv2D layer architecture
(Fig 1), 23–D input sequence dataset (Aio_GRU) for the GRU
autoencoder (Fig. S1):

Aio_Conv2D =

Aio.reshape (timesteps, input_ f eatures, samples, batch_size)
(4)

Aio_GRU =

Aio.reshape (timesteps, input_ f eatures, samples)
(5)

where the timesteps = 10332 and 1008 for the autoencoder input
training/prediction of the offshore, respectively; timesteps =
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Table 1. Table 1a: Data description of the experimental offshore and onshore stations.

Offshore Sampled Sampled Period Station GPS Station GPS
Station

Variables
Sample per

Training

Sample

Prediction

Sample

Time DD-MM-YYYY HH:MM:SS (LIDAR) m/s, degree, dB Variable per Variable per Variable

OST1 10-mins
22-Aug 2014 -

19-Apr 2018

00:00:00-

00:50:00

56.440677N/

8.150692E

WndSpd,

WndDir, CNR
11340 10332 1008

OST3 10-mins
22-Aug 2014 -

19-Apr 2018

00:00:00-

00:50:00

56.440677N/

8.150692E

WndSpd,

WndDir, CNR
11340 10332 1008

OST4 10-mins
22-Aug 2014 -

19-Apr 2018

00:00:00-

00:50:00

56.440677N/

8.150692E

WndSpd,

WndDir, CNR
11340 10332 1008

Validation Time

OST2 10-mins
22-Aug 2014 -

19-Apr 2018

00:00:00-

00:50:00

56.440677N/

8.150692E

WndSpd,

WndDir, CNR
11340 10332 ——–

Onshore Sampled Sampled Period Station GPS Station GPS
Station

Variables
Sample per

Training

Sample

Prediction

Sample

Time DD-MM-YYYY HH:MM:SS Meteorological m/s, degree, oC Variable per Variable per Variable

ST1 10-mins
01-Jul 2011 -

02-Jan 2011

00:10:00 -

24:00:00
WM03

WndDir_20,

WndSpd_20,

Air_Temp

26640 25200 1440

ST3 10-mins
01-Jul 2011 -

02-Jan 2011

00:10:00 -

24:00:00
WM02

WndDir_20,

WndSpd_10,

Air_Temp

26640 25200 1440

ST4 5-mins
15-Aug 2010 -

06-Jan 2011

18:10:00 -

00:25:00
PWS

WndDir_10,

WndSpd_10,

Air_Temp

26640 25200 1440

Validation Time

ST2 5-mins
01-Jan 2006 -

13-Dec 2006

00:05:00 -

11:55:00
GWS

WndDir_10,

WndSpd_10,

Air_Temp

21600 21600 ——–
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Table 2. Table 1b: Description of data input configurations (model training, validation and prediction) for the autoencoders.

Offshore
Total

Sampling

Data

Configuration

Model

Training Data

Model

Prediction Data

Data

Configuration

Model

Training Data

Model

Prediction Data

Training/

Prediction
Datasets Conv2D Conv2D Conv2D GRU GRU GRU

OST1 (11340x3) (11340x3x1x1) (10332x3x1x1) (1008x3x1x1) (11340x3x1) (10332x3x1) (1008x3x1)

OST3 (11340x3) (11340x3x1x1) (10332x3x1x1) (1008x3x1x1) (11340x3x1) (10332x3x1) (1008x3x1)

OST4 (11340x3) (11340x3x1x1) (10332x3x1x1) (1008x3x1x1) (11340x3x1) (10332x3x1) (1008x3x1)

Validation
Total

Sampling

Data

Configuration

Model

Validation

Model

Prediction Data

Data

Configuration

Model

Validation

Model

Prediction Data

OST2 (11340x3) (11340x3x1x1) (10332x3x1x1) ——– (11340x3x1) (10332x3x1) ———–

Onshore ——— ————— —————- ————– —————– ————– ————

Training/

Prediction

Total

Sampling

Data

Configuration

Model

Training Data

Model

Prediction Data

Data

Configuration

Model

Training Data

Model

Prediction Data

ST1 (26640x3) (26640x3x1x1) (25200x3x1x1) (1440x3x1x1) (26640x3x1) (25200x3x1) (1440x3x1)

ST3 (26640x3) (26640x3x1x1) (25200x3x1x1) (1440x3x1x1) (26640x3x1) (25200x3x1) (1440x3x1)

ST4 (26640x3) (26640x3x1x1) (25200x3x1x1) (1440x3x1x1) (26640x3x1) (25200x3x1) (1440x3x1)

Validation
Total

Sampling

Data

Configuration

Model

Validation

Model

Prediction Data

Data

Configuration

Model

Validation

Model

Prediction Data

ST2 (21600x3) (21600x3x1x1) (21600x3x1x1) ——– (21600x3x1) (21600x3x1x1) ——–

Table 3. Table 1c: Description of input data configurations for the autoencoder evaluations.

Buildings Total Sampling Residential Variables Model Evaluation Data Model Evaluation Data

Evaluation Datasets (kWh) Conv2D GRU

Res-Ev1 (8760x3) Fans, Cooling and Electricity Supply (8760x3x1x1) (8760x3x1)

Res-Ev2 (8760x3) Fans, Cooling and Electricity Supply (8760x3x1x1) (8760x3x1)

Res-Ev3 (8760x3) Fans, Cooling and Electricity Supply (8760x3x1x1) (8760x3x1)

Res-Ev4 (8760x3) Fans, Cooling and Electricity Supply (8760x3x1x1) (8760x3x1)

Res-Ev5 (8760x3) Fans, Cooling and Electricity Supply (8760x3x1x1) (8760x3x1)
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a) Actual Frequency Distribution at OST3

b1) Conv2D: Predicted  Frequency Distribution 
without Noise Removal

b2) GRU: Predicted  Frequency Distribution 
without Noise Removal

c1) Conv2D: Predicted  Frequency Distribution 
with Noise Removal

c2) GRU: Predicted  Frequency Distribution with 
Noise Removal

Fig 10: Actual, Conv2D and GRU model comparisons of frequency distribution of offshore wind speeds (m/s) at OST3

Fig. 12. Fig 10: Actual, Conv2D and GRU model comparisons
of frequency distribution of offshore wind speeds (m/s) at
OST3

25200 and 1440 for the autoencoder training and prediction of
each onshore height, respectively; input features = 3 for the off-
shore and onshore station variables (Cols. 4-8 of Table 1b); sam-
ples = 1 and batch_size = 1 Note: The total sampling dataset of
each offshore station height was divided into: 1batch_data1 rep-
resented as the normalized input training dataset of the autoen-
coder and 2batch_data2 represented as the normalized input pre-
diction dataset of the model. Batch_data1 [Aio (t1)–Aio (t10332)]
has an input data configuration of ‘[10332x3x1x1] for Conv2D
model and [10332x3x1] for the GRU’ while the batch_data2
[AAio (t1)–AAio (t1008)] has an input data configuration of
‘[1008x3x1x1] for a Conv2D autoencoder and [1008x3x1] for the
GRU model’. Meanwhile, the normalized input data for the on-
shore stations was also divided into: batch_data1 [Aio (t1)–Aio
(t25200)] with an input data configuration of ‘[25200x3x1x1] for
the Conv2D and [25200x3x1] for the GRU autoencoder’ while
the batch_data2 [AAio (t1) – AAio (t1440)] has an input data
configuration of ‘[1440x3x1x1] for the Conv2D autoencoder and
[1440x3x1] for the GRU autoencoder’. For the autoencoder pre-
diction datasets (batch_data2) of the: - 1offshore [AAio (t1)–AAio
(t1008)] for the sampling period of 1008 timesteps and 2onshore

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) Onshore Wind Speed (m/s) with Noise Removal (20 m)

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Onshore Wind Speed (m/s) without Noise Removal (20 m)

Fig. 13. Fig 11: Conv2D plots of onshore a-bwind speed (m/s)
and c-ddirection (degrees) without and with noise removal at
ST1

[‘AAio (t1)–AAio (t1440)] for the period of 1440 timesteps, the
expected model outputs (3-variable) of the autoencoder for each
station height generates the time-series forecasts in model out-
put sizes of [1008x3x1] for the offshore stations and [1440x3x1]
for an onshore station. The summary of the input data config-
urations for the investigated Conv2D and GRU autoencoders
was depicted in Table 1b. Thereafter, we introduced the feature
noise signal into the input data sequence of Eqs. (4)–(5) for better
performance of the investigated autoencoding model. The math-
ematical expressions for obtaining the input noisy data sequence
were as follow:

y_random = numpy.random.rand(Aio.shape[0], 1) (6)

f eature noise signal = (noise_ f actor ∗ y_random) (7)

Aio_Conv2D_noisy =

np.clip((Aio_Conv2D + f eature noise signal), 0, 1)
(8)
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Table 4. Table 2: Summary of the dominant sectorwise wind directions for the actual wind flows at different station heights.

Station Sampling Sampling Sampling Sampling Sampling Sampling

Offshore
Heights

(m)

1-48

steps

49-96

steps

97-144

steps

145-192

steps

193-240

steps

241-288

steps

OST1 73.8 S
WSW &

SSW
WSW WSW WSW

WSW &

SSW

OST2 103.8 S
WSW

& SSW
WSW WSW WSW

WSW &

SSW

OST3 123.8 S
WSW

& SSW
WSW WSW WSW

WSW &

SSW

OST4 153.8 S
WSW

& SSW
WSW WSW WSW

WSW &

SSW

———- ———- ———- ———- ———- ———- ———- ———

Onshore
Heights

(m)

1-48

steps

49-96

steps

97-144

steps

145-192

steps

193-240

steps

241-288

steps

ST1 20
S

& SSE
SSE

W, WSW

& WWN
WSW S

W &

WSW

ST2 10 SSE ESE
SSW,

S, WSW

WNW &

W
WNW W

ST3 20
SSE

& ESE
ESE

WSW,

SSW, W

WSW &

S
S S

ST4 10 ENE ENE ENE ENE ENE ENE
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i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

d) Onshore Wind Direction (Degrees) with Noise Removal (20 m)

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

c) Onshore Wind Direction (Degrees) without Noise Removal (20 m)

Fig. 14. Fig 11: Conv2D plots of onshore a-bwind speed (m/s)
and c-ddirection (degrees) without and with noise removal at
ST1

Aio_GRU_noisy =

np.clip((Aio_GRU + f eature noise signal), 0, 1)
(9)

where the noise_factor =0.05; Aio_Conv2D_noisy and
Aio_GRU_noisy represent the input sequence dataset with the
noise signal inclusion for the Conv2D and GRU autoencoders,
respectively. The procedures in Section 3.3.1–3.3.2 and Appendix
1–2 were utilized for the predictions of the time-series of the
offshore/onshore station input 3–variables. Once the long-term
predictions of the station height variables (WndSpd, WndDir,
CNR and Air-Temp) for the investigated timesteps have been
generated, the de-normalization operation was carried out
on the predicted values. For the forecast values without the
removal of the feature noise signal, these were obtained as:

ĀConv2D(inp.i) = Āio(A(inp,max) − A(inp,min)) + A(inp,min) (10)

ĀGRU(inp.i) = Āio(A(inp,max) − A(inp,min)) + A(inp,min) (11)

where A_Conv2D(inp.i),A_GRU(inp.i) and Ā_io denote the
de-normalized forecast value of Conv2D and GRU autoencoder

i) ST1 (20 m height)

ii) ST3 (20 m height)

a) Actual wind rose
b) Conv2D predicted wind rose without 

noise removal
c) GRU predicted wind rose without 

noise removal

d) Conv2D predicted wind rose with noise 
removal

e) GRU predicted wind rose with noise 
removal

a) Actual wind rose
b) Conv2D predicted wind rose without 

noise removal
c) GRU predicted wind rose without 

noise removal

d) Conv2D predicted wind rose with noise 
removal

e) GRU predicted wind rose with noise 
removal

Fig. 15. Fig 12: Actual, Conv2D and GRU autoencoder com-
parisons of onshore wind roses at ST1 and ST3, respectively
(1-288 steps)

without the feature noise removal, time-series predictions of the
Conv2D or GRU autoencoder for each station height, respec-
tively. For the predicted values with the removal of noise signal,
the de-normalization operation was carried out as follows:

ĀoConv2D(inp,i) = ĀConv2D(inp.i) − ( f eature noise signal) (12)

ĀoGRU(inp,i) = ĀGRU(inp.i) − ( f eature noise signal) (13)

where ĀoConv2D(inp,i) and ĀoGRU(inp,i) denote the de-
normalized forecast values of the Conv2D and GRU with the
feature noise signal removal, respectively.

A.1. Conv2D Autoencoding Architecture

The block diagram of the Conv2D autoencoding architecture
in an unsupervised predictive operation was presented in Fig.
1. Our Conv2D autoencoder was built with a 17–sequentially
arranged network layer. For this model setup, a 4–D normal-
ized input dataset with the feature noise signal (Eq. 8) was
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Table 5. Table 3a: System architecture of Conv2D autoencoder
Model: "model_1"

Layer (type) Output Shape Param #

input_1 (InputLayer) (None x3x1x1) 0

conv2d_1(Conv2D) (None x3x1x180) 1800

max_pooling2d_1

(MaxPooling2)
(None x3x1x180) 0

dropout_1

(Dropout)
(None x3x1x180) 0

conv2d_2(Conv2D) (None x3x1x144) 233424

max_pooling2d_2

(MaxPooling2)
(None x1x1x144) 0

conv2d_3(Conv2D) (None x3x1x108) 140076

max_pooling2d_3

(MaxPooling2)
(None x1x1x108) 0

conv2d_4

(Conv2D)
(None x1x1x108) 105084

up_sampling2d_1

(UpSampling2)
(None x3x1x108) 0

dropout_2 (Dropout) (None x3x1x108) 0

conv2d_5

(Conv2D)
(None x3x1x144) 140112

up_sampling2d_2

(UpSampling2)
(None x3x1x144) 0

conv2d_6

(Conv2D)
(None x3x1x180) 233460

up_sampling2d_3

(UpSampling2)
(None x3x1x180) 0

Con2d_7

(Conv2D)
(None x3x1x1) 4501

time_distributed_1

(TimeDist)
(None x3x1) 0

reshape_1 (Reshape) (None x3x1) 0

a) Actual Frequency Distribution at ST1

b1) Conv2D:  Predicted  Frequency Distribution without 
Noise Removal

b2) GRU:  Predicted  Frequency Distribution without 
Noise Removal

c1) Conv2D: Predicted  Frequency Distribution with 
Noise Removal

C2) GRU: Predicted  Frequency Distribution with 
Noise Removal

Fig. 16. Fig 13: Actual, Conv2D and GRU model comparisons
of frequency distribution of onshore wind speeds (m/s) at ST1

used as the autoencoder input data sequence while the hyper-
parameters that influence the model learning and prediction
ability from the input to output network layers were identified,
and initialized before the network layers was compiled. For
the autoencoding architecture of Fig. 1, the following model
hyperparameters were selected: convolutional filters with 180,
144 and 108 neurons (‘1st, 2nd and 3rd hidden layers’, respec-
tively) before the encoding process; additional 108, 144, 180
and 1 neurons (4th, 5th, 6th and 7th hidden layers, respectively)
after the encoding process; kernel-size of 2–D convolutional
window = (3,3) and (5,5); batch-size = 5; number of iterations
(nb_epoch) = 30; kernel-initializer = glorot_uniform; number of
output variables (nb_classes) = 3; dropout regularization rate
= 35 % (ensuring unused or randomly selected neurons were
ignored); strides value = (1,1); tanh function to activate the input
and hidden layers but the sigmoid function for output layer acti-
vation. Other parameters used in the autoencoder build-up and
training process were summarized in the Appendix 1. For the
network compilation, our autoencoder was designed with the:
1network optimizer of Adamax version of stochastic gradient
descent (learning algorithm), 2loss function (mean_square_error,
MSE) and the 3model metric (mean_absolute_error, MAE) for
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a) Actual Frequency Distribution at ST3

b1) Conv2D:  Predicted  Frequency Distribution 
without Noise Removal

c1) Conv2D: Predicted  Frequency Distribution with 
Noise Removal

b2) GRU:  Predicted  Frequency Distribution 
without Noise Removal

C2) GRU: Predicted  Frequency Distribution with 
Noise Removal

Fig. 17. Fig 14: Actual, Conv2D and GRU model comparisons
of frequency distribution of onshore wind speeds (m/s) at ST3

assessing the autoencoder performance(s). The 1st Convolu-
tional hidden layer was used to extract the spatial input_features
(normalized input sequence dataset) from the input layer. From
the 1st hidden layer, the MaxPooling layer pools into its own net-
work layer all the sequence data sample before passing through
to subsequent convolutional hidden layer. Meanwhile, the time-
distributed flatten layer was used to further narrow the output
sequence array of the last convolutional hidden layer (layer 14)
from the 4–D [1x3x1x1] to a 3–D output shape [1x3x1] before
passing through to the reshape layer (decoder). The reshape
layer extracts the wrapped input sequence samples from the
time-distributed flatten layer and reshape (interpret) them for
the autoencoder predictions before passing through to the out-
put layer nodes with a 3–D output sequence structure ([1x3x1]
per timestep).

A.2. GRU Autoencoding Architecture

The block diagram of the GRU autoencoding architecture in an
unsupervised predictive operation was summarized in Fig S1.
The GRU autoencoder was built with a 11–sequentially arranged
network layer. For this model setup, a 3–D normalized input
dataset with the noise signal was used as an input sequence

Table 6. Table 3b: System architecture of GRU autoencoder
Model: "sequential_1"

Layer (type) Output Shape Param #

input_10 (InputLayer) (None x3x1) 0

gru_218(GRU) (None x3x80) 98280

dropout_62

(Dropout)
(None x3x180) 0

gru_219(GRU) (None x3x144) 140400

gru_220(GRU) (None x3x108) 81972

batch_normalization

_31(Batch)
(None x3x108) 70308

dropout_63 (Dropout) (None x3x108) 0

gru_222(GRU) (None x3x144) 109296

gru_223(GRU) (None x3x180) 175500

gru_224(GRU) (None x3) 1656

reshape_8 (Reshape) (None x3x1) 0

dataset for the autoencoder while the hyperparameters that in-
fluence the model learning and prediction ability of the autoen-
coder from the input to output network layers were identified,
and initialized before the network layers was compiled.

For the GRU autoencoder of Fig. S1, the following model
hyperparameters were selected: gated mechanism filters with
180, 144 and 108 neurons (‘1st, 2nd and 3rd hidden layers’,
respectively) before the encoding process; but additional 108,
144, 180 and 3 neurons (4th, 5th 6th and 7th hidden layers, re-
spectively) after the encoding process; the return sequence of
gated window=True; batch-size = 5; number of iterations = 30;
kernel-initializer = glorot_uniform; number of output variables
(nb_classes) = 3; dropout regularization rate = 35 %; tanh func-
tion to activate the input and hidden layers but the sigmoid
function for an output layer activation. Other parameters used
in the autoencoder build-up and training process were sum-
marized in the appendix 2. For the network compilation, our
autoencoder was designed with the similar: 1network optimizer,
2loss function and 3model metric of Section 3.3.2 for assessing
the GRU autoencoder performance(s).

The spatial input features (normalized input sequence data)
of the input layer were passed to the 1st connected hidden layer
with the tanh activation function. From the 1st GRU hidden
layer, the processed sequence samples were passed into the sub-
sequent GRU hidden layers via a repeated mechanism until the
last hidden layer (layer 9) further narrows the sequence array
from the 3–D [1x3x180] into 2–D output shape [1x3]. There-
after, the GRU hidden layer passed the 2–D sequence data array
into the reshape layer (decoder). The reshape layer extracts the
wrapped input sequence samples (2–D) from the last GRU hid-
den layer and reshaped them for the autoencoder predictions
before passing through to the output layer nodes with a 3–D
output sequence structure ([1x3x1] per timestep).
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Table 7. Table 4a: Conv2D and GRU autoencoder metrics (CoD/MAE/RMSE) for the offshore noisy dataset
(without noise removal)

Station

IDS

Model Type

Usage

WndDir

(%)

CNR

(%)

WndSpd

(%)

......Conv2D............ CoD MAE RMSE CoD MAE RMSE CoD MAE RMSE

OST1 Prediction Conv2D_OST1 96.5 1.579 1.962 97.3 1.945 2.533 96.6 4.175 7.522

OST3 Prediction Conv2D_OST3 99.0 1.381 1.657 98.7 1.729 2.226 98.0 4.065 7.367

OST4 Prediction Conv2D_OST4 96.5 1.574 1.953 95.6 2.296 3.070 97.6 4.670 9.421

WndDir CNR WndSpd

........ ..............GRU.............. ........ ............... ....... ................... ..............

......Offshore................ CoD MAE RMSE CoD MAE RMSE CoD MAE RMSE

OST1 Prediction GRU_OST1 95.8 1.685 3.237 98.5 1.756 2.147 79.9 6.686 13.179

OST3 Prediction GRU_OST3 98.6 1.473 1.815 99.4 1.432 1.722 89.9 5.397 10.946

OST4 Prediction GRU_OST4 98.4 1.509 1.839 95.6 2.258 2.186 97.6 4.095 7.470

Table 8. Table 4b: Conv2D and GRU autoencoder metrics (CoD/MAE/RMSE) for the onshore noisy dataset
(without noise removal)

Station

IDs

Model Type

Usage

WndDir

(%)

Air_Temp

(%)

WndSpd

(%)

....... Conv2D............... CoD MAE RMSE CoD MAE RMSE CoD MAE RMSE

ST1 Prediction Conv2D_ST1 98.1 1.854 2.247 97.0 1.458 1.776 94.7 1.318 1.655

ST3 Prediction Conv2D_ST3 99.2 1.283 1.517 98.3 1.433 1.749 97.4 1.303 1.566

ST4 Prediction Conv2D_ST4 97.3 1.941 2.416 95.9 1.774 2.424 95.7 1.307 1.593

WndDir Air_Temp WndSpd

........ ...............GRU............. ........ ............... ....... ................... ........ ........ ............. ........

....... Onshore.............. CoD MAE RMSE CoD MAE RMSE CoD MAE RMSE

ST1 Prediction GRU_ST1 98.5 1.236 1.443 97.2 1.249 1.462 97.4 1.281 1.496

ST3 Prediction GRU_ST3 99.5 1.265 1.488 98.9 1.276 1.488 98.7 1.217 1.430

ST4 Prediction GRU_ST4 98.7 1.218 1.471 96.8 1.440 1.868 98.2 1.228 1.483
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a1) Actual:  Generalized wind statistics (OST1, OST3-OST4) a2) Conv2D: Generalized wind statistics (OST1, OST3-OST4)

a4) Conv2D: Generalized wind statistics (OST1, OST3-OST4)
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a3) GRU: Generalized wind statistics (OST1, OST3-OST4)

a5) GRU: Generalized wind statistics (OST1, OST3-OST4)
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Fig. 18. Fig 15: aGeneralized wind statistics of combined 3-station heights (OST1, OST3-OST4); and b-doffshore wind statistics of
each station height

A.3. 3-D/4-D Autoencoder Forecasts and Weibull Parameters

With the autoencoder framework in Section 3.3.1-3.3.2, the pre-
dictive systems with batch_data2 have been designed to make
a reliable model forecast of the 3–station variables (3-output
sequence [WndSpd, WndDir and 1CNR] for the offshore and
[WndSpd, WndDir and 2Air Temperature] for the onshore) for
the considered time period of 1008 (offshore station) and 1440
(onshore). With the new input sequence data of batch_data2
( A_io _Conv2D_noisy_pred for the investigated timesteps
([t1]− [t1008) or/and A_io_GRU_noisy_pred for the investigated
timesteps ([t1]− [t1440), the station 3-variable forecasts (Col. 6 of
Table 1a) were generated.

From the time-series predictions of the 1WndSpd and 2Wnd-
Dir, the offshore/onshore wind resource statistics for individual
station height were calculated from the actual, Conv2D and GRU
predicted wind profiles in the WAsP software. From the time-
series wind profile, the onshore/offshore wind power density
using the Weibull distribution was calculated as follow:

PW =
1
2

ρ(h)C3Γ
(

1 +
3
k

)
(14)

where k, and C are the shape and scale parameters of the
Weibull distribution, and PW is the Weibull wind power density.

A.4. Performance Evaluations of the Autoencoders

The performance of the two autoencoding models with an in-
dependent evaluation dataset of 5-residential buildings (Res-
Ev1–Res-Ev5) was assessed. To measure the closeness (corre-
lation) of the predicted station variable profiles to the actual
datasets (baseline values), the forecast model skills were evalu-
ated with the 4-quantitative metrics below:

CoD = {

N
∑

i=1
(Aacti − Âact)(Apredi

− Âpred)√
N
∑

i=1
((Aacti − Âact)

2 N
∑

i=1
(Apredi

− Âpred)
2
)

}2 ∗ 100%

(15)

MAE =
N

∑
i=1

∣∣∣Apredi
− Aacti

∣∣∣
(N)

∗ 100% (16)

RMSE =

√√√√ N

∑
i=1

(Apredi
− Aacti )

2

(N)
∗ 100% (17)

MSE =
N

∑
i=1

(Apredi
− Aacti )

2

(N)
∗ 100% (18)

where Apred,i is the ith predicted values of the Aio_conv2D_pred

orAio_GRU_pred at any given timestep; Aact is the ith actual
values of the station measurements; N is the total sample-
size; CoD, MAE, RMSE and MSE are the estimated val-
ues of the correlation of determination, mean_absolute_error,
root_mean_squared_error and mean_squared_error, respec-
tively.

4. RESULTS AND DISCUSSION

A. Experimental Results
Experimental results of the autoencoder predicted multivariable
profiles (WndSpd, WndDir, Air Temp and CNR) for each off-
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Table 9. Table 4c: Improvement of the Conv2D and GRU autoencoder predictions without the feature noise removal over the model
predictions with noise removal.

Station

(IDs)

Model Type

Usage

WndDir

(%)

CNR

(%)

WndSpd

(%)

......Conv2D................ ME MAE RMSE ME MAE RMSE ME MAE RMSE

OST1 Prediction Conv2D_OST1 +25.4 % +41.9 % +23.7 % +6.55 % +44.4% +25.9% +13.8% +46.4 % +28.3 %

OST3 Prediction Conv2D_OST3 +16.9 % +42.3 % +24.8 % -0.027 % +49.9% +8.7% +8.7% +46.1 % +28.7 %

OST4 Prediction Conv2D_OST4 +31.5 % +40.3 % +23.9 % +20.3% +38.7% +21.8% +13.6 % +42.1 % +24.0 %

WndDir CNR WndSpd

........ ............GRU............ ........ ............... ....... ................... ........ ........ .............. ........

......Offshore...... ME MAE RMSE ME MAE RMSE ME MAE RMSE

OST1 Prediction GRU_OST1 +3.50 % +46.9 % +28.7 % +7.89 % +45.9% +25.9 % +6.56 % +43.4 % +25.3 %

OST3 Prediction GRU_OST3 +3.10 % +51.5 % +33.8 % +3.96 % +50.7% +33.2 % +4.23 % +50.3 % +33.1 %

OST4 Prediction GRU_OST4 -0.78 % +53.5 % +36.7 % +4.77 % +49.1% +31.8 % -2.53 % +53.5 % +37.5 %

Table 10. Table 5: Summary of the best autoencoding architectures for 001-288 prediction timesteps

Station Autoencoder Selection Autoencoder Selection Autoencoder Selection

Offshore Heights (m) for WndDir for CNR for WndSpd

OST1 73.8 Conv2D GRU Conv2D

OST3 123.8 Conv2D GRU Conv2D

OST4 153.8 GRU GRU GRU

—— —— —— —— ——

Onshore Heights (m) for WndDir for Air_Temp for WndSpd

ST1 20 GRU GRU GRU

ST3 20 GRU GRU GRU

ST4 10 GRU GRU GRU

Table 11. Table 6: Summary of the dominant sectorwise wind directions for the autoencoder predictions and actual wind model
(001-288 steps)

Station Actual Conv2D Autoencoder GRU Autoencoder Conv2D Autoencoder GRU Autoencoder

Offshore Heights (m) Wind Rose
Wind Rose without

Noise Removal

Wind Rose without

Noise Removal

Wind Rose with

Noise Removal

Wind Rose with

Noise Removal

OST1 73.8 WSW WSW WSW SSW SSW

OST3 123.8 WSW WSW WSW SSW SSW

OST4 153.8 WSW WSW WSW SSW SSW

Onshore ———– —————— ————— —————- ——————- —————–

ST1 20 SSW & WSW WSW SSW & WSW SSW & WSW SSW

ST3 20 WSW & W WSW & W WSW & W WSW WSW

ST4 10 W & WNW W & WSW W & WNW WSW & W WSW & W
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Table 12. Table 7: Conv2D and GRU autoencoder evaluation results in terms of estimated MAE (%) and MSE (%) for the offshore
and onshore stations.

Station Model Type —— —— Conv2D —— Model Type —— —— GRU ——

IDs Usage Res-Ev1 Res-Ev2 Res-Ev3 Res-Ev4 Usage Res-Ev1 Res-Ev2 Res-Ev3 Res-Ev4

....... OFFSHORE ....... ....... MAE (%) ....... OFFSHORE ....... ....... MAE (%) .......

OST1
Evaluated

Conv2D -OST1
18.70 18.96 32.42 31.73

Evaluated

GRU -OST1
22.45 24.36 35.52 32.52

OST3
Evaluated

Conv2D -OST3
20.54 19.90 33.87 31.47

Evaluated

GRU -OST3
25.17 23.39 35.69 33.13

OST4
Evaluated

Conv2D OST4
26.81 22.90 34.98 30.27

Evaluated

GRU -OST4
23.27 20.45 32.41 29.53

....... OFFSHORE ....... ....... MSE(%) ....... OFFSHORE ....... ....... MSE (%) .......

OST1
Evaluated

Conv2D -OST1
5.380 6.240 18.83 14.94

Evaluated

GRU -OST1
7.410 9.770 19.06 16.98

OST3
Evaluated

Conv2D -OST3
6.800 6.480 19.65 16.23

Evaluated

GRU -OST3
10.33 8.130 20.07 16.35

OST4
Evaluated

Conv2D -OST4
10.55 7.260 18.90 15.37

Evaluated

GRU -OST4
7.870 6.660 18.37 13.27

Station Model Type —— —— Conv2D —— Model Type —— —— GRU ——

IDs Usage Res-Ev1 Res-Ev2 Res-Ev3 Res-Ev4 Usage Res-Ev1 Res-Ev2 Res-Ev3 Res-Ev4

....... ONSHORE ....... ....... MAE (%) ....... ONSHORE ....... ....... MAE (%) .......

ST1
Evaluated

Conv2D -ST1
23.62 23.98 38.63 33.36

Evaluated

GRU -ST1
20.83 22.01 38.48 30.09

ST3
Evaluated

Conv2D -ST3
24.12 22.79 38.19 31.47

Evaluated

GRU -ST3
22.03 20.72 37.26 29.47

ST4
Evaluated

Conv2D -ST4
44.45 31.41 45.27 19.59

Evaluated

GRU -ST4
44.38 31.30 34.18 18.87

....... ONSHORE ....... ....... MSE(%) ....... ONSHORE ....... ....... MSE (%) .......

ST1
Evaluated

Conv2D -ST1
7.75 9.42 24.03 15.46

Evaluated

GRU -ST1
6.37 8.02 22.70 14.05

ST3
Evaluated

Conv2D -ST3
9.78 7.30 22.50 14.09

Evaluated

GRU -ST3
7.55 6.02 21.61 13.19

ST4
Evaluated

Conv2D -ST4
21.47 12.1 28.60 5.82

Evaluated

GRU -ST4
21.08 11.94 19.24 5.36
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b1) Actual Model:  wind resource statistics_78.8 m  (OST1)

c1) Actual Model:  wind resource statistics_128.8 m  (OST3)

d1) Actual Model:  wind resource statistics_158.8 m (OST4)

b2) Conv2D Model:  wind resource statistics without noise

c2) Conv2D Model:  wind resource statistics without noise

d2) Conv2D Model:  wind resource statistics without noise

b3) Conv2D Model:  wind resource statistics with noise (OST1)

c3) Conv2D Model:  wind resource statistics with noise (OST3)

d3) Conv2D Model:  wind resource statistics with noise (OST4)
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Fig. 19. Fig 15: aGeneralized wind statistics of combined 3-station heights (OST1, OST3-OST4); and b-doffshore wind statistics of
each station height

shore and onshore station height as well as the actual profiles
are all depicted in the Figs. 2–15, S2–S12 and Tables 2–7.

B. Discussion

B.1. Offshore wind profile comparisons (Conv2D vs. GRU)

For every sampling period of 48 timesteps, the time-series of
the Conv2D autoencoder predictions for batch_data2 input se-
quences (model prediction dataset of Cols. 5 and 8 of Table 1b)
have been compared with the actual profiles for each offshore
station height (Figs 5–6 and S6). For the time-series predictions
without the feature noise removal (data noise inclusion), the
offshore wind speeds are compared with the actual measure-
ments at 78.8 m height (Fig 5a). Also, the offshore wind speed
predictions with the feature noise removal are compared (Fig.
5b). Furthermore, the time-series predictions of the offshore
wind speeds for other station heights of 128.8 (Fig S6a) and 153.8
m (Fig S6b) are provided. As reported in Fig. 6, the time-series
predictions of the offshore wind direction with and without the
noise removal are compared with the actual measurements of
78.8 m height (OST1). Moreover, the plots of the predicted CNR
values with and without the data noise removal are compared
with the time-series of the actual CNR measurements (Fig 7).

For the total period of 288 timesteps, the multi-variable actual
profiles of the offshore station ‘WndSpd, WndDir and CNR’ are
well reproduced by the two autoencoding models (Conv2D and
GRU) as the introduction of the feature noise signal with the
batch_data2 input dataset did enhance the overall performance
of the considered models. Although, the time-series predictions
(3–variable model outputs) of the Conv2D autoencoders with
the feature noise signal removal (Fig. b of 5–7) for OST1 (78.8 m

height) show the: - 1close (similar) trend with the actual mea-
surement and 2slight improvement over the model output (time-
series predictions) without the feature nose removal (Fig a of
5–7), however, the plots of the Conv2D wind roses revealed that
its more appropriate to assess the sectorwise wind flow using
the Conv2D predictions without the feature noise removal (Fig
8i). Additionally, the similar studied findings for the Conv2D
predicted wind roses for other offshore station heights of 128.8 m
(Fig 8ii) and 153.8 m (Fig 8iii) are reported. In a similar develop-
ment, the graphs of the GRU predicted wind roses without and
with the feature noise removal of the offshore station heights of
73.8 m (Fig c and e of 8i), 128.8 m (Fig c and e of 8ii) and 158.8
m (Fig c and e of 8iii) are compared to the: - Conv2D predicted
wind roses without and with the noise removal (Fig b and d of
8i–8iii) and the actual wind roses (Fig a of 8i–8iii). The domi-
nant sectorwise wind flows from the Conv2D and GRU model
predictions with and without noise removal, as well as the ac-
tual wind flows for the total sampling period of 288 timesteps
are summarized (Table 6). In similar to the Conv2D predicted
wind roses without the noise removal (Fig b of 8i-8ii), we ob-
served that the GRU model predicted wind roses without the
noise removal (Fig c of 8i–8iii) strongly aligned with the actual
wind roses (Fig a of 8i–8iii). For the model forecast periods of
1–288 timesteps, the figurative comparisons of the GRU (Fig e of
8i–8iii) and the Conv2D (Fig d of 8i–8iii) predicted wind roses
with the data noise removal revealed that our two autoencoding
architectures with the noise removal technique was a misrep-
resentation (Table 4c) of the actual wind flows (Fig 8a) for the
considered offshore station heights. Based on the sectorwise
wind flows for the similar forecast period, the best autoencoder
for assessing each offshore station variable (WndSpd, WndDir
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and CNR) is depicted in Table 5. At the OST1 and OST3 station
heights, the Conv2D autoencoder appears to be more suitable
for assessing the offshore wind profiles (WndDir and WndSpd)
only while the GRU autoencoder is found to be more reliable for
the CNR assessment of the OST1 and OST3. At OST4 only, the
GRU autoencoder appears to be more reliable for assessing all
the station 3–variables (rows 2–4 of Table 5) as compared to the
Conv2D autoencoder suitability.

Finally, the frequency distributions of the Conv2D and GRU
predicted wind flows without the noise removal (Figs b1–b2 of
9–10 and S7) are compared to: 1the frequency distributions of the
Conv2D and GRU predicted wind flows with the noise removal
(Figs. c1–c2 of 9–10 and S7) as well as 2the frequency distribu-
tions of the actual wind flows. For the dominant actual wind
flows in the WSW direction (Col. 3 of Table 6), the Conv2D and
GRU model frequency distributions without the noise removal
recorded a close-tie with the actual frequency distributions (Figs.
a of 9–10 and S7) for all sectorwise directions (o) of the offshore
wind speeds (m/s).

Fig S1: Block Diagram of a GRU Autoencoder (Unsupervised Predictive System)

Layer  12

GRU Autoencoder

Dropout Rate

Input Shape 
(2-D array)   

Input  Sequence Datasets
(3-D array)  

Input Layer

Filters, Return Sequence, 
Activation Function

GRU Hidden Layer
Filters, Return Sequence, 

Kernel Initializer, 
Activation Function

GRU Hidden Layer

Compiler

Autoencoder
(Output Layer)

optimizer, loss function and 
metrics

Output Sequence 
Datasets

(3-D array)  

Filters, Return Sequence, 
Kernel Initializer Activation 

Function

Layer 3

Layer 4

Layer  6Layer  5

Layer 1

Layer  6

Layer  9

GRU Hidden Layer

GRU Hidden Layer

Layer  7

Layer  8

Layer 2

ENCODER
(BatchNormalization Layer)

GRU Hidden Layer
Filters, Return Sequence, 

Kernel Initializer, 
Activation Function

Dropout Rate

Filters, Return Sequence, 
Kernel Initializer, Activation 

Function

Layer  9

Layer  10

Filters, Return Sequence, 
Kernel Initializer, 

Activation Function

GRU Hidden Layer
Filters, Return Sequence, 

Kernel Initializer, Activation 
Function

GRU Hidden Layer

DECODER
(Reshape Layer)

Layer  11

Fig. 20. FS1: Block Diagram of a GRU Autoencoder (Unsuper-
vised Predictive System)

B.2. Onshore wind profile comparisons (Conv2D vs. GRU)

The time-series of the Conv2D wind profiles for each station
height are compared with the Actual wind profiles (Fig. 11) of
the similar sampling period of 48 timesteps. For the Conv2D
autoencoder predictions without (Fig 11a) and with the feature
noise removal (Fig 11b), the onshore wind speeds at ST1 are
summarized and compared with the actual wind speed measure-
ment of 20 m height. Additionally, the offshore wind directions
without (Fig. 11c) and with (Fig. 11d) the noise removal are
compared with the actual measurements of 20 m height at ST1.
Furthermore, the time-series predictions of the onshore wind
speeds of 20 m height at ST3 (Fig. S9a) and of 10 m height at ST4
(Fig. S9b) are compared with their actual wind measurements.
Further to this, the plot of the Air_Temp without (Fig S8a) and
with the feature noise removal (Fig S8b) are compared with the
actual values. With the new input sequence datasets (prediction
datasets in Cols. 5 and 8 of Table 1b) for the total period of 288
timesteps, the time-series of the actual profiles of the onshore
station multi-variables [WndSpd, WndDir, Air_Temp] are well
captured/reproduced by the our autoencoders (Conv2D and
GRU models). Also, the comparison study reveals that the in-
troduction of the feature noise signal into the station variable
datasets (model input data) did enhanced greatly the overall
performance of the autoencoders for the time-series multivariate
predictions. The Conv2D time-series predictions (model out-
puts) with the feature noise removal for ST1 (Figs. 11b, 11d and
S8b) recorded a closer trend with the actual values as compared
to the Conv2D predictions without the noise removal (Figs 11a,
11c and S8a). Also, the Conv2D predicted wind roses without
and with the noise removal (Figs. b and d of 12i) revealed that its
more appropriate to assess the sectorwise wind directions with
the noise removal (Fig d of 12i) than to assess the sectorwise
wind direction with the noisy dataset/without the noise removal
(Fig b of 12i). Nevertheless, a similar study is carried out also
for ST3 at 20 m (Fig 12i) and ST4 at 10 m heights (Fig S11i). The
studied finding reveals that the Conv2D and GRU model out-
puts without the noise removal at ST3 (Fig b-c of 12ii) are more
appropriate for assessing the sectorwise wind directions (wind
rose) while the GRU model outputs without the feature noise
removal at ST4 is more appropriate for assessing the sectorwise
wind directions/flows (Fig c of S11i). In the similar develop-

a) 1-48 sampling period b) 49-96 sampling period c) 97-144 sampling period

d) 145-192 sampling period e) 193-240 sampling period f) 241-288 sampling period

Fig. 21. FS2: Time-series of actual offshore wind directions
(degrees) at different measured heights (OST1-OST4)

ment, the GRU model wind roses at an onshore height of ST1
(Fig c and e of 12i), ST3 (Fig c and e of 12ii) and ST4 (Fig c and e
of S11i) have been compared with the Conv2D wind roses (Figs.
b and d of 12i–12ii and S11i) and the actual wind roses (Figs. a
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of 12i–12ii and S11i). Meanwhile, the dominant sectorwise wind
flows of the Conv2D and GRU autoencoders are compared also
with the actual wind roses (Table 6). Similar to the Conv2D wind
roses with the noise removal (Fig d of 12i), the GRU wind rose
without the noise removal (Fig c of 12i) strongly agrees with the
actual wind rose (Fig a of 12i) at ST1. For a similar period of 288
timesteps, 1the GRU wind rose with a noise removal (Fig e of
12i) and the Conv2D wind rose without the noise removal (Fig
b of 12i) at ST1; 2the GRU wind rose with noise removal (Fig e
of 12ii) and the Conv2D wind rose with the noise removal (Fig
d of 12ii) at ST3; and the 3GRU wind rose with noise removal
(Fig e of S11i), Conv2D wind rose with a noise removal (Fig d
of S11i) and Conv2D wind rose without the noise removal (Fig
b of S11i) at ST4 are all poor representations of the actual wind
flow at the considered onshore stations (Table 6). Based on the
sectorwise wind flows for a period of 1–288 timesteps, the best
autoencoder for assessing each onshore station variable (Wnd-
Dir/CNR/WndSpd) is depicted in Table 5. At ST1, ST3 and ST4,
the GRU autoencoder is seen to be more suitable for assessing
all the onshore station multi-variables (WndDir, Air_Temp and
WndSpd) as compared to the Conv2D autoencoder (rows 6–8
of Table 5). Finally, the frequency distributions of the Conv2D

a) 1-48 sampling period b) 49-96 sampling period c) 97-144 sampling period

d) 145-192 sampling period e) 193-240 sampling period f) 241-288 sampling period

Fig. 22. FS3: Time-series of actual offshore wind direction vari-
ations (degree) at different measured heights (OST1 - OST4)

and GRU wind profiles without the feature noise removal (Figs
b1–b2 of 13–14 and S12) are compared to the frequency distribu-
tions with the noise removal (Figs. c1–c2 of 13–14 and S12). For
the dominant wind flows in the SSW&WSW (ST1), WSW&W
(ST3), W&WNW (ST4) direction (Col 3 of Table 6), the studied
findings show that the GRU model frequency distribution with-
out the feature noise removal (Figs. b2 of 13–14 and S12) are
closer to the actual frequency distributions (Figs. 13a, 14a and
S12a) in all sectorwise wind directions (o). In comparisons of
the predicted with the actual model wind, the generalized wind
statistics of the combined 3-station heights (OST1, OST3 and
OST4) of Fig 15a revealed that the offshore wind statistics of the
GRU model without the feature noise removal could be used as
a stand-alone forecast model in analyzing the time-series of the
wind profiles of a particular climatic zone.

B.3. Autoencoders forecast metrics

The predictive skill of each autoencoder is assessed by mea-
suring the reliability of the offshore and onshore forecasts in
terms of model: 1deviation from and 2connectivity with the
actual (baseline) values. From the forecast horizons of 1-288
timesteps, the estimated model errors (MAE and RMSE) and
the forecast accuracy (CoD) of each autoencoder in the offshore
time-series multivariable prediction have been analysed (Table

d) 145-192 sampling period e) 193-240 sampling period f) 241-288 sampling period

i) OST1_73.8 m height

iii) OST3_128.8 m height

iv) OST4_153.8 m height

ii) OST2_103.8 m height

Fig. 23. FS4: Actual model comparisons of offshore wind roses
at different measured heights (OST1 - OST4)

4a-b). Furthermore, the improvements of the Conv2D and GRU
autoencoder predictions without the feature noise removal over
the same model predictions with the feature noise removal are
compared in Table 4c. From the model comparative results of
the Conv2D and GRU autoencoders (Table 4a) with the actual
value, the Conv2D reported the highest CoD with the lowest
MAE and RMSE values for the time-series predictions of the
WndDir and WndSpd at OST1 and OST3 station heights; while
the GRU reported the highest CoD with the lowest MAE and
RMSE values for the predictions of the WndDir and WndSpd at
OST4 height. Notwitstanding, the GRU autoencoder recorded
the highest CoD with the lowest MAE and RMSE values for the
CNR time-series predictions of all the offshore heights (OST1,
OST3 and OST4). For the onshore station heights (ST1, ST3
and ST4) of Table 4b, the GRU model reported the highest CoD
with the lowest MAE and RMSE values for all the predicted
station multi-variables (WndDir, WndSpd and Air_Temp) at
the ST1, ST3 and ST4). In general, the Conv2D autoencoder in
the assessment of the offshore station variables of the WndDir
and WndSpd of the OST1 and OST3 shows superiority over the
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a) 1-48 sampling period b) 49-96 sampling period c) 97-144 sampling period

i) ST1_20 m height

ii) ST2_10 m height

iii) ST3_20 m height

iv) ST4_10 m height

Fig. 24. FS5a: Actual model comparisons of onshore wind
roses (001-144 timesteps) at different station masts (ST1 - ST4)

other autoencoder metrics, with exception to the station vari-
able of CNR where the GRU autoencoder shows its superiority
over the Conv2D. Nevertheless, the GRU autoencoder in the
time-series prediction of the onshore station multivariables of
the ST1/ST2/ST3 shows its superiority over the Conv2D au-
toencoder metrics. The predictive skills of each autoencoder
for the offshore and onshore stations are evaluated with inde-
pendent energy building datasets (Res-Ev1–Res-Ev5) of Table
1c. In Table 7, the model evaluated results of the Conv2D and
GRU autoencoders in term of the estimated MSE and MAE val-
ues have been depicted. For the evaluated Conv2D and GRU
autoencoders of each offshore/onshore height, the model skill
scores (MAE and MSE) comparison reveals that a single au-
toencoding architecture (Conv2D) is insufficient and unrealible
for assessing all the offshore multi-variables from the height
of OST1–OST4 while the evaluated skill scores for the onshore
stations reveal that a single autoencoding architecture (GRU)
is sufficient for assessing of all the station multivariables from
the heights of ST1–ST4. Generally, these evaluated model re-
sults (Table 7) strongly agreed with the best predicted model

d) 145-192 sampling period e) 193-240 sampling period f) 241-288 sampling period

v) ST1_20 m height

vi) ST2_10 m height

vii) ST3_20 m height

viii) ST4_10 m height

Fig. 25. FS5b: Actual model comparisons of onshore wind
roses (145-288 timesteps) at different station masts (ST1 - ST4)

skills reported in Tables 4a-b and 5, respectively. Lastly, in find-
ing the baseline forecast architecture for the 1description of the
wind variability (non-linear forecast solutions) and 2analysis
of the time-series of the offshore and onshore wind profiles for
a particular climatic zone, our forecast metrics of the Conv2D
and GRU autoencoders are compared with the CNN and LSTM
autoencoder metrics reported by Chandra et al [54]. Our au-
toencoder forecast skills in the multi-step variable predictions
are better off when compared to Chandra investigated LSTM
and ED-LSTM forecast models (Tables 4-11). To estabilish the
superiority of our autoencoder skills over other forecast model
performances reported in other literature, the estimated MAE
and RMSE values of our presented models are compared to the
SVM and LSTM model performances of Pallonetto et al [72].
Pallonetto et al reported MAE (kW) and RMSE (%) values of
12.642 and 3.54 for the LSTM, 11.539 and 3.26, respectively for
the SVM (Table 2); while our summarized hourly forecast errors
in Table 4a-b are lower. Also, the power consumption forecast
accuracy (CoD=0.772 and MAE=0.314) of the CNN and the sup-
ply capacity prediction skill (CoD=0.336 and MAE=0.479) of the



Research Article Journal of Energy Management and Technology (JEMT) Vol. 7, Issue 4 259

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Offshore  Wind Speed (m/s) at OST3  (128.8 m)

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) Offshore  Wind Speed (m/s) at OST4 (153.8 m)

Fig. 26. FS6: Actual and Conv2D autoencoder plots of offshore
wind speeds (m/s) at OST3-OST4, respectively

hybrid (CNN and RNN) models of Kang et al [73] are compared
to the Conv2D and GRU model forecast scores of our presented
study (see Table 4). The estimated values of CoD and MAE of
our considered autoencoders outperformed the CoD and MAE
values of their models. Lastly, our high forecast skills of Conv2D
and GRU autoencoders are compared to the Yongsheng et al
[74] reported ELM model score (RMSE: 3.678–5.817) as well as
Gensler et al [75] reported autoencoder and conventional LSTM
skills (Auto-LSTM RMSE = 7.13%). Although, theYongsheng
et al and Gensler et al model skills within the context of solar
forecasting were considered, however, our model performance
for the multivariate predictions outperformed the investigated
model of Yongsheng et al [74], motivating the general use of
our autoencoding architecture as the baseline forecast model
in : 1. describing the wind variability (non-linear forecast solu-
tions) and 2. analysing the wind speed/direction profiles of a
particular climatic zone.

a) Actual Frequency Distribution at OST4

b1) Conv2D: Predicted  Frequency Distribution 
without Noise Removal

c1) Conv2D: Predicted  Frequency Distribution with 
Noise Removal

b2) GRU: Predicted  Frequency Distribution 
without Noise Removal

c2) GRU: Predicted  Frequency Distribution with 
Noise Removal

Fig. 27. FS7: Actual, Conv2D and GRU model comparisons of
frequency distribution of offshore wind speeds (m/s) at OST4

5. CONSLUSION

The development of an autoencoding predictive model plays
a vital role in describing the variability of the long-term off-
shore and onshore multivariable profiles of a particular climatic
zone. Based on our selected temporal resolutions of the historical
multivariate input sequence obtained from the two different geo-
graphical zones, the analysis of the offshore and onshore station
multivariables at 8-different heights have been considered with
2-different autoencoding models in an unsupervised predictive
operation. Based on the comparison of the model predictions
with the actual measurements, the analysis and comparison of
the: 1time-series and sectorwise wind profiles, 2CNR and 3pre-
vailing air temperatures have been carried out. The experimental
findings of the analysis of the offshore wind speed-direction at
4–different heights revealed that the lidar station height was
driven by weather condition impacts, with the steadiest offshore
wind flows recorded above 128.8 m height (OST3–OST4) as com-
pared to the other station heights of 78.8–103.8, 103.8–128.8 and
78.8–153.8 m. Also, our experimental findings revealed that the
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i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) Onshore Air_Temp (oC) with Noise Removal at ST1

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Onshore Air_Temp (oC) without Noise Removal at ST1

Fig. 28. FS8: Actual and Conv2D autoencoder plots of onshore
Air_Temp (oC) with and without noise removal at ST1

dominant wind flows at the onshore (ST1–ST4) in all the sec-
torwise wind directions vary for each station height and were
greatly impacted by their local surface irregularity. Thus, the
analysed wind profiles of each onshore station height (ST1–ST4)
required that the wind flows be modelled as a function of the
atmospheric conditions or/and local effects (topographic de-
scription of the site) while the offshore wind flow above 128.8
m height is more suitable for an optimal loading of the WET.
The importance and superiority of the GRU and Conv2D au-
toencoders in the time-series predictions and analysis of the
station multivariables have been observed. Upon the evaluation
of our considered autoencoders, we suggest that the presented
autoencoder architectures were essential tools for assessing the
time-series multivariables at 5–min/10–min intervals for two dif-
ferent geographical zones. Finally, the comparison results of the
autoencoder frequency distribution of the offshore and onshore
wind profiles with and without the feature noise elimination
have proven that the GRU autoencoder produced a better fore-
cast and was a better choice for the analysis of the time-series of
the station multivariables (WndDir, Air_Temp and WndSpd) at

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Onshore Wind Speed (m/s) at ST3  (20 m)

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) Onshore Wind Speed (m/s) at ST4 (10 m)

Fig. 29. FS9: Conv2D autoencoder plots of time-series of on-
shore wind speeds (m/s) at ST3 and ST4, respectively

the onshore heights, while the Conv2D and GRU autoencoders
were needful for an accurate assessment of the time-series of
the offshore multivariables (WndDir, CNR and WndSpd). The
use of the Conv2D autoencoder only didn’t improve the over-
all prediction and evaluation accuracy scores of each offshore
height. Regardless of this, implementing the 2-autoencoding
models with the presented feature noise technique for the time-
series prediction of the multivariables did not only improve the
reliability of the ML models in the long-term (offshore and on-
shore) wind forecasting, but also provide the more robust wind
resource estimates for the considered station height. Sequel to
this, our experimental findings are summarized:

• The two investigated autoencoding architectures (Conv2D
and GRU) in the analysis of the hourly wind profiles of both
the offshore and onshore heights are needful, while a single
autoencoder (GRU) architecture is needful for the analysis
of the time-series profiles of the onshore multivariate input
features.

• The Conv2D autoencoder with a combination of the off-
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i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

a) Conv2D: Onshore  Wind Direction  (degree) at ST4 (10 m)

i) 1-48 sampling period ii) 49-96 sampling period iii) 97-144 sampling period

iv) 145-192 sampling period v) 193-240 sampling period vi) 241-288 sampling period

b) GRU: Onshore  Wind Direction  (degree) at ST4 (10 m)

Fig. 30. FS10: Conv2D and GRU autoencoder plots of onshore
wind directions with noise (degree) at ST4, respectively

shore station datasets of 78.8–158.8 m heights produced
the generalized model score errors (ME = 0.105 m/s and
RMSE = 0.420 m/s for the WndSpd; ME = -3.10 and RMSE
= 6.20 for WndDir) while the GRU model score errors (ME
= 0.019 m/s and RMSE = 0.396 m/s for WndSpd; ME =
-2.90 and RMSE = 7.90 for the WndDir) are reported for
the autoencoder predictions without the feature noise re-
moval. Without the feature noise removal, the generalised
offshore wind statistics of the Conv2D and GRU archi-
tectures for the combination of 3–station height datasets
(OST1 and OST3–OST4) exhibit the similar wind trends
(patterns) with the generalised offshore wind statistics from
the Actual model, while the superiority of the Conv2D
model over the GRU architecture was recorded for the esti-
mated offshore wind statistics of individual station height
(OST1/OST3/OST4).

• Lastly, the sequentially arranged layers of the considered
Conv2D and GRU autoencoders (3–D input sequence and
3–D output sequence structure) made it ideal for a long-

i) ST4 (10 m height)

a) Actual wind rose
b) Conv2D predicted wind rose without 

noise removal
c) GRU predicted wind rose without 

noise removal

d) Conv2D predicted wind rose with noise removal e) GRU predicted wind rose with noise removal

Fig. 31. FS11: Actual, Conv2D and GRU autoencoder compar-
isons of onshore wind roses at ST4 (1-288 steps)

term multivariable forecasting from 1-288 horizons, and
the analysis of the: wind speed and direction, sectorwise
windrose, CNR and prevailing air temperature at a given
offshore and onshore station height. Also, the introduction
of the feature noise technique significantly impacted the
autoencoder learning of the non-linear dynamics of the
multivariate input data sequence.
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