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In this paper, a multi-objective optimization model is proposed to calculate best possible size of energy
storage system (ESS). The proposed model is solved utilizing weighted sum method. Positive effects of
demand response program (DRP) are considered in the proposed paper. By utilizing the weighted sum
method, many various solutions are obtained. Then to select the best possible solution, fuzzy satisfying
approach is employed. The proposed multi-objective model includes two conflicting objective functions:
1) the first objective function is minimization of microgrid investment cost as well as the operation cost;
2) the second objective function is minimization of loss of load expectation (LOLE). Microgrid includes
some local units inside itself which may have some unknown outages and also due to variable and un-
stable output of renewable units, utilization of ESS is essential to improve stability of microgrid. The
i mpact of DRP implementation is evaluated on microgrid related costs and the results are compared to
validate the proposed technique. In order to simulate and model the proposed stochastic ESS optimal
sizing problem in a microgrid, a mixed-integer program (MIP) is utilized. © 2017 Journal of Energy Management

and Technology
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NOMENCLATURE

NOMENCLATURE

A. Indices:
S Scenario index

t Day index

r Renewable unit index

h Time period index

n Unit index

B. Parameters:
ICPB Installation cost of power rating for energy storage system

(ESS)

ICEB Installation cost of energy rating for ESS

ρs scenario possibility

ρt Electricity price

Pmax
M Maximum limitation of power import (export)

Pmin
i Lowest amount of thermal unit output

Pmax
i Highest amount of thermal unit output

UXs
ith Outage condition of unit

DRi Ramp down rate of unit

UTi Minimal up time for unit

DTi Minimal down time for unit

Ps
W,th Production of wind turbine

Pr
B Rated power of ESS
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k Extent of discharge

∆t Time pause

C0 Amount of charge at the start of every day

Cend Amount of charge at the end of every day

CIFB Main investment budget of ESS

LOLEtarget Predicted value for loss of load expectation

Ps
D,th Load supplied by microgrid

DRPmax Maximum value of demand response program (DRP)

NG Available conventional units number

NR Available renewable units number

NH Considered hours number

NT Considered days number

C. Variables:
IC Microgrid overall investment cost

OC Overall operating cost of microgrid

CBmax Maximum charge limitation of ESS

Fi Function of generation cost for unit

Ps
ith Produced power by thermal unit

Is
ith Unit engagement condition

SUs
ith Startup cost of thermal unit

Ps
M,th Sold (purchased) power to (from) the main grid

Ps
r,th Produced power by renewable unit

Ps
b,th ESS energy consumption (production)

LSs
th Load shedding

Ps
DRP,th Microgrid new load considering DRP

UYs
M,th Outage condition of line connecting upstream grid to

the microgrid

URi Ramp up rate for thermal unit

ys
ith Binary variable, 1 if unit is started up; otherwise 0

zs
ith Binary variable, 1 if unit is shut down; otherwise 0

Is
it(h−1) Unit commitment condition

Cs
th ESS condition of charge

Cs
t1 ESS condition of charge at the start of every day

Ws
th Binary variable for load shedding modeling

LOLE Loss of load expectation

TOUs
th Microgrid new load considering time-f-use program
(TOU)

1. INTRODUCTION

Utilization of energy storage system (ESS) in power networks
has many advantages. As mentioned before, renewable units
may not have a stable output due to their specific nature. There-
fore, ESS can be used to solve this problem and provide a reliable
generation and improve peak load management. So, in addi-
tion to ESS utilization in microgrid, best possible size of the ESS
should be determined [1–3].

A. Literature review

In comparison with the power system, microgrid is a small-scale
distribution system which contains many various loads and
different kinds of units (thermal and renewable) for supplying
loads. Microgrid and upstream grid can be linked to each other
through a line by which microgrid would be able to sell (pur-
chase) energy to (from) the upstream grid. In order to improve
microgrid reliability and solve the related problems, utilization
of ESS is necessary and optimal size of ESS should be deter-
mined to minimize total cost as well as loss of load expectation
(LOLE) [4].

Due to variable and unstable output of renewable units, ESS
is utilized as an extra energy source besides wind turbine and
photovoltaic system to soften produced power [5–7]. In order
to optimally size ESS with considering reliability citation, an
analytical method has been implemented in [8]. In [9], applica-
tions and future of ESS have been studied. In [10], ESS optimal
size has been found to manage peak hour consumption. Also
in [11], a storage system for power control and management
applications has been investigated. Genetic algorithm has been
employed to optimally size energy storage system in [12]. Using
an alternative direction method of multipliers, energy storage
system is optimally sited and sized in [13]. Optimal capacity
and location of battery energy storage system has been found
using a heuristic method in [14].

Optimal operation of a grid-connected battery-PV system has
been investigated in [15] in which optimal size of battery storage
is determined. With the aim of minimizing total operational cost
of an on-grid microgrid, a new energy management technique,
including economic strategies for operation of system and sizing
of battery storage has been presented in [16]. With the aim of
minimizing total cost and reducing total emission as well as
increasing the life cycle, a battery-PV-wind-diesel hybrid energy
system has been optimally sized and allocated in [17]. In order
to minimize power losses in electrical distribution networks,
battery storage system has been employed and optimally sized
in [18]. Due to the intermittent output photovoltaic system,
energy storage system has been utilized and optimally allocated
in [19]. Optimal allocation of energy storage in power system
has been evaluated from an economic view point in [20]. In order
to control fluctuating generation of renewable energy resources
like photovoltaic system, a bi-level optimization technique based
on genetic algorithm has been proposed to optimally site and
size the battery energy storage system in [21].

Furthermore, electrical loads can participate in DRP to re-
duce their operational costs. Participating in DRP, customers
are responsible to change their energy consumption pattern
to reduce their expenses. On the other hand, consumers get
incentives or they pay less to the utility as they reduce their
consumption. Demand response programs are divided into two
groups: Incentive-Based Programs (IBPs) and. IBPs are divided
into market-based programs and classical programs. In these
programs, customers get incentives as much as they reduce their
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consumption.
In PBPs, dynamic pricing rates, including Time of Use (TOU)

rate, Critical Peak Pricing (CPP), Extreme Day Pricing (EDP),
Extreme Day CPP (ED-CPP) and Real Time Pricing (RTP) are
utilized.

B. Novelty and contributions of this research
Difference of this paper from other works is the method used for
solving the problem. In this paper, we have utilized weighted
sum approach to solve the proposed multi-objective model with
demand response program (DRP) consideration. The main objec-
tive of the proposed model is to minimize microgrid investment
cost as well as the operation cost and minimize LOLE. Uncer-
tainty modeling of system component outages, microgrid load
and generation of renewable sources have been considered in
the proposed paper. In the proposed paper is time-of-use (TOU)
of DRP which is employed to manage microgrid load and trans-
fer some percent of load from peak time (expensive) periods to
another time (cheaper) periods to soften the load curve which
leads to total cost minimization. Two different states (with and
without DRP) have been studied and the results are compared
to show the effects of DRP implementation. Finally, to formulate
the proposed model for the ESS optimal sizing problem with
considering DRP, a mixed-integer programming (MIP) is uti-
lized. Based on the explanations given above, contributions and
novelty of proposed paper are presented as follows:

1. Multi-objective optimization model to minimize total cost
as well as LOLE and to provide a win-win strategy for both sides
(cost and LOLE).

2. Pareto front is obtained for both conflicting objective func-
tions and trade-off solution is selected.

3. Loads have been enabled to participate in DRP to reduce
their cost by changing their energy consumption pattern.

C. Organization of proposed paper
The rest of the proposed paper is classified as follows: The prob-
lem is mathematically studied in detail in section 2. Techniques
and methods, (weighted sum and fuzzy satisfying approach)
used for solving multi-objective model, are explained in section
3. 2 case studies are studied in Section 4 to show the impact of
DRP. Finally, conclusions are presented in Section 5.

2. PROBLEM FORMULATION

The main purpose of the proposed paper is to find optimal size
of ESS in which total cost as well as LOLE is minimized. So, as
the first objective function, total cost of microgrid containing
investment cost of ESS and operation cost of microgrid should
be minimized. For more clarification, we can divide microgrid
operation cost into three individual costs, including the cost
related to local units which use energy to produce electricity,
the cost that microgrid is faced at the times it attempts to buy
electricity from upstream grid and the cost that microgrid pays
as local units attempt to start up and shut down. Minimization
of LOLE is considered to be the second objective function of
the proposed paper. So, in order to solve the proposed multi-
objective model, a weighted sum approach, providing a win-
win strategy for both sides (total cost and LOLE) is utilized and
finally optimal Pareto is achieved.

A. Cost function
As the first objective function of proposed multi-objective model,
total cost, including investment cost of ESS and operation cost

of microgrid should be minimized (1).

MinΦ1 =IC + OC (1)

IC = ICPBPR
B + ICEBCmax

B (2)

OC =
Ns

∑
s=1

ρs

Nt

∑
t=1

Nh

∑
h=1

Ng

∑
i=1

[Fi (Ps
ith) Is

ith + SUs
ith]+

Ns

∑
s=1

Ps

Nt

∑
t=1

Nh

∑
h=1

λthPs
M,th

(3)
It should be noted that the main goal of proposed work is to

determine an optimal size for ESS in which total cost as well as
LOLE is minimized. Equation (1) expresses that ESS investment
cost and microgrid operation cost should be minimized. In
equation (2), ESS investment cost has been divided into two
separate costs: power rating cost and energy rating investment
cost. Variable and permanent costs are also added to the power
rating cost. Considered costs are calculated on a yearly premise
and by finding optimal size of ESS, operation cost of ESS will
be decreased [22]. Microgrid operating cost is the sum of three
separate costs: The cost related to local units which need energy
to produce electricity, the cost that microgrid is faced at the times
it attempts to buy (sell) electricity from (to) the upstream grid
and the costs that microgrid pays as local units attempt to start
up and shut down (3).

B. Reliability function

As the second objective function of proposed multi-objective
model, LOLE should be minimized (4).

MinΦ2 = LOLE =
NS

∑
s=1

ρs

NT

∑
t=1

Nh

∑
h=1

ws
th (4)

0 ≤ LSs
th ≤ M.ws

th (5)

Equation (4) shows possibility of each scenario in LOLE
which expresses load curtailment. In order to express the
amount of load curtailment at each scenario and time, equa-
tion (5) is utilized. If load decreases, ws

th will be 1.

C. Microgrid and unit limitations

As shown in equation (6), the amount of the produced energy
should be equal to the amount of energy demand with DRP
consideration. It means that microgrid production (production
of thermal and renewable units) plus the energy that upstream
grid sells (buys) to (from) the microgrid should be equal to en-
ergy demand with DRP consideration. At the times that energy
demand is more than microgrid production, we may have load
shortage. So, to show and express this shortage, a variable called
LSs

th is added to the equation (6). If ESS starts charging, Ps
B,th

will be considered negative and Ps
B,th will be considered positive

if it starts discharging and it will be zero if it does not attempt
to charge or discharge. If upstream grid sells power to the mi-
crogrid, upper grid power will be considered positive and it
will be considered negative if upstream grid purchases energy
from microgrid and it will be considered zero if microgrid does
not attempt to purchase or sell energy. Equation (7) constrains
the maximum power that can be transferred between upstream
grid and microgrid. Finally, equation (8) provides load shedding
constraint for stable operation.
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NG

∑
i=1

Ps
ith Is

ith +
NR

∑
r=1

Ps
rth + Ps

B,th + Ps
M,th + LSs

th = Ps
DRP,th (6)

∣∣∣Ps
M,th

∣∣∣ ≤ Pmax
M UYs

M,th (7)

0 ≤ LSs
th ≤ Ps

DRP,th (8)

The limitations related to microgrid thermal units are pre-
sented by equations (9)-(13). Equation (9) determines the upper
and lower production limitation of thermal unit. The gener-
ated energy by thermal unit can only increase or decrease in
a predefined period, which is expressed in equations (10) and
(11), respectively. Equations (12) and (13) have been used to
determine minimal down and up time limitations of local units,
respectively.

Pmin
i Is

ithUXs
ith ≤ Ps

ith ≤ Pmax
i Is

ithUXs
ith (9)

Ps
ith − Ps

it(h−1) ≤ URi.(1− ys
ith) + Pmin

i ys
ith (10)

Ps
it(h−1) − Ps

ith ≤ DRi.(1− zs
ith) + Pmin

i zs
ith (11)

h+UTi−1

∑
k=h

Is
ith ≥ UTi.ys

ith (12)

h+DTi−1

∑
k=h

(1− Is
ith) ≥ DTi.zs

ith (13)

To show whether to unit is starting up or shutting down,
indexes y and z are utilized which determine the limitations (10)-
(13). According to the unit commitment in (14)–(15), indexes y
and z are determined. If unit attempts to start up, y is 1 and if
unit attempts to shut down, z is 1.

ys
ith − zs

ith = Is
ith − Is

it(h−1) (14)

ys
ith + zs

ith ≤ 1 (15)

In order to solve ESS optimal sizing issue, both thermal and
renewable units have been considered in the proposed model.
Each renewable unit has an individual production pattern which
will be determined by a long-standing estimation. According
to [23], to create the production pattern, the power curve of
wind turbine should be combined with the input performance
of generation unit which can be predicted by a definite approach
or simulation method. Weibull probability distribution function
can be utilized to model the wind speed dissemination. Based on
worthy references [24–26], for prediction of the Weibull parame-
ters, there are many different approaches. Generated power by
a wind turbine can be calculated by (16) as follows:

Ps
W,th =



0

Vs
th < VCI

Pmax
W

Vs
th−VCI

VR−VCI

VCI ≤ Vs
th < VR

Pmax
W

VR ≤ Vs
th < VCO

0

Vs
th > VCO



(16)

Reliability of microgrid would be challenged due to combi-
nation of renewable resources. Since renewable resources size
is proportional to the microgrid size, available extra resources
plus ESS should supply the energy demand [27].

D. ESS Constraints

Equations (17)–(22) can be used to design ESS.

− PR
B ≤ Ps

B,th ≤ kPR
B (17)

CS
th = CS

t(h−1) − Ps
B,th∆t (18)

0 ≤ CS
th ≤ Cmax (19)

CS
t1 ≤ C0 (20)

CS
th = Cend ; (h = NH) (21)

ICPBPR
B + ICEBCmax

B ≤ CIFB (22)

Totally, ESS has three main statuses: useless, charging and
discharging. Charging /discharging power is limited by (17).
Equation (18) calculates ESS condition of charge and (19) is used
to constrain it. The amount of existing energy is equal to the
amount we had in previous hour plus the amount we have
at the present time. ∆t is 1 since time pause is 1 hour. When
ESS is charging, PR

B will be considered negative and it will be
considered positive if ESS is discharging. It should be noted
that when PR

B is considered negative, existing energy increases
and when PR

B is considered positive, existing energy decreases.
To calculate available energy at the beginning and end of every
day, equations (20)–(21) are utilized. ESS installation in power
system needs a primary budget, which constraint is expressed
by equation (22). So, microgrid size will be limited [28].
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Table 1. Probability of scenarios approximated normal distri-
bution function

Scenario number Value of each relevant scenario probability of each relevant scenario

S1 µ− 2.5σ 0.0123

S2 µ− 1.5σ 0.136

S3 µ 0.682

S4 µ + 1.5σ 0.136

S5 µ + 2.5σ 0.023

E. Demand Response Program
As mentioned before, DRP includes many various programs
inside itself and TOU of DRP has been used to reduce total cost
of microgrid [29, 30]. The reason of DRP implementation is that
it can manage and control microgrid load and can transfer some
percent of load from peak time (expensive) periods to another
time (cheaper) periods to soften the load curve which leads to
cost minimization. It should be noted that we can only shift some
percentage of load from peak periods to off-peak periods. The
mathematical form of the sentence mentioned above is expressed
by equation (23).

Ps
DRP,th = Ps

D,th + TOUs
th (23)

According to equation (23), the new load with TOU consider-
ation is equal to the amount of primary load plus the variable
power, TOUs

th. If the load increases, this variable is negative and
it is positive if load decreases. It can be seen from equation (23)
that due to improvement of intelligent network technology, we
can transfer some amount of load from peak periods to off-peak
periods. Technical constraints related to DRP are expressed by
equations (24) and (25).∣∣TOUs

th
∣∣ ≤ DRPmax × Ps

D,th (24)

Nh

∑
h=1

TOUs
th = 0 (25)

As expressed in equation (24), the increasing/decreasing load
should not exceed the base load. In the proposed paper, the
maximum amount of increasing/decreasing load is considered
to be 20 %. Also, equation (25) expresses that the load does
not decrease or increase and it is just transferred from peak
periods to off-peak periods, which means that the increasing
and decreasing loads should be equal during a day.

F. Price and demand uncertainty model
In order to model uncertainty of demand and price, the forecast
error distribution curves are divided into some intervals with
the width of one standard deviation. In uncertainty modeling,
the inputs are the values used for price and demand in deter-
ministic solution. The percentage of increase or decrease in price
and demand is considered to be 10%. Fig. 1 shows a sample
discrete form of the predication error probability distribution
function. It is essential for every available scenario that 2 values
be computed:

i. By integrating the area below the probability distribution
curve in every period, we can acquire each scenario’s probability.

ii. The realized prediction error in each relevant scenario is
considered to be the average amount of period. Table 1 shows
the amount and its probability in each relevant scenario.

Fig. 1. Probability distribution function for uncertainty param-
eters

G. Scenario reduction
By utilizing scenario production technique, many various scenar-
ios are acquired. Due to the large size of the obtained scenarios,
the proposed model will be complicated and it will take much
more time to be solved. So, we need to decrease the number of
scenarios. In this paper, the most common probability distance
used in stochastic optimization is Kantorovich distance [31],
DK(.), defined between two probability distributions Q and Q′

by (26), where c(s, s) is a non-negative, continuous, symmetric
cost function and the infimum is taken over all joint probability
distributions defined on Ω×Ω.

Dk(Q, Q′) = inf


∫

Ω×Ω

c(s, s′)η(ds, ds′) :
∫
Ω

η(., ds′) = Q,
∫

Ω
η(ds, .) = Q′


(26)

c(s, s′) =
∥∥s− s′

∥∥T (27)

The utilized method is the fast-forward algorithm to reduce
the number of scenarios [32]. It can be seen from the reported
results in [32] that the utilized technique is a popular and particle
approach.

3. MULTI-OBJECTIVE SOLUTION METHOD

Multi-objective problems are problems with several objective
functions that are usually in conflict with each other and using
some special techniques and approaches like weighted sum
approach, these problems are solved and Pareto solutions are
obtained.

A. Weighted sum approach
In order to solve a problem with objectives more than one,
many various approaches are available such as weighted sum
approach [33], ε-constraint method [34], and evolutionary algo-
rithms [35]. In order to solve the proposed multi-objective model
for optimal ESS sizing problem in this paper, the weighted sum
approach is utilized. In this approach, different weights are used
for conflicting objective functions to generate different Pareto
optimal solutions and then different weights select the most
satisfactory solution from the optimal Pareto set. In this method,
the problem is solved as follows:

min [Φ] = w1Φ1 + w2Φ2 (28)

Where

w1 + w2 = 1 (29)
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Because of different dimension and range of objective func-
tions (1) and (2), we should normalize both of objective functions.
To do this, the fuzzy satisfying technique is utilized.

B. Fuzzy Satisfying Method
As mentioned before, we will have many various solutions in
weighted sum approach; therefore, to select the compromise so-
lution amid the obtained solutions, the well-known and popular
technique called fuzzy satisfying (or min (max)) approach is uti-
lized. Consider a problem in which N objective functions should
be minimized. The fuzzy membership of each objective function
maps it to the interval [0, 1]. So the linear membership function
for the nth solution of ith objective function is determined as
expressed in (30) [36]:

Φn
i =


1 Φn

i ≤ Φmin
i

Φn
i −Φmax

i
Φmin

i −Φmax
i

Φmin
i ≤ Φn

i ≤ Φmax
i

0 Φn
i ≥ Φmax

i

(30)

It should be noted that the Φmin
i and Φmax

i are the minimum
and maximum values of objective function i in solutions of the
Pareto optimal set. Φn

i expresses how optimal the nth solution
of ith objective function would be. The membership function of
nth solution is calculated by equation (31).

Φn = min(Φn
1 , ..., Φn

N)

n = 1,...,NP

(31)

The obtained solution including the maximum weakest mem-
bership function is selected as the best solution. Equation (32)
is used to calculate the implied membership function of this
solution (µmax), as follows:

Φmax = max(Φ1, ..., ΦNp) (32)

Normalized values for objective functions (1) and (2) are
expressed by equations (33) and (34), respectively.

Costpu = Φ1,pu =
Cost−Costmax

Costmin −Costmax (33)

LOLEpu = Φ2,pu =
LOLE− LOLEmax

LOLEmin − LOLEmax (34)

4. NUMERICAL SIMULATION

In order to evaluate the effect of DRP implementation on the ESS
optimal sizing problem, 2 study cases have been investigated.

A. Input Data
A sample microgrid is used to show the effects of DRP imple-
mentation on the proposed model. In the sample microgrid, we
have utilized one wind turbine besides four thermal units which
characteristics are presented in Table 2. The installed ESS has
power investment cost of 40000 $/MW/year and energy invest-
ment cost of 11000 $/MWh/year [4]. It has been considered that
the power can be transferred by a 10 MW line between micro-
grid and upstream grid. 500 scenarios have been produced to
simulate the microgrid load, wind speed and component inter-
ruptions. Due to the higher number of scenarios that make the
problem extensive and more complicated, a special technique
called scenario reduction technique has been used to lessen the

Table 2. characteristics of generating units
Unit no. Bus no. Cos coefficient ($/MWh) Min capacity (MW) Max capacity (MW)

1 Gas 27.7 1 5

2 Gas 39.1 1 5

3 Gas 39.1 0.8 3

4 Gas 61.3 0.8 3

5 Wind 65.6 0 1

Unit no. Min. up time(h) Min. down time(h) Ramp up (MW/h) Ramp down (MW/h)

1 3 3 2.5 2.5

2 3 3 2.5 2.5

3 1 1 3 3

4 1 1 3 3

5 - - - -

Table 3. probabilities of reduced scenarios

Scenario 1 2 3 4 5

Probability 0.49 0. 21 0.15 0.09 0.06

existing scenarios to 5 which possibilities are shown in Table 3.
Peak load of microgrid is considered to be 17 MW and Figure
2 shows the microgrid load for sample days in spring, summer
and autumn in which multiplying peak load by load factors
creates sample day’s profiles. Fig. 3 shows electricity price in
upstream grid. Each scenario has a specific wind speed which is
shown in Fig. 4. As expressed in Fig. 5, wind turbine generation
can be calculated using scenarios and equation (16). For the up-
coming years, microgrid load has been considered constant and
therefore the whole plans are considered for one year. The pro-
posed approach was carried on a 2.4-GHz PC utilizing CPLEX
11.0 in GAMS optimization package [37].

Fig. 2. Load profile for sample days in spring, summer, au-
tumn and winter

B. Results of Simulation in Different Cases
In order to evaluate the effect of DRP implementation on ESS
optimal sizing problem, 2 study cases have been investigated
and the results are compared:

Case 1: Optimal sizing of ESS without considering DRP
Case 2: Optimal sizing of ESS with considering DRP
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Fig. 3. Forecasted electricity price in upper market

Fig. 4. Wind speed in three scenarios

Fig. 5. Output power of wind turbine in three scenarios

Table 4. Pareto optimal solutions for optimal ESS sizing prob-
lem without considering DRP (case 1)

# w1 w2 Total cost ($) LOLE Φ1(p.u.) Φ2(p.u.) min (Φ1, Φ2)

1 1 0 1930441.582 96 1 0 0

2 0.65 0.35 1934905.822 92 0.977724926 0.041666667 0.041666667

3 0.633333333 0.366666667 1939730.302 88 0.953652375 0.083333333 0.083333333

4 0.616666667 0.383333333 1939730.302 88 0.953652375 0.083333333 0.083333333

5 0.6 0.4 1950555.742 80 0.899637027 0.166666667 0.166666667

6 0.583333333 0.416666667 1961857.702 72 0.843244003 0.25 0.25

7 0.566666667 0.433333333 1967860.942 68 0.813289831 0.291666667 0.291666667

8 0.55 0.45 1974379.462 64 0.780764583 0.333333333 0.333333333

9 0.533333333 0.466666667 1988561.062 56 0.710003112 0.416666667 0.416666667

10 0.516666667 0.483333333 2003631.862 48 0.634804829 0.5 0.5

11 0.483333333 0.516666667 2030057.138 35 0.502951486 0.635416667 0.502951486

12 0.466666667 0.533333333 2048123.858 27 0.412804558 0.71875 0.412804558

13 0.45 0.55 2075752.693 16 0.274945855 0.833333333 0.274945855

14 0.433333333 0.566666667 2086644.253 12 0.220600591 0.875 0.220600591

15 0.416666667 0.583333333 2086644.253 12 0.220600591 0.875 0.220600591

16 0.4 0.6 2086644.253 12 0.220600591 0.875 0.220600591

17 0.383333333 0.616666667 2099332.453 8 0.15729069 0.916666667 0.15729069

18 0.366666667 0.633333333 2112809.533 4 0.09004454 0.958333333 0.09004454

19 0.316666667 0.683333333 2112809.533 4 0.09004454 0.958333333 0.09004454

20 0 1 2130855.733 0 0 1 0

Table 5. Detailed results of case 1

Different parameters Case 1

ESS rated power (MW) 2.6

ESS rated energy (MWh) 13

Expected unsupplied energy (MWh) 11.50

ESS investment cost ($) 247000

Microgrid generation cost ($) 4563795

Import cost ($) 149319

Benefit from export ($) 2930058

Total cost ($) 2030057

Case 1: Utilizing the weighted sum approach, many solu-
tions are obtained which together create the Pareto front of the
proposed model. It should be noted that the effect of DRP has
not been considered yet. For more clarification, we have sum-
marized the obtained solutions in Table 4. In order to select the
best possible solution among the obtained solutions, min-max
fuzzy satisfying technique is utilized. Based on the employed
technique, it can be concluded that trade-off solution is Solution
#11 in which the maximum weakest membership function is
0.502951486.

Detailed results of obtained solution in case 1 are summarized
in Table 5. So, it can be understood from Table 5 that the optimal
size of ESS is 2.6 MW at 13 MWh. LOLE is 35 and total cost
of microgrid is $ 2,030,057 containing $ 4,563,795 production
cost, $ 149,319 power procurement cost, $ 247,000 ESS budget
for installation and $ 2,930,058 benefit from power export to the
upstream grid. The amount of unsupplied energy is 11.50 MWh.

Case 2: the same procedure of case 1 is repeated for the sec-
ond case and the results are obtained in the presence of DRP. It
can be concluded from the obtained results that the trade-off
solution is Solution #9 in which the maximum weakest mem-
bership function is 0.5. Detailed results of the obtained solution
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Table 6. Pareto optimal solutions for optimal ESS sizing prob-
lem with considering DRP (case 2)

# w1 w2 Total cost ($) LOLE Φ1(p.u.) Φ2(p.u.) min (Φ1, Φ2)

1 1 0 1596682.011 96 1 0 0

2 0.633333333 0.366666667 1601146.251 92 0.977442935 0.041666667 0.041666667

3 0.616666667 0.383333333 1605970.731 88 0.953065636 0.083333333 0.083333333

4 0.6 0.4 1611258.051 84 0.926349684 0.125 0.125

5 0.583333333 0.416666667 1628098.131 72 0.841259549 0.25 0.25

6 0.566666667 0.433333333 1634101.371 68 0.810926171 0.291666667 0.291666667

7 0.55 0.45 1640619.891 64 0.777989169 0.333333333 0.333333333

8 0.533333333 0.466666667 1647496.371 60 0.743243455 0.375 0.375

9 0.516666667 0.483333333 1669872.291 48 0.630181637 0.5 0.5

10 0.5 0.5 1702203.959 32.165 0.466815071 0.664947917 0.466815071

11 0.483333333 0.516666667 1704332.163 31.165 0.456061612 0.675364583 0.456061612

12 0.466666667 0.533333333 1724992.061 22 0.351670569 0.770833333 0.351670569

13 0.45 0.55 1729941.031 20 0.326664242 0.791666667 0.326664242

14 0.433333333 0.566666667 1743085.184 14.835 0.260249016 0.84546875 0.260249016

15 0.416666667 0.583333333 1751253.854 11.835 0.21897408 0.87671875 0.21897408

16 0.4 0.6 1753369.998 11.121 0.208281553 0.88415625 0.208281553

17 0.383333333 0.616666667 1766058.198 7.121 0.14417018 0.925822917 0.14417018

18 0.366666667 0.633333333 1776542.025 4 0.091197137 0.958333333 0.091197137

19 0.333333333 0.666666667 1776542.025 4 0.091197137 0.958333333 0.091197137

20 0 1 1794588.225 0 0 1 0

Table 7. Detailed results of case 2

Different parameters Case 2

ESS rated power (MW) 2.2

ESS rated energy (MWh) 11

Expected unsupplied energy (MWh) 15.78

ESS investment cost ($) 209000

Microgrid generation cost ($) 4563796

Import cost ($) 238178

Benefit from export ($) 3341102

Total cost ($) 1669872

in case 2 are summarized in Table 7. So, LOLE is 48 and total
cost of microgrid is $ 1,669,872 containing $ 4,563,796 production
cost, $ 238,178 power procurement cost, $ 209,000 ESS budget
for installation and $ 3,341,102 benefit from power export to the
upstream grid. ESS attempts to charge at the times that electric-
ity price is low (off-peak hours) and it attempts to discharge at
the times that electricity price is high (peak hours). The amount
of unsupplied energy is 15.78 MWh.

It can be understood from the obtained results in Table 7 that
by DRP implementation, total cost of microgrid is decreased. By
transferring some percent of load from peak time (expensive) pe-
riods to another time (cheaper) periods, load profile is flattened
and microgrid operating cost is minimized.

C. Comparison results
In order to have a better view and also to see the impact of DRP
implementation, obtained results in cases 1 and 2 are summa-
rized in Table 8. In case 2, since the load is shifted from expensive
(peak) periods to the cheaper (off-peak) periods, the operating
cost of microgrid is less than case 1. So, reduction of operating
cost of microgrid leads to the total cost minimization. As shown
in Table 8, total cost in case 1 is $ 2,030,057 while this value in

Table 8. Comparison results of case 1 and 2

Different parameters Case 1 Case 2

ESS rated power (MW) 2.6 2.2

ESS rated energy (MWh) 13 11

Expected unsupplied energy (MWh) 11.50 15.78

ESS investment cost ($) 247000 209000

Microgrid generation cost ($) 4563795 4563796

Import cost ($) 149319 238178

Benefit from export ($) 2930058 3341102

Total cost ($) 2030057 1669872

Total cost reduction (%) 0 17.7

case 2 is $ 1,669,872. So it can be concluded that total cost in case
2 has 17.7 % reduction compared to case 1 and this is all because
of DRP implementation.

5. CONCLUSION

In this paper, in order to find the best possible size of energy
storage system (ESS), a multi-objective optimization model has
been proposed. In the proposed multi-objective model, two
objective functions are considered as the main goal of proposed
work which are namely minimization of total cost and LOLE.
Results of both objective functions are in contrast with each other,
therefor Pareto solutions should be obtained for both conflicting
objective functions. Utilizing the weighted sum approach, many
solutions are obtained which together create the Pareto front
of the proposed model. Well-known min-max fuzzy satisfying
technique is utilized to choose the best possible solution. Also,
the effect of DRP on the proposed model is evaluated. Two
different cases (with considering DRP and without considering
DRP) are investigated and the results are compared to show
the effects of DRP implementation. According to the obtained
results, the total cost in case 1 is $ 2,030,057 while in case 2 this
value is $ 1,669,872. So it can be concluded that the total cost in
case 2 has 17.7 % reduction compared to case 1 and this is all
because of DRP implementation.
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