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Energy crisis and global warming due to fossil fuel implementation in the energy production sector and
in the transportation sector have stimulated global trends to employ the electric vehicles (EVs) in the
transportation sector and renewable energy sources (RESs) in the power generation. Coordinated charg-
ing of EVs can bring some benefits by itself such as voltage and frequency regulation, spinning reserve,
load leveling, peak shaving, RESs support, GHG emission saving and so on. But implementation of this
scenario with uncoordinated EV charging which can impose a huge amount of excess load on the grid. In
this regard, EVs coordinated energy scheduling is inevitable. This paper comprehensively reviewed the
pros and cons of integrating EVs to the grid and recent investigations in EV energy scheduling especially
ones that focused on stochastic energy scheduling. Moreover, with knowing this fact that, microgrid with
the presence of different distributed generation (DG) such as RESs and a diverse storage system such as
EVs would have an important role in the future smart grid, thus, this paper aims to illustrate further re-
search opportunities in this particular field. Also, different types of uncertain variables in recent studies
and mathematical methods for optimizing the relevant objective functions of EVs charging are reviewed
inclusively. Finally, future trends and investigation occasions in this field of study are discussed. © 2019
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1. INTRODUCTION

Energy is crucial for global success, economic growth, and so-
cial development. Although these factors need to more energy
demand and with more than 80% share of fossil fuels in energy
resources, it causes more greenhouse gas (GHG) emission. The
energy sector produces about 66% of GHG and more than 80%
of CO2 emission. Moreover, the three energy sectors, which have
the biggest contribution of CO2 emission, are power generation
with 39%, an industry with 26% and transport with 20% [1, 2]. In
this regard two promising solution for less GHG emission in en-
ergy sectors could be implementing renewable energy resources
(RESs) versus fossil fuel power plants in power generation and
also plug-in hybrid electric vehicle (PHEV) or electric vehicle
(EV1) versus conventional internal combustion vehicles (ICVs) in
transport sector. So with using these two factors together, GHG
emission of more than 60% of the energy sector can be enhanced

1In this paper for simplicity any kind of electric vehicle is called EV.

[1, 3]. With many promising improvements in battery technolo-
gies (higher efficiency and lower cost) and the growing number
of vehicle manufactories, which produce EVs, it seems this kind
of modern vehicle becomes more affordable, tangible and ab-
sorbs more social attention and interest [4]. EV can interact with
power grid in two ways, charging power flow from grid to EV
(in this case EV act as a load or a storage device) and discharging
power flow from vehicle to grid (in this case EV act as a source
of electric power), so EV can interact with grid unidirectional or
bidirectional and this interaction brings a vehicle-to-grid (V2G)
concept by itself, this concept was introduced by willet Kempton
[5]. V2G could bring so many applications like voltage regula-
tion, frequency regulation, load leveling, peak shaving, reactive
power support, and renewable energy support. Zhao and et al.
[6], have investigated the economic and environmental impact of
electric trucks instead of conventional trucks with consideration
of V2G regulation services and results show significant GHG
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emission saving and additional revenue. Also, the smart pub-
lic transportation network has been investigated by [7] which
it’s smart network structure includes the distribution network
with PV systems and has electrical bus stations to charge electric
vehicles and electric buses. Two applications of V2G, valley
filling, and load variance minimization have been considered
in [8]. Nevertheless, using EVs instead of ICVs bring so many
troubles because they can be charged as soon as they plug-in to
the grid and investigations show that departure time of vehicles
from work to home is almost in the power grid peak time and
with this uncoordinated and stochastic charging theme a huge
amount of load will be imposed to the grid. Some studies had
investigated the effect of EVs on the power system, especially
in the power distribution system. An analysis of EV impacts
on the power distribution system has been investigated in [9].
The results of this study show excess peak load and power loss
problems due to coinciding EV charging and daily peak load.
So it is important to control EV charging time and the way that
they are going to be charged. In this regard, controlled smart
energy charging or coordinated charge scheduling seems to be
a good solution [8, 10]. In order to control the operation of a
system, which can include RESs and EVs, two types of energy
scheduling can be used; deterministic and stochastic. In de-
terministic terms different kinds of uncertainties such as wind
speed variation, solar radiation, departure time of vehicles, the
usage time of each EV and etc. are neglected and a firm and
definite scheduling are presented [11]. On the other hand, in
stochastic energy scheduling, various type of uncertainty can be
implemented and results of these studies are more accurate and
realistic than deterministic energy scheduling because of consid-
ering uncertainties which exist in the real condition. Intermit-
tency of wind speed and stochastic behavior of EV owners have
been modeled in [12] in order to achieve optimal power flow.
For the diverse type of V2G advantages, different objective func-
tions have to be optimized with consideration of network, RESs,
EVs and other operational constraints. Some of these objective
functions are operational cost minimization, GHG emission min-
imization, profit maximization, and RES usage maximization.
Also, in some studies, a multi-objective scheme by considering a
number of objective functions together have been investigated.
These optimization problems can be solved by different methods
that divided into two main segments: conventional methods
and heuristic methods. Conventional methods include linear
programming (LP), quadratic programming (QP), dynamic pro-
gramming (DP) and etc. which these methods are usually based
on repetitive search algorithms that begin with a solution which
is repetitively enhanced according to some deterministic rules
[13, 14]. Heuristic methods are based on search algorithms and
they are used when conventional methods too slow or fail to
find the exact solution and some of them as follows: ant colony
optimization, evolutionary computation, particle swarm opti-
mization, and genetic algorithms [13]. Some studies deal with
different issues in the integration of EVs to the grid. A compre-
hensive study focused on different types of V2G technologies
and their relevant challenges and opportunities [15]. Diverse
services of V2G, challenges, optimization objectives, constraints,
and algorithms have been thoroughly discussed in [16]. Prereq-
uisites of charging system infrastructure of EVs and different
types of charging levels and related optimization targets and
methods have been investigated in a recent study by Rahman
et al. [17]. Few attentions were given to different types of EVs
charging especially stochastic energy scheduling of EVs. In re-
cent studies, due to the stochastic nature of EV behaviors and

uncertainty of RESs, stochastic EV energy scheduling has been
paid more attention. Thus, this study aims to have an inclusive
review of challenges and opportunities in integrating of EVs and
power grid with focus on EVs energy scheduling particularly
stochastic EV scheduling and related optimization methods and
uncertain variables in recent investigations. The remainder of
this paper is organized as follows: in Section 2 a review of energy
scheduling which includes V2G concept and its benefits and dif-
ferent studies in integrating RESs with EVs is covered. Also, two
types of scheduling (deterministic and stochastic) and related
uncertain variables are reviewed. The main focus of this paper
is dedicated to this subsection and recent articles about energy
scheduling in microgrids and trends in this field are brought at
the end of this section. In Section 3, computational methods in
optimization of energy scheduling problem with RESs and EVs
have been mentioned and relevant articles reviewed. At the end
of this article (Section 4), future trends and a conclusion of this
review have been discussed.

2. ENERGY SCHEDULING

A. Smart charging of EVs
As mentioned in the previous section, EVs bring by itself some
pressure on the power grid and it could be worse when we know
major of these EV owners reach at home almost at the same time
and the EVs are connected to the grid in the peak load of the
grid. So an enormous load is imposed on the power grid. A load
producing model for PHEV home-charging and residential load
pattern have been proposed in [18] and the results of this study
show that in uncontrolled and unidirectional energy scheduling
for PHEVs, most charging occurs in the afternoon and 33% of
peak load is relevant to the PHEVs. Thus, a promising solution
to declining the peak load would be scheduling the excess load
due to EVs. The significance of energy scheduling is about to
more efficient and economical use of energy, and it means effi-
cient usage of energy sources, lower operation cost, lower peak
load, and GHG emission saving. In this regard, by implementing
RESs and EVs and its benefits such as peak shaving, ancillary
services and energy planning, and scheduling is vital, not only
for preventing excessive load due to EVs charging but also for
the better usage of RESs and saving their energy and use them
at appropriate times. For better load flattening and reducing the
EV aggregator costs, two demand response (DR) algorithm by
using copula (as a data estimator) have been proposed in [19].
Demand Response intends to adjust electricity consumption in
response to the electricity market situation. This is usually done
to reduced peak consumption, which reduces the spot prices
in the short term and declines long-term investment in electric-
ity generation [20]. Fig. 1 states DR program which contains
price-based DR programs and incentive-based DR programs.
The price-based DR programs are related to the voluntary pro-
gram and incentive-based DR programs associated with both
voluntary and mandatory programs [21]. Another benefit of
EV integration to the grid regarding energy scheduling is im-
proving power grid reliability. Some studies focus on reliability
assessment of EV integration to the grid. Wang and et al. [22]
have investigated the impact of EV integration into a residential
distribution system and results show that enhancement in sys-
tem adequacy indices by using smart energy scheduling. EVs
energy scheduling on large scale has some prerequisite such as
two ways communication services, aggregators, efficient battery
technology, charge facilities and etc. An EV aggregator is an
intermediate layer between a system operator and EV owners
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Fig. 2. The relationship between EVs, aggregator and the sys-
tem operator [25].

[23]. In other word, the aggregator is responsible for managing
the EVs charging. In the day-ahead energy market, the aggre-
gators decide the bidding strategy instead of each EV solely. By
considering the driving information of the EVs, the aggregator
determines the bidding strategy and sends it to the system op-
erator [24] and [25]. From the system operator viewpoint, the
aggregator is seen as a large source of generation or load, which
could provide ancillary services such as spinning and regulating
reserve [26]. In order to clarify the subject, this concept repre-
sented in Fig. 2 [25]. Aggregators have to deal with EV owners
and up-stream operators via two ways communication structure
using much data such as online electricity prices, EV information
(departure time, SOC and etc.), grid constraints and so on [27].

The presented model in [28], indicates that participation of
local aggregators in the residential sector, with smart buildings
and smart parking lots, could have higher income for local ag-
gregators and less energy not charged for EVs. As mentioned
before, coordinated and smart charging scheme should be used
for EV energy scheduling to prevent imposing excess peak load
to the grid and also using V2G privilege. Coordinated charging
can be centralized for instance in a parking lot [29] or battery
charging stations or decentralized for instance parking lot of
each home and for each vehicle we should schedule the energy
flow and relevant data of these vehicles gathered by an aggre-
gator which interacts with other aggregators or network via a

communication system. In order to have a comparison between
centralized and decentralized intelligent energy scheduling ap-
proaches, in computation time, Karfopoulos and et al. [30] exam-
ined a decentralized multi-agent EV management approach that
using a hierarchical architecture with intermediate aggregation
layer via a respective centralized approach. This study indicates
that, as we increase the number of EVs, the computation time
of distributed approach is almost constant, but in centralized
approach, computation time is a polynomial function of EV
numbers. A centralized coordinated strategy for minimizing
operation cost with the moving window optimization model is
investigated in [31]. This study shows that the proposed model
has a lower operating cost than uncoordinated one in different
window sizes. On the other hand, the decentralized parking
lot which is, more available, has a long charging time; however,
for the development of electric vehicles, it is required to install
the fast-charging stations that the electric vehicles batteries are
charged on 15 minutes. But the main disadvantage is high power
demand that should be imposed on the grid [32]. A smart EV
energy scheduling with aggregator concept consideration and
reserve scheduling (imbalance reserve for overcoming the fore-
casting error, reliability reserve for the overcome probability of
unit outage) has been investigated in [33]. This study has two
objective functions that might be minimized, the sum of the costs
and total energy expected not supplied, that is a multi-objective
optimization, and finally, a fuzzy decision maker applied to this
problem for catching the best compromising solution. Effect of
EV integration with the electricity grid in 3 different kinds of
network (i.e., urban, rural and generic) has been investigated in
[34] and results show that urban network is endangered when
EV penetration is 60% , generic network and rural network are
endangered with 40% and 15% of EV penetration, respectively.
That shows the sensitivity of the rural network to EV penetration
level and also with an increase in EV penetration, electricity load
increases and consequently, the minimum experienced voltage
reduces. Moeini-Aghtaie and et al. has modeled a two-stage
energy scheduling [35]. In the first stage, the EV charging cost
is considered as the objective function and in the second stage,
the optimal charging plans for three different scenarios of EV
owner preferences and system operator perspectives have been
considered. Finally, a fuzzy multi-criteria decision making has
been implemented for robust optimal planning.

A.1. V2G concept and services

Since the battery capacity of each EV is ignorable compared to
the grid capacity, the V2G concept aims to gather a group of
EVs to interact power between the EV groups and the power
grid, effectively. V2G controls and manages power flow between
the power grid and EV batteries via communication services to
achieve the desired advantages [36]. This concept can be ex-
panded in various ways, in [28] regard to vehicles, buildings,
storages systems, RESs, and the electrical grid, 18 different kinds
of energy exchange such as V2G, G2V, V2V, E2V, E2B and etc.
have been proposed and aggregators are in charge of energy
management. For meeting the V2G requisites, some factors have
to be considered in the current power grid such as an aggregative
architecture, high power home-charging, automatic generation
control, lower percent call for V2G and vehicle degradation [37].
V2G divided into two types in case of power flow, unidirec-
tional and bidirectional. In the former one, the charging rate
of EVs is controlled and a single power flow just allowed and
has some advantages such as voltage regulation and spinning
reserve [38, 39]. Later one is bidirectional, which allows two-



Research Article Journal of Energy Management and Technology (JEMT) Vol. 4, Issue 1 16

direction power flow and brings by it selves more flexibility and
diverse advantages for the power grid and even for EV owners
such as voltage regulation, frequency regulation, load leveling,
peak shaving, reactive power support and renewable energy
support [16]. In recent studies, so many authors have focused
on V2G benefits. Three kinds of scenarios for EV charging has
been proposed in [40], first of all an uncontrolled scheme shows
increasing in afternoon peak load, and second, smart charging
of EVs (unidirectional), shows a good accommodating with PV
generation and reduce the ramps, and the last one is V2G scheme
(bidirectional) that shows a good combination of PV generation
and EV for saving solar energy and using this energy for peak
shaving. An EV modeling in order to analyze the impact of V2G
on the national energy system of Denmark has been investigated
in [41]. This study has shown that V2G can increase power sys-
tem reliability, decrease CO2 emission and better using of wind
power generation. The battery capacity of EVs has been used
as a spinning reserve for frequency control and an autonomous
V2G control for smoothing the intermittency of RESs has been
proposed in [42]. Applications of EVs to frequency regulation in
multi-area power system are studied in [43]. With concerning
the V2G concept, EVs in [44] are participating in the energy mar-
ket and they are used for ancillary service (system regulation)
and with consideration of three different scenarios results show
the effect of the proposed model in reducing the costs and better
applying optimization in a competitive market for an energy
supplier. One of the V2G benefits for the power grid is relia-
bility improvement and some studies have been done in this
area. Four cases for assessing EVs charging impact on power
system reliability have been investigated in [45]. The results
showed that in unmanaged EV charging time of being in at-risk
level doubled compared to without the presence of EV and in
the V2G scenario this criterion is well improved. Also, in some
investigations, EVs with different battery capacity are used, for
example, there are three types of vehicles in [7] that are varied in
terms of application and battery capacity; however, all of them
can improve the power quality of the grid.

A.2. Integration of EVs with RESs

Since RESs are so intermittent and have lots of uncertainty due
to climate conditions such as wind speed and solar radiation,
they need storage systems to save their energy and use it at
the appropriate time. On the other hand, EVs are an appealing
option for using them as a storage system because aggregated
EVS has huge storage capacity and most of the time, they are
in the park and are not used. In this regard, integrating RESs
and EVs is a promising solution not just for charging the EVs,
but also for peak load reduction, ancillary services, and GHG
emission saving and enhancement in RESs usage. Thus, in re-
cent years so many researches projects have been investigated
to show the impact of integrating RESs and EVs [46–49]. Us-
ing RESs and EVs and smart energy scheduling in a smart grid
can reduce operation cost and GHG emission [50]. For meeting
the increasing electrical demand, distributed energy resources
(DERs) could be a reasonable solution to integrating with fu-
ture smart grids. In [51], energy scheduling has been optimized
with a single objective approach that the network in this study
is a micro-grid include RESs generation and EVs as a load. A
multi-objective algorithm for optimal sizing and RESs allocation
and for an EV parking lot has been developed in [52, 53]. In
order to compare the profits of the smart distribution company
in [21], different modes are considered. In these modes, the
number of EVs and strategy of charging as well as the amount

of supplied renewable energies are varied. Also, most of this
literature has focused on wind power, solar power or combi-
nation of these and in the diverse scale of penetration. A local
PV production with two scales of power generation (less than
and more than electric load) in an isolated energy system, which
contains EVs, have been utilized for meeting a part-electric de-
mand of this energy system [54]. The results have shown that
the effectiveness of the proposed model on better using of RESs
and lower charging energy cost. Different PV and EV pene-
tration under three scenarios, which include an uncontrolled
scheme, a smart charging scheme, and a V2G based scheme,
have been utilized in [40]. A rooftop photovoltaic system and
distributed generator installed in a parking lot, and also are
connected to the grid, have used for EV charging in [55]. A new
probability distribution model which contains three variable PV
power production, EV home-charging and household power
consumption in two different levels, household, and aggregator
(multiple households), has been developed [56]. Wang and et
al. [57], implemented EVs as a power plant to participate in
unit commitment with the presence of large-scale wind farms.
High penetration of wind energy with the integration of EVs has
been considered in the stochastic model for unit commitment
in [58]. EVs can reduce the operating cost of the grid by using
their battery capacities to capturing the RESs energy. Impact of
EVs on Denmark national energy system with consideration of
a different range of wind power generation (0 to 100% electricity
demand) has been analyzed in [41]. In some studies, RESs are
modeled as a negative load; for instance, in [59] wind power is
given a negative load in the electric grid that changes with time.
To obtain optimal power flow intermittency of wind speed and
stochastic behavior of EV owners have been modeled in [12].
To meet EVs scheduling problem regarding the time and space
domain of EVs and also the presence of wind power, a bi-layer
optimization has been suggested [60]. Impact of three different
parameters as electricity price, EVs penetration and EVs load
location have been analyzed and improving in the economics
of power grid and benefits for EV owners have been shown
in results. In this literature, authors achieved these results by
scheduling charging and discharging of EVS not just temporally
but spatially scheduling also have been considered. Romero-
Ruiz in [61] used a combination of wind power and solar power
for meeting 25% of network demand (80% and 20% respectively)
and some uncertain parameters are taken into account like as
power generated by wind turbines and PVs, power demand and
behavior of EV owners in congestion procedure participation.
Uncertainties of wind speed and solar radiation are modeled
by Weibull distribution function and bimodal distribution func-
tion, respectively [28]. Also, in [32], wind speed is modeled by
Weibull distribution, but solar irradiation data is obtained from
PVGIS (Photovoltaic Geographical Information System). A dis-
tributed EV coordination method has been implemented in [8] to
improve synergy between RESs (solar and wind power) and EVs
to increase RES and EV penetration in the power grid without
extra network investment. EVs act as a reserve capacity for solar
and wind power generation by using an integrated scheduling
and EVs participation in ancillary service program [62]. Another
study has focused on an energy resource management model
for a micro-grid by contemplating of practical constraints, EV
owner’s satisfaction, spinning reserve requisites and renewable
power (wind and solar) forecasting error [63]. In [21], a new
bi-level model is developed. Uncertain parameters are: the time
interval of EV presence in the parking lot, initial SOC of EVs,
planned Wind and PV, in order to obtain operational schedul-
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ing of the smart energy system. In this paper, two-level are
considered that the upper-level is considering the smart distribu-
tion company view and the lower-level is intending the parking
operation perspective which solver for obtaining the objective
function to consider two levels.

B. Energy scheduling in microgrids

A new growing trend in the power system is replacing the con-
ventional large power systems with large centralized generators
to some smaller distributed generation (DG) which connected
to the distribution system with nonconventional and renewable
sources. It means DGs which have been used as a back-up for
the electricity grid, now trend of DG functions is going to change
and they are acting as a primary source of the electric grid in
the form of microgrid [64, 65]. Microgrid is a concept that uses
DERs which is near to the customer site and they are a promis-
ing solution for meeting the electrical and thermal demand with
accentuating on reliability and power quality. EVs can be used
in a large scale with high penetration but in recent study im-
planting EVs in microgrids have been paying more attention
because of an increasing trend on microgrid and microturbines
such as micro wind turbines and small scale of PV panels. Four
main reasons for increased attention to the micro-grids are en-
ergy loss reduction, reliability improvement, enhancement of
energy management and benefits to the main grid. Fig. 3 shows
a typical microgrid. Liang and et al. [66], have investigated a
comprehensive review of stochastic modeling and optimization
and key features of microgrids. As energy supply in microgrids
limited in the inside of the microgrids, RESs such as wind and
solar could have a large penetration in total generation portfolio.
Since a microgrid is self-limited and self-balanced, one of the
important objects that might be optimized is operating costs
with consideration of reliability, by decreasing the uncertainty
and intermittency of the RESs in the microgrid [67]. A single
objective approach for energy scheduling in microgrid has been
investigated in [51]. This study has different objective functions
that are investigated separately, such as squared voltage devia-
tion, power losses minimization, security margin, energy cost,
and load leveling. These objective functions are compared with
considering bus energy loads, electricity price, EV loads, data
centers, storages and RESs generation. In [68], a two-stage oper-
ating strategy with consideration of wind farm, PV panels and
pump-storage hybrid system in microgrids has been proposed.
The aim of this study is to maximize the profit of RESs with
frequency based pricing. Demand-side management (DSM) in a
commercial building microgrid with solar generation, stationary
battery energy storage system (BESS) and EV with V2G capabil-
ity has been investigated in [69]. A two-stage stochastic DSM for
modeling the stochastic nature of EV demands and availability,
solar generation and load have been suggested and results show
that a moderate number of EVs reduce the operational cost of the
system. Various types of RESs have been contained in a micro-
grid (such as PV, WT, and fuel cell (FC) and micro-turbine and
battery storages); also a stochastic smart charging framework
has been suggested to investigate the impact of EV charging on
optimal operation of this microgrid [70]. Two EV functions for
peak shaving and load curve modification have been used in a
microgrid by a simultaneous scheduling of EVs and responsive
load to minimize operation cost and emissions [71].

Fig. 3. Typical microgrid configuration.

C. Types of scheduling

C.1. Deterministic

A deterministic model has no stochastic elements and the en-
tire input and output relation of the model are conclusively
determined. If the input data of an optimization problem are
fixed and certainly determined, its optimal solution (decision) is
achieved by solving the problem and it has the best outcome [72].
As it can be seen in Fig. 4, deterministic optimization methods
do not deal with uncertain variables (such as wind speed, solar
radiation, EVs behavior). Since there are a lot of uncertainties in
a real-world situation and specifically in EV energy scheduling
problems, such as EVs driving pattern, diverse temporal and
spatial EV charging pattern and so on, in the literature in this
field, deterministic scheduling has been implemented much less
than stochastic one. In this regard, trends in energy scheduling
with the presence of EVs and RESs are using stochastic program-
ming due to stochastic and uncertain variables. Fig. 5 illustrates
this fact by considering relevant statics from the two most valid
references (IEEE, Science direct) in this field. However, some
of the investigations used a deterministic approach to assume
perfect knowledge of the uncertainties of the system. Although
in the first step a deterministic demand-side management (DSM)
(assuming perfect knowledge of uncertainties) has been sug-
gested in [69], a two-stage stochastic method implemented to
meet stochastic nature of EVs availability, EV charging demand,
solar generation and loads. A multi-objective energy schedul-
ing with a two-stage method which contains a deterministic
mixed-integer linear programming (MILP) and particle swarm
optimization (PSO) without any uncertainty consideration has
been used in [11]. Some deterministic problems are attained
from stochastic ones by replacing the random variables of the
considered stochastic processes by their expected or forecasted
values. Some studies suggested stochastic programming meth-
ods and compared the results to relevant deterministic approach
and indicated the effectiveness of stochastic methods. In [73], a
stochastic dynamic programming method has been suggested
to reduce the operation cost of the charging stations and their
impact on the distribution grid and optimal power dispatch
schedule. The results of this method are compared to the rele-
vant deterministic dynamic programming with consideration of
perfect anticipation of RESs output and charging demands.
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Fig. 4. Deterministic versus stochastic system modeling.
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C.2. Stochastic

A stochastic model has one or more stochastic elements. The
system having stochastic element is generally not solved ana-
lytically and, moreover, there are several cases for which it is
difficult to build an intuitive perspective. In the case of simulat-
ing a stochastic model, a random number is normally generated
by some method, such a simulation is called the Monte-Carlo
method or Monte-Carlo simulation [74]. This method is used
in [32] to simulate the electrical vehicle arrivals. In the electric-
ity market specifically in such grids with intermittent renew-
able energy sources, electric vehicles, stochastic planning, and
scheduling can be a good solution to meet stochastic behavior
and related uncertainties of these elements. That is why a ma-
jor part of this study dedicated to stochastic energy scheduling.
Different types of uncertainties are shown in Fig. 6.

The expected value of perfect information (EVPI) and value
of the stochastic solutions (VSS) are used to assess the inter-
est of using stochastic programming [72]. However, it can be
validated by using actual real-world outcomes. Authors in [69]
validated the stochastic method with real solar generation, loads,
battery energy storage system (BESS) and EV data using aver-
age sample approximation. Stochastic programming is used to
formulate and solve problems with uncertain parameters, thus,
in the stochastic programming context, each uncertain param-
eter is modeled as a random variable [72]. Since in stochastic
programming, a set of uncertain input is considered, defining
an objective function for decision making is the main problem.
In this regard, maximizing the expected value of the objective
function or limiting the variance of this objective are two promis-
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Fig. 7. Scenario tree for a two-stage stochastic problem [72].

ing solutions to accurate modeling the stochastic problems. This
solution is not best for each data set, but it is the best for the
whole input sets overall. To sufficiently define a stochastic pro-
cess, it is important to generate a sufficient number of scenarios
so that these scenarios cover the possible set of stochastic inputs.
To obtain this, a huge number of diverse scenarios must pro-
duce which cause a lot of computational costs. Thus, a proper
procedure is needed for scenario reduction which comprehen-
sively investigated in [72]. In stochastic programming due to the
amount of information we have and a number of stages which is
needed for problem formulation two categories are considered:

• Two-stage problems: in the first stage (here-and-now), de-
cisions are made before the realization of the stochastic
process and in the second stage (wait and see) decisions are
made after knowing the actual realization of the stochastic
process (Fig. 7). In the second stage, uncertain data formu-
lated by relevant scenarios. The decision-making process is
as follows:

1. Decisions x are made.
2. Stochastic process λ is realized as λ(ω).
3. Decisions y(x.ω) are made.

λ is a stochastic process that contains a set of possible realiza-
tion (λΩ = {λ(1), . . . , λ (NΩ)}), ω is scenario index and each
realization is λ(ω) associated with a probability π(ω) defined
as :

π(ω) = P(ω|λ = λ(ω)). where ∑
ω∈Ω

π(ω) = 1 (1)



Research Article Journal of Energy Management and Technology (JEMT) Vol. 4, Issue 1 19

Fig. 8. Scenario tree for a multi-stage stochastic problem [72].

General formulation of two-stage stochastic optimization prob-
lem is as below:

Minimize xZ = CTx + ε{Q(ω)} (2)

subject to Ax = b (3)

x ∈ X (4)

where:

Q(ω) = Minimizey(ω) q(ω)Ty(ω) (5)

subject to T(ω)x + W(ω)y(ω) = h(ω) (6)

y(ω) ∈ Y, ∀y(ω) ∈ Ω (7)

where x and y(ω) are the first and second-stage decision vari-
able vector, respectively, and c, Q(ω), b, h(ω), A, T(ω), W(ω)
are known vectors and matrices of appropriate size, and NΩ is
number of scenarios.

• Multi-stage problems: an r-stage decision making process
is as follow

1. Decisions x1 are made.
2. Stochastic process λ1 is realized as λ1(ω1).
3. Decisions x2(x1.ω1) are made.
4. Stochastic process λ2 is realized as λ2(ω2).
5. Decisions x2(x1.ω1.x2.ω2) are made.

...
2r-2. Stochastic process λr−1 is realized as λr−1(ωr−1).
2r-1. Decisions xr(x1.ω1.. . . .xr−1.ωr−1).

Fig. 8 illustrates the structure of multi-stage stochastic opti-
mization and for preventing from elaborate long-formulation of
that the details of this formulation can be found in [72].

Due to uncertain data modeling of stochastic scheduling, the
trend to use this method in EV and RES scheduling has been
increased in recent investigations. A two-stage stochastic energy
scheduling model is proposed in [67]. At the first stage, an opti-
mal day-ahead transaction obtains and in second-stage real-time
operations consider the presence of wind and solar power vari-
ability. In this study authors consider 10 scenarios for wind and
10 scenarios for solar and compare the stochastic results with
the deterministic results. The deterministic approach, in this
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Fig. 9. Stochastic parameters considered in literature with the
presence of RESs and EVs.

case, is one of the stochastic scenarios and the results indicate
that ∆SOC at the end of a day for EVs in the stochastic approach
is lower than a deterministic one. ∆SOC at the end of a day
for EVs is better to be almost zero. A new two-stage stochastic-
probabilistic energy and reserve smart scheduling model, with
EVs and wind as a renewable energy resource, with considera-
tion of wind, electric load, total available capacity, required the
state of charge and available power for one hour in each electric
vehicle have been introduced in [33]. The EVs are modeled as a
stochastic storage capacity with consideration of the aggregator
concept. Variety of the uncertain parameter has been considered
in recent studies in RESs and EVs scheduling which is shown
below in Fig. 9.

One of the most important parameters is the behavior of the
driver or the arrival time of the EVs. For this purpose, in [32],
the distribution functions to obtain this time is used. tah(x)
indicates the arrival time of two consecutive electrical vehicles
which represent in Eq. (8) by an exponential distribution. In this
distribution, λ is the average arrival time or time of between two
arrivals which in Eq. (8) λh is represented for each hour. In the
next step, the Monte Carlo method is used and a list of random
numbers is constructed in the range of [0, 1], which is related to
x in Eq. (8) and thus represent the arrival time of the next EV.

tah(x) = 1− e−λh x (8)

Also Due to the stochastic nature of the arrival time and de-
parture time of each EV, authors in [30] used normal distribution
function to simulate these characteristics and an exponential
probability function for EV traveled distances. Authors in [28],
to designate the wind and solar uncertainty, has used a Weibull
distribution function for wind speed and bimodal distribution
function for solar radiation. By these probability functions, the
authors defined different scenarios for wind speed (s) and solar
radiation (r) and accordingly r*s different scenarios for RESs
and stochastically examined the effect of RESs uncertainty on
income. The total income in the stochastic approach is less than
a deterministic approach and it is due to the output power of
RESs and it is closer to reality situation by consideration of un-
certainty. Impacts of a large-scale penetration of EVs have been
assessed in [58] with a stochastic security-constraint unit com-
mitment (SCUC) method in the case of wind uncertainties, load
forecasting errors, number of EVs in the aggregated fleets and
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power system outage. Four cases that include two deterministic
solutions, grid controlled and consumer controlled, and two
stochastic solutions, grid controlled and consumer controlled,
have been utilized for validating the proposed method. In [59],
authors for optimization of the EVs charging divided the EVs to
the different groups by their time that EV can wait for charging
(flexibility) and then sort them from least flexibility to higher
flexibility. Because of the random flexibility of EVs, the utility
will deal stochastically with EVs in each group and any of these
EVs could start charging with probability p. In [57], authors
have used different normal distribution functions for modeling
the energy consumption per Km, EV traveling time and daily
traveling distance. In this study, SOC is modeled stochastically
with normal distribution function and EV battery capacity for
different EV groups is modeled from normal and gamma prob-
ability functions. Copula method has been used for optimal
prediction of the EV loads as non-controllable loads, then for
next day hourly demand, a stochastic model with consideration
of selected scenarios have been implemented in [19]. Uncertain-
ties of wind speed and solar radiation and market electricity
price in [68] have been modeled with the scenario-based stochas-
tic model. A stochastic model based on queueing theory for
EVs electricity demand, charging schema and arrival pattern
prediction have been proposed in [76]. This study has used
different probability functions for uncertainty consideration of
EVs electricity demand, arrival time, traveling distance and etc.
based on real information. For depicting the stochastic nature
of the EVs arrival time, authors of [77] have used a chi-square
distribution function. This stochastic energy scheduling shows
a huge improvement in power load variance. Authors in [78]
have proposed a scenario-based stochastic optimization frame-
work for maximizing profit of the smart distribution company
(SDC) with consideration of high wind and EV penetration. In
this study EV batteries and battery energy storages (BES) have
been implemented to manage the instability of wind farms. The
power output of wind farms considered as a stochastic variable
in this article and modeled with a zero mean normal distribution
function. The result of this article shows that with a combina-
tion of demand response and battery energy storages as energy
management, SDC profit will be increased. Dynamic economic
and environmental dispatches with the integration of EVs, with
consideration of stochastic nature of driver charging behavior
and uncertainty of load profile, have been investigated in [79].
For minimizing the total cost of the system for unit commit-
ment with consideration of DERs such as wind turbines and
EVs, a TLBO algorithm has been used [80]. In this study for
addressing the uncertainty and stochastic nature of the wind,
a Weibull probability distribution function has been used and
the results show that in respect of wind turbines, EVs and emer-
gency demand response programs in the unit commitment the
total cost has been reduced. Two scenarios for EV charging (off-
peak charging and stochastic charging load) for the participation
of the EVs in unit commitment under unit commitment electric
vehicles (UCEV) concept have been considered in [81]. A nor-
mal distribution function has been implemented to generate the
stochastic charging load profiles (5 scenarios of charging have
been generated in this study). The results show that the stochas-
tic behavior of the charging load will increase the operating costs
and off-peak charging has a lower operation cost; however, the
stochastic charging load is more realistic than off-peak scenario.
Table 1 demonstrate different aspects of recent studies in EVs
stochastic optimization. These considered characteristics are
different stochastic variables with their PDFs, investigated ob-

jective and problem types in case of optimization method and
relevant solver and used the software. Some studies used Monte-
Carlo simulation (MSC) in order to cope with uncertain variables
numerically. By using this method, different types of parameters
such as EV charging profile, driving pattern of EVs, load profile
and etc. are generated usually based on real data history or
probability function of data. A Monte-Carlo simulation has been
used for making an artificial history of components fault for
reliability assessment [22]. This artificial history stochastically
has made by values that obtain from the analytical approach
from real information. Also, SOC and access point of EVs have
been created randomly. A study has used real data charging
and discharging of EVs, so the stochastic nature of EV charg-
ing (i.e., temporal and spatial) have been considered by itself
[34]. This article has implemented Monte-Carlo simulation to
make load and EV charging profile population. Energy price in
studies are constant or variant by time, thus in the majority of
studies the price is assumed to be deterministic but in [44] by
using Hang’s method (HM) prices of energy in each time has
been shown by a PDF and CDF. Also, a Monte-Carlo simulation
has been used for generating a group of driving patterns and
then GAMS/SCENRED is used for clustering the EV fleets into
the three driving pattern groups instead of all 100000 driving
pattern scenarios. Monte-Carlo simulation has been used for
assessing the system reliability and this new method is based on
the stochastic nature of the EV owner behavior, RES generation
and availability of the system elements [45]. The normal distri-
bution function is used for arrival time and driving distance of
EVs, Weibull distribution function is used for the departure time
of EVS and wind speed modeling and beta distribution function
for clearness index modeling in relation to solar irradiation.

3. COMPUTATIONAL SCHEDULING METHODS

As mentioned before, the integration of EVs to the power grid
brings by itself some benefits and services such as voltage regu-
lation, spinning reserve, load shifting, peak load shaving, and
load leveling. In this regard, some objective function has been
defined, for instance, cost minimization, GHG emission saving,
profit maximization, RESs support, and power loss minimiza-
tion. Fig. 10 shows the summary and relation between the V2G
types, services, optimization objectives and constraints [16]. In
Fig. 10, each V2G services shown by a specific color and any of
the objective functions tag with its’ relevant services color, then
connected to the related and considered constraints which are
used in the recent investigations. These objective functions can
be solved by different methods which depend on the type of
objective function and relevant constraints. Mainly optimization
methods divided into two groups: conventional methods and
heuristic methods which are comprehensively reviewed in the
following sections. Four indicators have to be used to deter-
mine the appropriate optimization method which include input
parameters, type of energy sources, merits and demerits [82].

A. Conventional methods

Conventional methods are based on iterative search algorithms
that begin with a deterministic solution and improve the solution
due to following some deterministic rules to the best answer.
These kinds of methods can handle problems with equalities and
inequalities. The appropriate method for a problem depends
on the size and type of problem [13]. Some of the conventional
methods are as below:
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Table 1. Stochastic variables, objectives and problem types of recent stochastic investigation with EVs and RESs
*Stochastic variables with relevant PDF; ** Problem types with related software and solving method

Ref Stochastic Variable* Objective Problem Type**

[18]
PHEV load PHEV home charging pattern estimation

House-hold electricity consumption

[19]
Controlled Load flattening NLP (GAMS)

Uncontrolled Load

[22]
SOC Reliability assessment

EV access point (uniform)

[30]

Plugin and departure time (normal) Charging Cost Minimization Continuous Linear Problem (Brand New Heuristic Method)

Virtual Cost The quadratic problem (Hybrid PSO) (JADE)

Cost of Deviating, Load Variance

[33]

Wind forecasting error (Rayleigh) Cost of Energy Market MILP

Total available capacity(normal) Reserve Market

Required state of charge(normal) Total Expected Energy Not Supplied

Available power for one hour in electric vehicles(normal)

Load forecasting error(normal)

[44]
Electricity Price (Normal) Cost of the Day-ahead energy market LP(GAMS)

Welfare of participating in Ancillary Services

[45]

Wind speed (Weibull) Reliability Assessment and Risk Management

Departure time (Weibull)

Arrival time and driving distance of EVs (Normal)

[55] Solar Radiation (Weibull) Maximizing the Intelligent Parking Lot Revenue MILP (Cplex)(GAMS)

[57]
SOC (Normal) Virtual Power Plant of EVs for UC

Traveling Time (Gamma)

[58]

Wind error (Weibull) Minimizing Grid Operation Cost Main (Non-Convex, Non-Deterministic Polynomial-Time Hard),

Energy consumption forecasting error MIP Main Problem

LP Sub-problems(CPLEX 12.1)

[59]

Selecting groups for charge and selecting each EV for charging (uniform) Flatten the Overall Load Quadratic problem

Net Load Forecast Error (Normal)

Estimate the number of EVs which would start charging (Binominal)

[68]

Wind speed (Weibull) The optimal hourly contractual agreement GAMS (Cplex)

Solar radiation (Weibull) Profit Maximization

Electricity price (Weibull)

[76]

EV charging demand EV, PHEV Load Forecasting

Arrival time (poison)

Charging duration (lognormal)

Daytime charge request (exponential)

Nighttime charge request (lognormal)

[77]

EV including V2G (Bernoulli) Minimizing Power Load Variance Quadratic problem

SOC (Uniform)

Arrival time(chi-square)

[78] Wind (Normal) Profit Maximization MINLP

[79] Charging profile of EVs (normal) Minimizing the Total Operational Cost NLP (SL-TLBO)

• Linear programming: Objective function and relevant con-
straints must be linear.

• Quadratic and concave Programming: Objective function is
quadratic and constraints are linear.

• Dynamic programming
• Non-linear programming
• Integer programming
• Binary programming

One of the main characteristics of this method is that they work
with some definite problems which they should have a certain
type of objective function and can be expressible with certain for-
mats. Thus, their application is limited by some restricted prob-
lems. Also, since these functions work with some deterministic
rules, they might obtain wrong solutions when the considered
problem has not just one global, but also one or several local op-
tima [13]. However, in some studies, conventional methods have

been implemented to the optimization problem and a global opti-
mum solution achieved for EVs energy schedule. Many studies
in EV scheduling, which used conventional methods, imple-
mented mixed-integer linear or nonlinear programming, in or-
der to address nonlinear variables such as charging/discharging
state of EVs which are binary variables. In order to use MILP
form, [33] have been linearized reliability with the integration
of PEV aggregation model. Because of the stochastic nature of
EV owner’s behavior and mobility of V2G, the problem is a
non-deterministic, non-convex, polynomial-time hard (NP-hard)
problem and authors have used mixed integer programming to
minimize the operation cost of the grid [58]. A MINLP problem
has been used in [78] to obtain the maximum profit of the smart
distribution company (SDC) and because of the complications
in solving the nonlinear problems, the optimization problem
has been separated into a master problem and sub-problem by
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Fig. 10. V2G services and relevant objective functions and
constraints.

using the Benders decomposition method. The optimization
problem based on moving window scheme is formulated as a
binary linear programming problem for diverse EV charging
profile in each step and solved with the OPTimization Interface
(OPTI) toolbox [31]. In the proposed method in [83], to reduce
the computing time and complexity, the problem is divided by
some sub-problems that one of them is power flow equations. A
MILP problem has been implemented in [84] for addressing the
effect of large penetration of EVs on the generation side in the
unit commitment. For obtaining the global optimum solution
(for objective function) and meeting the binary nature of EV
charging and discharging status, authors in [55] have applied a
MILP solving method. Dynamic programming based optimiza-
tion problem for EV energy scheduling (a day, a week and three
months scheduling time), in a local isolated grid with RES pro-
duction, has been proposed in [54]. Also, an aggregate battery
model has been implemented in this study and the model and
the results compared to a heuristic optimization algorithm. The
results show that the effectiveness of the proposed model on
better using of RESs and lower charging energy cost. An open-
source linear optimization model that is called EVLS (electric
vehicle linear static model) has been used in [40] for simulating
the EV power interaction and meeting the technical and behav-
ioral constraints with energy market consideration. Stochastic
linear programming for reducing the costs and maximizing the
V2G benefits, as an ancillary service, has been used in [44] and
results show the effectiveness of the proposed stochastic method.

B. Heuristic algorithms

As mentioned before, the conventional method used some deter-
ministic rules, but some other methods are different, one of them
is a Monte-Carlo search. A large number of guesses for decision
variables are made and relevant values for considered objective
function are determined. With a huge number of guesses, this
approach finally reaches to the global optimum or at least deter-
mined regions within which it is likely or unlikely to be found
[13]. Heuristic search methods and heuristic optimization tech-
niques also incorporate stochastic elements. Unlike Monte-Carlo
search, however, they have mechanisms that drive the search
towards promising regions of the opportunity space. The main
common feature of all heuristic optimization (HO) methods is
that they start with some initial solution, iteratively produce
new solutions by some generation rule and evaluate these new

solutions, and eventually report the best solution found during
the search process [13]. Some heuristic algorithms as follow:

• Ant colony optimization
• Evolutionary computation
• Particle swarm optimization (PSO)
• Genetic algorithms (GA)
• Simulated annealing (SA)
• Artificial bee colony (ABC)
• Teaching-learning based optimization (TLBO)

The most popular heuristic methods which are used for EV en-
ergy scheduling are a genetic algorithm (GA) and particle swarm
optimization (PSO) as it can be sawed in Table 2. The genetic
algorithm is inspired by the concept of natural selection and
genetics [85]. GA search for a global optimum solution within
an iterative process [86]. However, PSO depends on memorial
computation and find the optimum within some random so-
lutions and improve the solution by updating the generations
[11]. This method is modeled based on population and social
behavior of birds’ groups [85]. PSO has the advantage where it
requires lesser computational time and memory. A GA optimiza-
tion method has been used in [87], for solving a multi-objective
problem (mixed-integer programming (MIP)) that is formulated
to reach optimal sizing and location for DG units with the pres-
ence of EVs. Authors in [81] have applied two different GA
algorithms (GAH, GAD) for examining the EV charging in the
unit commitment under UCEV concept. With consideration of
EVs in a unit commitment by introducing UC-PEV structure,
authors in [88] have used synthetic GA-LR for minimizing the
total operating cost. Particle swarm optimization (PSO) method
has been used for minimizing fuel cost and GHG emission sav-
ing with consideration of RESs, EVs, and thermal units in [89].
Some studies have used different types of PSO to optimize EV
scheduling problems [30, 50]. For minimizing the total cost
of unit commitment with consideration of EVs and effects of
carbon emission trading on generation schedule an improved
particle swarm optimization (IPSO) algorithm has been utilized
in [90]. For minimizing cost and GHG emission in [50] both
binary and integer PSO have been implemented. Binary PSO
is found out the optimal state of generation units and integer
PSO for obtaining the optimal number of EVs. Other types of
heuristic algorithms (except GA and PSO) also have been used
to optimize objective functions that are related to EV energy
scheduling and planning in recent investigations. Authors in
[80], have utilized teaching-learning based optimization (TLBO)
algorithm to obtain the minimum cost of the whole system in
case of unit commitment with the presence of DERs such as wind
turbines as an RES and EVs and emergency demand response
program (EDRP). Real time DRP is considered for coordination
of an energy nexus considering PEVs in [91]. In order to attain
the optimal location and sizing of EV parking lots in the distri-
bution, a multi-objective problem using an artificial bee colony
(ABC) and Firefly (FF) algorithm has been used in [92]. Table 2
shows the trend of using diverse algorithms for V2G and EVs
charging scheduling optimization in recent studies.

4. CONCLUSION AND FUTURE TRENDS

EVs are an inevitable part of future smart grids and combination
of EVs and RESs is a promising solution for solving energy crises
such as fossil fuel shortage and global warming problems. So
Societies are more moving toward renewable sources and elec-
tric vehicles. Power grid can benefit from the V2G capability of
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Table 2. Optimization methods which used in recent studies
Conventional Heuristic

LP [31], [40], [44], [93] GA [86],[87], [81], [88], [94], [95], [96], [97], [32]

MILP [33],[58], [78], [84], [55], [11], [98] PSO [89], [30], [90], [50], [99], [100], [101], [96], [11]

Dynamic programing [54]

Others

ABC [92], [46], [52], [12]

Ant Colony [101], [102]

θ-krill herd [70]

TLBO [80]

EVs such as load leveling, peak shaving, spinning reserve, and
voltage and frequency regulation. Electric vehicles are charged
in a coordinated and uncoordinated manner. If they are charged
uncoordinatedly, EVs imposing a huge amount of excess load to
the grid. So coordinated EV charging is a prerequisite for future
smart charging. In this regard, to model the stochastic nature
of real smart grid and uncertain variables and using different
services of EVs, stochastic coordinated charging theme better
to be used. In addition to charging methods, charging stations
are divided into two centralized and decentralized categories.
Coordinated charging can be centralized for instance in a park-
ing lot or battery charging stations or decentralized, for instance,
parking lot of each home and for each vehicle and generally, cen-
tralized stations are more profitable and minimize the operation
cost. The integration of EVs and RESs together in the microgrid
has been investigated in this study. This paper represents to be
more focus in order to optimally deal with a future smart grid
which contains many DGs such as RESs, Storage devices such as
EVs and their relevant stochastic variables should be considered.
Also, most of this literature has focused on wind power, solar
power or a combination of these sources. Energy system models
are considered either deterministic or stochastic. A determinis-
tic model has no stochastic elements and the entire input and
output relation of the model are conclusively determined but a
stochastic model has one or more stochastic elements and the
system having stochastic element is generally not solved analyt-
ically. In other word, for considering the stochastic phenomena,
the distribution functions are used. For example, authors used
normal distribution function or an exponential probability func-
tion for EV traveled distances or used a Weibull distribution
function for wind speed and bimodal distribution function for
solar radiation. This study presented a comprehensive review
of a recent investigation of stochastic energy scheduling with
consideration of EVs and RESs. As it is shown in the article, the
tendency of using stochastic energy scheduling is because of
more realistic modeling of the uncertain variables, due to uncer-
tainty in EV behaviors and RES stochastic natures. In this regard
in optimization problems, due to size and type of problems,
diverse kind of objective functions and constraints should be
solved. Regard to results of this study in conventional methods
MILP and in heuristic methods, GA and PSO have been used
the most. The fact of the matter is that stochastic EV scheduling
problems have so many difficulties and non-linear parameters
due to different parameters and uncertainties in a real situation
and the power grid, so heuristic method seems to be promising
methods to find the global optimum with logical computational
time and feasible answer. For solving related objective func-
tions of stochastic modeling heuristic methods is an appropriate
option. On the other hand, to address the stochastic variables,
few studies implemented robust optimization, IGDT or machine

learning methods. These mentioned approaches seem to be more
comprehensive than stochastic optimization problems. And this
is because they are more flexible and thorough in uncertainty
modeling in compare to stochastic optimization. Thus, there are
many vacant seats for further investigation in EV scheduling
and uncertainty modeling to optimally deal with future smart
grid whether with stochastic optimization method or with other
approaches.
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