Agriculture fertilizer-based media for cultivation of marine microalgae destined for biodiesel production

NOHMAN JBARI1, ADIL ELBAOUCHI2, REDOUANE BENHIMA1, IMAN BENNIS1, RACHID BOULIF3, YOUSSEF ZEROUAL4, AND HICHAM EL ARROUSI1, *

1Green Biotechnology laboratory MAScIR, Moroccan Foundation for Advanced Science, Innovation & Research, Madinat Al Irfane, Rabat, Morocco
2International Center for Agriculture Research in the Dry Area (ICARDA), Rabat, Morocco
3CBS Programm UM6P University Benguerir Morocco, Rabat, Morocco
4AgBS programm UM6P university jorf lasfar Morocco, Rabat, Morocco

*Corresponding author: h.elarroussi@mascir.com

In recent years, biodiesel from microalgae has received large interest around the world, as sustainable energy for biofuel production. Mineral fertilizers can be a promising source for the development of low-cost culture media. We investigate the influence of fertilizer-based media: MAP (Mono-ammonium phosphate), TSP (triple superphosphate), Phosphoric acid, and Ammonitrate on cell viability, nutrients uptake, biomass, lipids production, and lipids profile of 3 microalgae strains. The best biomass production was 2.105 g L⁻¹, 1.95 g L⁻¹, and 1.75 g L⁻¹ for D. tertiolecta, Isochrysis sp., and Tetraselmis sp. cultured in TSP, MAP and H3PO4 (54%) based-media respectively, compared to control medium (1.85, 1.76 and 1.71 g/L respectively). The lipid content of all strains in fertilizer-based media was similar to control. The lipid profile showed that FAMES (Fatty Acids Methyl Esters) of all microalgae underwent a significant reduction in PUFAs (Polyunsaturated Fatty Acids) for fertilizers based-media, which improves the quality of biodiesel. Mineral fertilizers are a promising source that can be a low-cost microalgae production base at the industrial level.

© 2020 Journal of Energy Management and Technology

keywords: Microalgae, Fertilizers, Culture, Medium, Biodiesel.

http://dx.doi.org/10.22109/jemt.2020.196949.1190

1. INTRODUCTION

Microalgae are eukaryotic or prokaryotic photosynthetic microorganism as a new source of biomass, microalgae have only really begun to attract the attention of scientists and economic communities until the middle of the last century. Nowadays, there are numerous commercial applications of microalgae such as bioenergy, cosmetic, medical, agriculture, environment, food, and feed [1]. The possibility of industrial production has been under evolution for many years, since the use of microalgae for producing bioactives or proteins appeared to be of potential commercial interest [2]. The complexity of current technologies permits only small production with a high cost compared to the requirements of markets such as energy or food and feed. For example, the biofuel industry does not produce more than 20 kt/year at a production cost of $20,000/t [3]. The estimated price for 10,000 tons of microalgae biomass with 30% lipid is about $2.80/liter, including conversion, tax, and marketing cost [4]. A significant low-cost biomass production capacity increase is necessary to compete in large-scale markets such as energy and commodities. One of the alternatives to reduce microalgae biomass production costs is the use of low-cost culture media based on industrial grade inorganic salts such as agriculture fertilizers [5]. For most of these applications, the use of agriculture fertilizers as culture media promotes better economic and environmental feasibility.

Biodiesel production has recently received a lot of attention around the world, not only for their economic interest but also for the environment as well as after the global warming crisis.

Algal biomass can become one of the most important bioresource s in the biological industry if the cost of microalgae production is stable and economical [6]. Microalgae with high photosynthetic efficiency compared to conventional crops are a promising bioresource for biodiesel production [7]. Biodiesel from microalgal lipid is more sustainable and eco-friendly than petroleum-derived diesel fuels. The microalgae accumulate large quantities of lipids, grow at high rates, fix CO2 from the atmosphere, adapt to a wide area including extreme environment and utilize nutrient s from wastewater [8, 9]. Because using pure chemical media is very expensive and not cost-effective in large scale microalgae culture, the pure chemical media is being
replaced with a cheaper alternative that is commercial fertilizer. Agriculture fertilizers can be used and are being used widely in current fish production practices. In addition, these fertilizers contain important nutrients such as N, P, and K and a few trace elements (Ca, Cu, Zn, Fe, and Mg). All of these nutrients and elements happen to be essential and utilized by most microalgae for growth.

Nevertheless, microalgae biodiesel is not economically viable. Different strategies have been proposed to reduce the production cost of biomass and lipids conversion to biodiesel. According to biodiesel production using microalgae, one of the main problems related to the large-scale production is the high cost of the culture medium, which supports an optimal biomass and lipids productivities [2]. Generally, seawater enriched by analytical quality macronutrients and micronutrients or conventional culture media such as f/2 and Walne are used for the cultivation of marine microalgae. These media are costly to formulate, and therefore are somewhat limiting factors in the development of industrial production of microalgae [10]. In that sense, if we develop low-cost media based on agriculture fertilizers, the cost of algal biomass production can be reduced significantly. Agriculture fertilizers are mainly composed of macro-elements as nitrogenous and phosphorus and some of other elements such as iron, sodium, and potassium. However, they do not contain, in general, all micro-nutrients and vitamins necessary for the growth of microalgae [11]. Several studies have investigated the performance of low-cost culture media based on fertilizers for the cultivation of marine microalgae [12–14].

Different key parameters affecting the economic feasibility of algal for biodiesel production, such as biomass and lipids productivity [15].

This study is conducted to know the potential of commercial fertilizer as cheaper culture media for microalgae growth. The preparation of pure chemical media for mass algae culture is very expensive and labor-intensive. Therefore, with the finding of other cheaper alternative culture media for microalgae culture, this could contribute to the further development of large scale microalgae culture for different fields. In this particular study, commercial fertilizer will be used because it is readily available and easy to find in Morocco.

The aim of this work is to develop three culture media based on agriculture fertilizers (Monoammonium phosphate (MAP), Triple superphosphate (TSP), Phosphoric acid (H3PO4 (54%)), and ammonium nitrate) and study their effect on biomass and lipid of marine microalgae Dunaliella tertiolecta, Tetraselmis sp., and Isochrysis sp. destined to biodiesel production. As well as a study to improve biomass and lipids productivity by adding phytohormones.

2. MATERIAL AND METHODS

A. Microalgae strains and culture conditions

Three marine microalgae Dunaliella tertiolecta MS029, Tetraselmis sp MS052, and Isochrysis sp MS053 isolated from Moroccan Atlantic Ocean and maintained in MAscIR’s Collection of Moroccan Microalgae [16]. These microalgae strains were cultivated in three different culture media prepared from filtered and sterilized seawater enriched by mineral fertilizers: MAP (N:P:K 11:54:0), TSP (N:P:K 0:46:0), phosphoric acid (H3PO4 (54%)) (N:P:K 0:54:0) and ammonium nitrate (N:P:K 35:0:0). All of these low-cost products have been used as sources of nitrogen and phosphorus. However, agriculture grade products were used to complete the enrichment culture media by the remainder of the macronutrients (iron, boron, and manganese), micronutrients (zinc, copper, cobalt, and molybdenum), and vitamins. Walne medium was used as a control for all microalgae treatments. The composition of all culture media that were tested is given in Table 1.

Microalgae cultures for each formulation were initiated with an optical density (OD) at 680nm of 0.1 in a volume of 250ml, at a temperature of 25°C and under continuous illumination 150 µmol s⁻¹ m⁻². Agitation of cultures was 130 rpm in an orbital shaker. All experiments were carried out in triplicate.

B. Monitoring and modeling of microalgae growth

The monitoring of microalgae growth was performed by measuring the optical density OD at 680nm after every two days. The maximum specific growth rate (μₘ), lag phase (tₗ₉₉) and the potential maximum biomass production concentration (A) were determined after the modeling of the growth curves by modified Gompertz model given by Eq. (1) [17]:

\[
\ln(\text{OD}/\text{OD}_0) = A \exp\{-\exp[(2.72 \ \mu_m/A) \cdot (t_{\text{lag}} - t) + 1]\}
\]

where

- \(A = \ln(\text{OD}/\text{OD}_0) \): Potential maximum biomass production concentration.
- \(\text{OD} \) and \(\text{OD}_0 \): Optical density at 680nm at any time t and at t=0.
- \(\mu_m \): Maximum specific growth rate (d⁻¹).
- \(t_{\text{lag}} \): Delayed time (d).

C. Microalgae cell viability analysis by Flow cytometer

In order to evaluate the effect of the mineral fertilizers-based media on the microalgae strains viability, cells were stained with Propidium Iodide (PI) (81845 FLUKA), and analyzed by flow cytometer (FCM) using the FACS-Caliber (Becton Dickinson, BD) cytometer. PI is an intercalating agent when associated with DNA of damaged cells, it emits fluorescence and cannot cross with the cytoplasmic membranes of living cells. When excited at 488 nm, PI emit a fluorescence measured at 585 nm (FL2 channel of the cytometer).

Samples from each culture taken at day 14 were diluted using filtered seawater (0.2µm). To cancel the natural fluorescence of strains pigments (phycoerythrine and chlorophyll), samples without staining were analyzed as a negative control. Cells were stained with 10 µg/ml of PI and incubated at room temperature for 10 min (modified protocol of [18]). The number of events (cells) analyzed, was fixed at 3000 for each sample, results are expressed as a percentage of viable cells (percentage of displaced cells in FL2 channel).

D. Nutrients analysis in culture media

Continuous Flow Analyzer (SKALAR, San++) determined nitrogen sources and phosphorus. The analysis was done according to the Skalar methods for Ammonia, Nitrate, and phosphorus, respectively. Calibration curves were prepared using NH₄Cl, NaNO₃, and NaHPO₄ as standards of nitrogen and phosphorus, respectively.

E. Lipids extraction

Total lipid extraction is performed according to a modified protocol of [19]. The lyophilized biomass is rehydrated with water supplemented with 2% (Butylated hydroxytoluene) BHT and then sonicated (Branson Sonifier 450) at 40 KHz for 15 min at
room temperature. The lipids are extracted using a mixture of water/chloroform/methanol (0.8:2:1) and the extract was centrifuged at 5000 rpm for 5 min. The lower phase was recovered and the upper one was subjected to the same extraction procedure to extract the remainder of the lipids. A physiological saline solution (0.9% NaCl) is mixed with the organic phase (5:1 v/v) then a separating funnel carries out the separation. The chloroform is evaporated to constant weight by nitrogen gas and the lipids are finally weighed.

F. Plant hormones treatment of microalgae

Microalgae were cultivated in filtered and sterilized seawater enriched with TSP-based media. The synthetic plant hormones were incorporated to culture medium from the beginning of culture at different concentrations: auxin 2,4-D (Sigma Aldrich D7299): 0.5, 1, and 1.5 mg/L, Myo-inositol (Sigma Aldrich A1049): 1, 5 et 10 mg/L.

Microalgae were cultivated in filtered and sterilized seawater enriched with TSP-based media. The synthetic plant hormones were incorporated to culture medium from the beginning of culture at different concentrations: auxin 2,4-D (Sigma Aldrich D7299): 0.5, 1, and 1.5 mg/L, Myo-inositol (Sigma Aldrich A1049): 1, 5 et 10 mg/L, Aescin acid (ABA) (Sigma Aldrich A1049): 1, 5 et 10 mg/L.

G. Fatty acid methyl esters profile

The basic transesterification was done according to the protocol described by [20] to determine fatty acid methyl esters (FAME) profile. 2% NaOH (w/w) in methanol 1:20 was added as a reaction catalyst, the reaction was done at 80°C and atmospheric pressure during 6 hours. The gas chromatography (GC) (Agilent 7890A Series GC) coupled to mass spectrometry (MS) equipped with the multimode injector and 5-ms column with dimension of 30m x 250μm x 0.25μm, and electron impact ionization used in this study for FAME characterization.

Two μl of FAME solubilized in chloroform was injected into the column by splitless mode using helium as carrier gas at 1.5 ml/min. The ion source and quadruple temperatures were 230°C and 150°C, respectively. The oven temperature program was started at 70°C and maintained 1 min, increased at 20°C/min until 120°C, then, held one minute before to be increased until 200°C by 30°C/min and held one minute then, increased at 250°C at 10°C/min and held one minute, then increased until 270°C at 5°C/min and finally kept constant for 5 min. FAME composition was calculated as a percentage of the total FAMEs presents in the sample, determined from the peak areas. Detection was done using full scan mode between 35 to 600 m/z and with gain factor 5 and the identification was performed using NIST 2011 MS Library and confirmed by known standards Supelco® 37 Component FAME Mix (47885-USigma Aldrich) [20, 21].

3. RESULTS AND DISCUSSION

A. Microalgae growth

The parameters A, μ, and t_{lag} obtained by fitting Gompertz model to experimental data using nonlinear regression are collected in Table 2.

The regression coefficient (r^2), the sum of squared residuals (SSR) and the root-mean square error (RMSE) are also included to evaluate the goodness of fits.

Gompertz model exhibited a good fit sowing to the low SSR and RMSE values and high (r^2) values. In addition, the low values of (t_{lag}) indicate that the lag-phase in all treatments was negligible.

D. tertiolecta (Fig. 1a) cultivated in MAP and TSP-based media showed the highest significant effect on growth compared to the Walne medium (control) and the biomass production was improved to 1.94 g.L$^{-1}$ and 2.1 g.L$^{-1}$, respectively compared to control (1.850 g.L$^{-1}$).

These results were consistent with those found by [10] who compared the growth of *D. tertiolecta* in a medium based on commercial fertilizer, namely Maxicrop, with f/2 medium as a control. Likewise, it has been demonstrated that a medium based on a fertilizer N: P: K 10:26:26 has improved, significantly, the growth of *D. tertiolecta* to its compared to f/2 medium [22]. In our study, the specific growth rate was also increased to 0.2363 d^{-1} and 0.3328 d^{-1}, in MAP and TSP-based media, respectively compared to control (0.2099 d^{-1}) (Table 2).

While, H_3PO_4 (54%)-based media, showed a similar biomass production to control was (1.820 vs. 1.850 g.L$^{-1}$), and the specific growth rate was found higher (0.3199 d^{-1} vs. 0.2099 d^{-1}).

Ref. [10] was reported that no considerable influence of a medium based on commercial fertilizer, namely Miracle-gro,

<table>
<thead>
<tr>
<th>Table 1. Composition of culture media in g/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Macronutrients</td>
</tr>
<tr>
<td>NaH_2PO_4 2H_2O</td>
</tr>
<tr>
<td>$NaNO_3$</td>
</tr>
<tr>
<td>MAP</td>
</tr>
<tr>
<td>TSP</td>
</tr>
<tr>
<td>PA54</td>
</tr>
<tr>
<td>NH_4NO_3</td>
</tr>
<tr>
<td>$FeCl_3$ 6H_2O</td>
</tr>
<tr>
<td>H_3BO_3</td>
</tr>
<tr>
<td>$MnCl_2$ 4H_2O</td>
</tr>
<tr>
<td>Micronutrients</td>
</tr>
<tr>
<td>$ZnCl_2$</td>
</tr>
<tr>
<td>$CuSO_4$ 5H_2O</td>
</tr>
<tr>
<td>$CoCl_2$ 6H_2O</td>
</tr>
<tr>
<td>EDTA</td>
</tr>
<tr>
<td>Vitamins</td>
</tr>
<tr>
<td>Vitamin B1</td>
</tr>
<tr>
<td>Vitamin B1</td>
</tr>
<tr>
<td>Vitamin H</td>
</tr>
</tbody>
</table>
Table 2. Growth parameters estimated using Gompertz model of three microalgae cultured in Walne’s medium (control) and different low-cost media: MAP-based medium, TSP-based medium, and AP54-based medium

<table>
<thead>
<tr>
<th>Strain</th>
<th>A</th>
<th>(\mu (d^{-1}))</th>
<th>(t_{lag} (d))</th>
<th>(r^2)</th>
<th>SSE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. tertiolecta</td>
<td>Walne</td>
<td>1.85</td>
<td>0.2099</td>
<td>2.22 \times 10^{-14}</td>
<td>0.9239</td>
<td>0.2069</td>
</tr>
<tr>
<td></td>
<td>MAP-based</td>
<td>1.94</td>
<td>0.2363</td>
<td>9.90 \times 10^{-8}</td>
<td>0.9263</td>
<td>0.2081</td>
</tr>
<tr>
<td></td>
<td>TSP-based</td>
<td>2.105</td>
<td>0.3328</td>
<td>1.00 \times 10^{-10}</td>
<td>0.9911</td>
<td>0.0312</td>
</tr>
<tr>
<td></td>
<td>AP54-based</td>
<td>1.82</td>
<td>0.3199</td>
<td>4.16 \times 10^{-8}</td>
<td>0.9732</td>
<td>0.0712</td>
</tr>
<tr>
<td>Tetraselmis sp.</td>
<td>Walne</td>
<td>1.709</td>
<td>0.2662</td>
<td>4.68 \times 10^{-9}</td>
<td>0.9673</td>
<td>0.0761</td>
</tr>
<tr>
<td></td>
<td>MAP-based</td>
<td>1.747</td>
<td>0.2206</td>
<td>9.50 \times 10^{-8}</td>
<td>0.9717</td>
<td>0.0682</td>
</tr>
<tr>
<td></td>
<td>TSP-based</td>
<td>1.551</td>
<td>0.3472</td>
<td>1.00 \times 10^{-10}</td>
<td>0.9671</td>
<td>0.0648</td>
</tr>
<tr>
<td></td>
<td>AP54-based</td>
<td>1.208</td>
<td>0.1872</td>
<td>2.23 \times 10^{-14}</td>
<td>0.9127</td>
<td>0.1021</td>
</tr>
<tr>
<td>Isochrysis sp.</td>
<td>Walne</td>
<td>1.762</td>
<td>0.4281</td>
<td>2.22 \times 10^{-14}</td>
<td>0.9464</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>MAP-based</td>
<td>1.913</td>
<td>0.3136</td>
<td>3.69 \times 10^{-10}</td>
<td>0.9609</td>
<td>0.1143</td>
</tr>
<tr>
<td></td>
<td>TSP-based</td>
<td>1.886</td>
<td>0.4404</td>
<td>1.10 \times 10^{-10}</td>
<td>0.9487</td>
<td>0.1524</td>
</tr>
<tr>
<td></td>
<td>AP54-based</td>
<td>1.946</td>
<td>0.3323</td>
<td>2.24 \times 10^{-14}</td>
<td>0.94</td>
<td>0.1832</td>
</tr>
</tbody>
</table>

Table 3. Percentages of viable cells at day 14 of culture in the three mineral fertilizers based-media in comparison with the reference medium

<table>
<thead>
<tr>
<th>Strains</th>
<th>Walne</th>
<th>FW MAP</th>
<th>FW TSP</th>
<th>FW AP54</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. tertiolecta</td>
<td>99.09</td>
<td>99.21</td>
<td>99.56</td>
<td>99.35</td>
</tr>
<tr>
<td>Tetraselmis sp.</td>
<td>99.63</td>
<td>99.31</td>
<td>99.54</td>
<td>99.71</td>
</tr>
<tr>
<td>Isochrysis sp.</td>
<td>94.36</td>
<td>98.86</td>
<td>99.31</td>
<td>98.32</td>
</tr>
</tbody>
</table>

Compared with f/2 medium, was found on biomass production of D. tertiolecta. Similar results were also obtained by [12] who used Brazilian fertilizer, namely Super Our Verde as culture medium and Conway medium as control.

For Tetraselmis sp. (Fig. 1b), no considerable effect was found on the potential of biomass production in fertilizers-based media, MAP (1.75 g.L⁻¹), and TSP (1.75 g.L⁻¹) compared to control (1.709 g.L⁻¹). The specific growth rate slightly decreased in fertilizer-based media MAP medium (0.2206 d⁻¹ vs. 0.2662 d⁻¹) and improved to 0.3472 d⁻¹ in TSP medium. However, both the potential of biomass production and specific growth rate were decreased in H₃PO₄ (54%)medium (1.208 and 0.1872 d⁻¹, respectively) (Table 2). It was reported by [12] that among 8 commercial fertilizers from the Brazilian market tested to cultivate Tetraselmis sp., only one, namely Ultra Fertil, has given a good growth.

For Isochrysis sp. (Fig. 1c), in all fertilizer-based media, the potential of biomass production was, slightly, higher than control, it’s were 1.913, 1.886, and 1.946 in MAP, TSP and H₃PO₄ (54%) media, respectively (in control was 1.762). A specific growth rate in TSP medium (0.4404) was, practically, similar to control (0.4281) and, slightly, decreased in MAP (0.3136) and AP54 (0.3323) media (Table 2). Similar results were obtained with Isochrysis aff. Gallbana, where the use of agricultural fertilizer-based media showed no significant effect on biomass production and growth rate when compared to f/2 medium [13]. Also, [12] was reported that a good growth was obtained using medium based on a fertilizer, namely S.O.V, compared to Walne medium.

B. Mineral fertilizers based-media effect on cell microalgae viability

Flow cytometer coupled with PI was used in this study, to monitor the stress caused by the application of chemical fertilizers on the different strains, in comparison with the reference medium.

Dot plots are given in Fig. 2, as an example for flow cytometer analysis of the D. tertiolecta.

Results of cell viability obtained in all media tested, calculated as a percentage, are presented in Table 3.

The percentage of viable cells, for all the media tested (including the reference medium), was between 94.36% and 99.71%. The MAP, TSP, H₃PO₄ (54%) fertilizers based-media showed a comparable effect of conventional medium on cell viability.

PI coupled with FCM was used to monitor microalgae cell viability in many studies [23]. Since only the viable cells are involved in the production, this fast and easy method is suitable to study the effect of culture conditions on the microalgae living cells, such as nutrients starvation.

C. Fertilizers based-media effect on nutrients uptake of microalgae

The monitoring of the consumption of the major elements N and P provides information on the ability of microalgae to assimilate the proposed new form. It thus focuses on the optimal concentration of each element necessary for each stage of growth. In this study, the consumption of N and P was studied during different growth stages.

The result presented in Fig. 3 shows that the majority of nitrogen and phosphate was consumed during the growth cycle. At the end of the exponential phase of D. tertiolecta growth, P is assimilated almost entirely (Fig. 3a).

For Isochrysis sp., the nitrogen consumption during the culture cycle of this strain is not very important, indicating an excess of N in both the reference and the fertilizers based-media (Fig. 3c). At the end of the exponential phase, no more than 50% of N has been consumed, which gives the possibility of reducing the N/P ratio in this culture medium. While for Tetraselmis sp, the majority of N and P were consumed during the first 7 days of culture in all media included control medium (Fig. 3e,f). The study by [24] showed that the growth is proportional with the assimilation of nitrogen by Chlorella vulgaris, this study confirms the result that we obtained in the different fertilizers based-media. Another study showed that nitrogen assimilation in Chlorella is strongly related to the concentration and source of phosphate, as well as the N/P ratio that can influence lipid and protein metabolism in microalgae this strain [25]. The majority of conventional culture media have nitrate as their sole source.
Fig. 1. Modeling of growth and growth rate of three microalgae (a) D. tertiolecta, (b) Tetraselmis sp, (c) Isochrysis sp in Walne’s medium (control) and different low-cost media: experimental data for control (♦), MAP-based medium (■), TSP-based medium (×) AP54-based medium (●), Gompertz model for control (___), and fertilizer-based media (−−−−).

of nitrogen. While fertilizers based media that we propose is composed of nitrate and ammonium, which could explain the improvement of the assimilation of all these nutrients by these microalgae studied.

D. Lipids content

One of the key criteria for biodiesel production from microalgae is lipid content. Based on total gravimetric lipids, the lipids yield was evaluated in the stationary phase. The challenge of biodiesel production is to minimize the cost by low-cost inputs, especially for the formulation of culture media that give a good growth without affecting the quantity and quality of lipids.

Fig. 4 shows that the mineral fertilizers based-media has no significant effect on lipid content for the microalgae strains studied. All agriculture fertilizer media are comparable to Walne medium. The best lipids content of three strains microalgae studied was 21% in TSP based-medium, 41% in TSP based medium and 45% in MAP based media for D. tertiolecta, Tetraselmis sp, and Isochrysis sp., respectively compared to control medium (20%, 39% and 42%).

Low-cost medium is a key factor in the industrial cultivation of microalgae to minimize the cost of lipids production. However, using local resources can be potential sources of microalgae culture media formulation in large-scale production. The agriculture fertilizers as low-cost chemicals should be more practical and at least one-step closer for industrial development [2, 26–29]. With the abundance of cheap agriculture fertilizers in the world, it provides a great opportunity to develop large-scale cultivation of microalgae for various applications such as feed-in aquaculture, food, medical uses, and even biofuel.

The total lipid content found in Moroccan strains is generally similar to those reported in the bibliography [30–32]. Ref. [33] has studied the effect of the nitrogen sources on the lipid content of microalgae. The results of this study showed that nitrate was the suitable nitrogen source for both cell growth and lipid accumulation of Monoraphidium sp. SB2 under the investi-

Fig. 3.

Lipid content of three microalgae (a) *D. tertiolecta*, (b) *Tetraselmis sp.*, (c) *Isochrysis sp.*) cultured in fertilizer-based media. All microalgae strains were cultured at 25°C, in 7.8 pH and Luminosity of 150 μmol m⁻² s⁻¹.

Fig. 4.

E. Effect of phytohormone combined to fertilizer based-media on biomass and lipids content of microalgae

Microalgal biodiesel represents a promising alternative to fossil fuels as an eco-friendly energy source. However, mastery of culture conditions is necessary to maximize productivity (biomass and lipid) for commercial biodiesel production. In order to improve the performance of the low-cost culture medium, we added phytohormones in TSP-based media to boost biomass and lipid production. The result presented in Fig. 5 shows that the plant hormones improves the biomass and lipids content of three microalgae cultured in mineral fertilizers based-media (TSP and Ammonitrate) compared to control. The biomass was improved by 35.2%, 40%, and 35% in 50 mg/L Myo-inositol treatment for *D. tertiolecta, Isochrysis sp.*, and *Tetraselmis sp.* respectively compared to control (Fig. 5a,b,c). While the auxin 2,4-D of 1 mg/L enhances the lipids content by 58.4, 10.5, and 40.6% *D. tertiolecta, Isochrysis sp.*, and *Tetraselmis sp.*, respectively compared to control (Fig. 5d,e,f).

These results of microalgae biomass production are similar to other studies when the growth stimulating effect of auxins has...
been demonstrated in *Chlamydomonas reinhardii*, *Chlorella vulgaris*, *Haematococcus pluvialis*, *D. tertiolecta*, and *Spirulina platensis* [28]. The lipids content improved by 58.4% after the treatment of *D. tertiolecta* with 1 mg/L of auxin 2,4-D [20].

F. Fatty acid methyl esters profile

The lipid profile of *D. tertiolecta* (Fig. 6a) has remained stable for tested fertilizer medium. Nevertheless, the MAP-based medium caused the loss of 4,7,10,13-hexadecatetraenoic acid (C16:4), which was present at 9.8-12.8% for the control and other tested media. This led to the extinction of PUFA (≥ 4). This change on the profile may improve the quality of biodiesel obtained with this formula. Usually, FAME profile of *D. tertiolecta* grown under our experimental conditions is similar to that reported in the literature [28, 36].

Tetraselmis sp. lipid profile in fertilizer based-media was changed (Fig. 6b); the main fatty acids are similar to the control but, stearic acid (C18:0) increased in TSP and H3PO4 (54%) based-media compared to control. However, lipid profiles of microalgae in all fertilizers media showed a decrease of polyunsaturated fatty acids, which can improve the quality of biodiesel. The addition of phytohormones to increase productivity in biomass and lipids by improving the performance of mineral fertilizers based-media. For the density, growth rate, biomass and lipids, the cells cultured in commercial fertilizer based culture medium showed compared results to control medium. In general, commercial fertilizer based culture media can replace conventional media for the production of microalgae biomass in order to minimize the production, cost of algal biodiesel.

ACKNOWLEDGMENTS

This study was supported financially by OCP group, Morocco.

CONFLICT OF INTEREST STATEMENT

All authors declare that there is no conflict of interest between them.

REFERENCES

