Agriculture fertilizer-based media for cultivation of marine microalgae destined for biodiesel production

Document Type : Original Article

Authors

1 Green Biotechnology laboratoryMAScIR (Moroccan Foundation for Advanced Science, Innovation & Research), Madinat Al Irfane, Rabat, Morocco.

2 ICARDA (International Center for Agriculture Research in the Dry Area) Rabat Morocco

3 CBS Programm. UM6P University Benguerir Morocco

4 AgBS programm UM6P university jorf lasfar Morocco

Abstract

In recent years, biodiesel from microalgae has received large interest around the world, as sustainable energy for biofuel production. Mineral fertilizers can be a promising source for the development of low cost culture media. We investigate the influence of fertilizer-based media: MAP, TSP, Phosphoric acid and Ammonitrate on cell viability, nutrients uptake, biomass, lipids production and lipids profile of 3 microalgae strains. The best biomass production was 2.105 g L-1, 1.95g.L-1 and 1.75g.L-1 for D. tertiolecta, Isochrysis sp.and Tetraselmis sp cultured in TSP, MAP and H3PO4(54%)based-media respectively, compared to control medium (1.85, 1.76 and 1.71 g L-1 respectively). Lipid content of all strains in fertilizer-based media was similar to control. The lipid profile showed that FAMEs of all microalgae underwent a significant reduction in PUFAs for fertilizers based-media, which improves the quality of biodiesel. Mineral fertilizers are a promising source that can be a low-cost microalgae production base at the industrial level.

Keywords

Main Subjects


[1]P.Spolaore, C.Joannis-Cassan, E.Duran,  A. Isambert, Commercial applications of microalgae. J biosci bioeng. 101(2) (2006) 87-96.
[2] F. G. Acién, J. M. Fernández, J. J. Magán, E. Molina,Production cost of a real microalgae production plant and strategies to reduce it. Biotech adv. 30(6)(2012) 1344-1353.
[3] F. G. Acién, E. Molina, J. M. Fernández-Sevilla, M. Barbosa, L. Gouveia, C. Sepúlveda, J. Baseaes, Z.Arbib, Economics of microalgae production.  Microalgae-based biofuels and bioproducts. (2018) 485-503.
[4] S. R. Chia, K. W. Chew, P. L. Show, Y. J. Yap, H. C. Ong, T. C. Ling,J. S. Chang, Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotech J .(2018) 1700618.
[5] E. Valenzuela-Espinoza, R. Millán-Núñez,  F. Núñez-Cebrero, Protein, carbohydrate, lipid and chlorophyll a content in Isochrysis aff. galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aqua Eng. 25(4)(2002) 207-216.
[6]Bae, Jean-Hee, Sung-Bum Hur,Development of Economical Fertilizer-Based Media for Mass Culturing of Nannochloropsis Oceanica, FisheAqua Sci. 14(4) (2011) 317-22.
[7] A.L. Ahmad, N.H. Yasin, C.J.C. Mat, Derek, J.K. Lim, Microalgae as a sustainable energy source for biodiesel production: A review. Renew. Sust. Energ. Rev. 15(2011) 584–593.
[8] Y. Chisti, Biodiesel from microalgae. Biotech adv. 25(3)(2007) 294-306.
[9] Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, A. Darzins, Microalgaltriacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54(2008) 621–639.
[10] R. Barakoni, S. Awal, A. Christie, Growth performance of the marine microalgae Pavlova salina and Dunaliella tertiolecta using different commercially available fertilizers in natural seawater and inland saline ground water. Magnesium (Mg), 21(8), 0. J. Algal Biomass Utln. 6 (1)2015 15–25.
[11] J. Fabregas, L. Toribio, J. Abalde, B. Cabezas, C. Herrero, Approach to biomass production of the marine microalga Tetraselmis suecica (Kylin) Butch using common garden fertilizer and soil extract as cheap nutrient supply in batch cultures.Aqua Eng. 6 (2)(1987) 141–50.
[12] E.Gonzalez-Rodriguez, Y. S. Maestrini, The Use of Some Agricultural Fertilizers for the Mass Production of Marine Algae. Aqua. 36(1984) 245–56.
[13] E.Valenzuela-Espinoza, R.Millán-Núñez,  F.Núñez-Cebrero, Biomass production and nutrient uptake by Isochrysis aff. galbana (Clone T-ISO) cultured with a low cost alternative to the f/2 medium. Aqua eng. 20(3) (1999) 135-147.
[14] E.Canter, CP.Blowers, MR. Handler, DR. Shonnard, Implications of Widespread Algal Biofuels Production on Macronutrient Fertilizer Supplies: Nutrient Demand and Evaluation of Potential Alternate Nutrient Sources. Appl Ener 143. Elsevier Ltd (2015) 71–80. doi:10.1016/j.apenergy.2014.12.065.
[15] M. J.Griffiths,S.T.Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol. 21(5) (2009) 493-507.
[16] H. El Arroussi, R.Benhima, N.El Mernissi, R.Bouhfid, C.Tilsaghani, I.Bennis, I.Wahby, Screening of marine microalgae strains from Moroccan coasts for biodiesel production. Rene Ener. 113 (2017) 1515-1522.
[17] G. Bougaran, R. Catherine, N. Dubois, R. Kaas, S. Grouas, E. Lukomska, JR. Le Coz, JP. Cadoret, Enhancement of Neutral Lipid Productivity in the Microalga Isochrysis Affinis Galbana (T-Iso) by a Mutation-Selection Procedure.Biotechnol and Bioeng 109 (11)(2012) 2737–45. doi:10.1002/bit.24560.
[18] T . Lopes da Silva, C. Amarelo Santos,A. Reis, Multi-parameter flow cytometry as a tool to monitor heterotrophic microalgal batch fermentations for oil production towards biodiesel.  Biotechnol Bioproc Eng. 14 (2009) 330-337.
[19]Folch, Jordi, M. Lees, G. H. Sloane Stanley, A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J Biol Chem. (1957) doi:10.1007/s10858-011-9570-9.
[20] H. El Arroussi, R. Benhima, I. Bennis, N. El Mernissi, I. Wahby, Improvement of the Potential of Dunaliella Tertiolecta as a Source of Biodiesel by Auxin Treatment Coupled to Salt Stress.Ren Ener 77. (2015) 15-19.
[21] A. Maadane, N. Merghoub, T. Ainane, H. El Arroussi, R. Benhima, S. Amzazi, Y. Bakri, I. Wahby. Antioxidant Activity of Some Moroccan Marine Microalgae: Pufa Profiles, Carotenoids and Phenolic Content. JBiotechnol 215(2015) 13–19.
[22] P.Kumar, R.Sharma, S.Ray, S. Mehariya, S. K. Patel, J. K. Lee, V. C. Kalia, Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Biores technol. 182(2015) 383-388.
[23] P.Hyka, S. Lickova, P. PÅ™ibyl, K. Melzoch, K.Kovar, Flow cytometry for the development of biotechnological processes with microalgae. Biotechnol adv. 31(1) (2013) 2-16.
[24] J. P.Hernandez, L. E. de-Bashan, D. J.Rodriguez, Y.Rodriguez, Y.Bashan, Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. euro Jsoil biol. 45(1)(2009) 88-93.
[25] J. Li, D. Han, D.Wang, K. Ning, J. Jia, L. Wei,...  Q.Hu, Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. The Plant Cell. (2014) tpc-113.
[26] M. Garcia-Gonzalez, J. Moreno, J. P. Caavate, V. Anguis, A. Prieto, C. Manzano, F. J. Florencio, M. G. Guerrero, Conditions for Open-Air Outdoor Culture of Dunaliella Salina in Southern Spain. J Appl Phycol. 15 (2-3) (2003) 177–84. doi:10.1023/A:1023892520443.
[27] J. A. Simental, M. P. Sánchez-Saavedra. The Effect of Agricultural Fertilizer on Growth Rate of Benthic Diatoms. Aquacul Engi. 27 (4)(2003) 265–72. doi:10.1016/S0144-8609(02)00087-0.
[28] M. Chen, H. Tang, H. Ma, T. C. Holland, KS. Ng, S. O. Salley, Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Biores technol, 102(2), (2011) 1649-1655.
[29] M. Takagi, T. Yoshida, Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. J biosci bioeng, 101(3), (2006) 223-226.
[30] H. Tang, N.Abunasser, M. E. D. Garcia, Meng Chen, K. Y. Simon Ng, S. O. Salley, Potential of Microalgae Oil from Dunaliella Tertiolecta as a Feedstock for Biodiesel. Appl Energ 88 (10)(2011) 3324–30.
[31] A. Roopnarain, V. M. Gray, S. D.Sym, Phosphorus limitation and starvation effects on cell growth and lipid accumulation in Isochrysis galbana U4 for biodiesel production. Biores technol. 156 (2014) 408-411.
[32] M. Mitra, S. K. Patidar,S. Mishra, Integrated process of two stage cultivation of Nannochloropsis sp. for nutraceutically valuable eicosapentaenoic acid along with biodiesel. Biores technol. 193 (2015) 363-369.
[33] L. F.Wu, P. C. Chen, C. M. Lee, The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. Inter BiodeterBiodegrad. 85 (2013) 506-510.
[34] C. Banerjee, K. K. Dubey, P. Shukla, Metabolic engineering of microalgal based biofuel production: prospects and challenges. Front in microbiol. 7 (2016) 432.
[35] C. Yuan, K. Xu, J. Sun, G. R. Hu, F. L. Li, Ammonium, nitrate, and urea play different roles for lipid accumulation in the nervonic acid—producing microalgae Mychonastes afer HSO-3-1. J Appl Phycol. 30(2) (2018) 793-801.
[36] Dahl, Ulrika, C. R. Lind, E. Gorokhova, B. Eklund, M. Breitholtz, Food Quality Effects on Copepod Growth and Development: Implications for Bioassays in Ecotoxicological Testing. Ecoto Environ Safety. 72 (2) (2009) 351–57. doi:10.1016/j.ecoenv.2008.04.008.
[37] Huerlimann, Roger, R. de Nys, K. Heimann, Growth, Lipid Content, Productivity, and Fatty Acid Composition of Tropical Microalgae for Scale-up Production. Biotechnol Bioeng 107 (2) (2010) 245–57. doi:10.1002/bit.22809.
[38] K. J. Flynn, J. L. Garrido, M. Zapata, H. Öpik, C. R. Hipkin, Changes in Fatty Acids, Amino Acids and Carbon/nitrogen Biomass during Nitrogen Starvation of Ammonium- and Nitrate-grownIsochrysis Galbana. J Appl Phycol. 4 (2) (1992) 95–104.