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Energy Hub is an appropriate framework for modeling and optimal scheduling of multi-energy systems
(MES). Energy hub provides the possibility of integrated management of various inputs, converters, stor-
age systems, and outputs of multiple energy carrier systems. However, the optimal management problem
in the energy hub is affected by various technical, economic, social and environmental parameters. Many
of these parameters are inherently ambiguous and uncertain. Fluctuating nature of renewable energy
sources (RES), energy prices in competitive and deregulated markets, the behavior of consumers, inher-
ent variations in the surrounding environment, simplifications and approximations in modeling, linguis-
tic terms of experts, etc. are just a few examples of uncertainties in the optimal management problem
of energy hub. Ignoring such uncertainties in the process of modeling and optimization of energy hub
leads to unrealistic models and inaccurate results. On the other hand adding these uncertainties leads to
increased complexity of modeling and optimization. Therefore, to achieve a realistic model of MES in the
form of energy hubs, identifying appropriate methods to address these uncertainties is essential. This
paper reviews the different methods for the consideration of uncertainty in optimal scheduling of energy
hubs. In this paper, different methods of modeling and optimization of energy hub are reviewed and
classified and their strengths and weaknesses are discussed. A classification and review of the various
methods that offered in the most recent research of MES in the field of uncertainty modeling are done to
identify efficient methods for using in energy hub models. © 2017 Journal of Energy Management and Technology
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1. INTRODUCTION

Nowadays, economic development, population growth, indus-
trialization and increasing demand have caused energy to be-
come one of the main components of the current human devel-
opment. The hierarchical structure of generation, transmission,
and distribution of energy has been the main framework for
demand and supply of energy in recent decades. However, the
development of distributed energy resources (DER), particularly
RES and local storage systems, leads to non-hierarchical and
distributed structures. On the other hand, the advent of efficient
technologies, such as combined heat and power (CHP) produc-
tion, electric heat pumps and fuel cells, leads to the integration
of energy infrastructure, such as electricity, natural gas, and dis-
trict heating networks which create MES [1]. In a multi-energy
system, different energy carriers can interact optimally. The exis-
tence of various energy carriers and energy infrastructures leads

to the complexity of the structure of these systems. On the other
hand, optimal performance of such systems requires a compre-
hensive modeling framework and integrated management.
Energy hub concept has been developed in recent years for
integrated management of MES [2]. Planning and management
of energy hubs as an effective and efficient method in model-
ing and utilization of energy systems are essential for ensuring
energy security, environmental sustainability, and economic de-
velopment. However, the energy systems are affected by various
technical, economic, social and environmental parameters char-
acterized by uncertainty and high volatility. Therefore, optimal
management of energy systems, especially MES, needs to take
account the uncertainties in modeling and optimization of the
systems. Increased share of renewable resources, deregulation
of energy markets and behavior of the different components
of the energy system such as producers and consumers, create
uncertainty and difficulty in scheduling these systems. Due to
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Fig. 1. Example of a simple energy hub.

the high cost of the investment in energy infrastructure, the ac-
tual planning of these systems is crucial and taking into account
the associated uncertainties to reach a real (or close to reality)
decision is essential. On the other hand, energy hub operational
optimization problem results are under the influence of model
input parameters variations and this increase the importance
and necessity of uncertainties studying in the process of manag-
ing and scheduling of these systems.

This paper reviews the various techniques for taking into
account the uncertainties in the planning process and optimal
management of the energy hubs. First, an introduction to the
concept of energy hub is provided and various methods and
models to optimize energy hub are classified and evaluated. The
various techniques used in the literature for the consideration of
uncertainties in modeling and optimization of energy hub are
discussed. As well as, different uncertainty modeling methods
that have been used in most recent MES research are reviewed
and classified and the advantages and disadvantages of each
of them are discussed to determine appropriate techniques for
addressing uncertainty in the optimal scheduling of energy hub.

The remainder of this paper is organized as follows. Section
2 provides an introduction to the concept of energy hub and
various methods for modeling and optimization of energy hub.
Section 3 reviews the different methods used in the literature
for modeling uncertainty in energy hub, and efficient methods
have been employed in the other MES models. Section 4 includes
discussions and general comments about modeling uncertainties
in energy hub. The paper is concluded in section 5.

2. ENERGY HUB CONCEPT AND OPTIMIZATION METH-
oDSs

Energy hub concept was developed for the first time in “A Vi-
sion of Future Energy Networks” (VOFEN) [3] project and aims
to get a vision and model of future energy systems. Moving
toward MES, non-hierarchical structures, and integrated energy
systems are the main goals of this project. Therefore, in order
to achieve such structures of energy systems a concept called
“Energy Hub” has been introduced as a unit that provides the
features of input, output, conversion and storage of multiple en-
ergy carriers. Energy hub can be defined as the place where the
production, conversion, storage and consumption of multiple
energy carriers take place. A common and basic structure for
energy hub can be seen in Fig. 1.

In this figure can be seen, an energy hub has different inputs
that using various conversion and storage procedures can meet
different demands. The energy hub provides the opportunity
to use different energy carriers and so demand supply is no

Fig. 2. The matrix model of energy hub concept.

longer dependent on the single type of energy carrier. This pro-
vides increased reliability of energy supply. By using efficient
technologies such as CHP the primary energy usage becomes
more efficient, resulting in lower system costs and emissions.
On the demand side, by using different inputs and technologies,
different demands can be provided in an integrated unit. Differ-
ent inputs such as electricity, natural gas, and district heating
networks, fossil fuels, and RES can be used as energy hub inputs.
These inputs inside the energy hub, by conversion technologies
such as CHP, boiler, transformer, chillers, fuel cell, electrolyzer
as well as storage systems such as electricity and thermal stor-
age systems are qualified for consumption on the demand side.
As a result, energy hub can meet different demands such as
electricity, heating, cooling, water, hydrogen, chemicals and so
on. Therefore energy hub is a comprehensive model of MES
and a powerful tool for modeling of such systems. Energy hub
with many advantages, such as increased reliability, resilience,
productivity and reduced costs and emissions, taking advantage
of different energy carriers and different technologies together,
also provides the possibility for optimization of MES. Given the
existence of different energy carriers, energy conversion, and
storage technologies and even presence of responsive demand,
these items can be evaluated based on criteria such as cost, emis-
sions, and availability to achieve optimal energy hub structure
and performance. Energy hub model is based on a matrix model
that can be seen in Fig. 2.

The matrix model of energy hub concept is used to link dif-
ferent energy carriers at the input and output through coupling
matrix. Each of the matrix elements represents energy hub in-
terior features include connections, transform coefficients and
operating function of various internal components of the en-
ergy hub. This matrix provides the possibility of modeling
inputs, conversion, storage systems and various outputs in a
comprehensive model. Therefore, integrated management and
optimization of the MES are provided in the form of energy hub
model.

Optimization models related to energy hub can be catego-
rized in different ways. For example, two basic optimization
modes can be considered for energy hub as follows:

e Structural optimization: finding the optimal topology and
structure of energy hub, based on a specific demand and

corresponding objective functions

* Operational optimization: Optimal power dispatch in an
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energy hub or optimal power flow in the network of inter-
connected energy hubs for a given structure of the system

Such concepts for energy hub were presented and formulated
by Geidl and Andersson. They have offered a model for opti-
mal power dispatch problem in systems with multiple energy
carriers based on energy hub concept [4]. By introduction of
the matrix model of energy hub and a dispatch factor for deter-
mining the contribution of each converter from different inputs,
they submitted an optimization framework for optimal power
dispatch problem. The same authors [5], have offered optimal
power flow problem between different energy infrastructures,
such as electricity, natural gas and district heating networks
in the context of interconnected energy hubs for multi-carrier
energy systems. Also, the same authors [6] have presented a
structural optimization method to find optimal energy hub cou-
pling matrix based on a specific demand and objective functions.
Such models were offered in steady-state condition and time-
dependent parameters were not considered. Then Geidl [7] has
wrapped up the above content. In this research general frame-
work for energy hub modeling has provided for multi-carrier
energy system management. Also, multiple energy carrier dis-
patches and optimal power flow in both operational and struc-
tural optimization as well as adding a storage system and taking
the time dependency into account have been discussed along
with some practical examples.

In general, planning and management of energy hub in the
form of an optimal scheduling problem can be divided into two
general categories based on the time horizon of the study:

e Short term: operational optimization

¢ Long term: optimal planning

In the first case, the goal is usually the optimization of the
performance and creating an operational program for the var-
ious components of energy hub and has a short time horizon
from one day to one year. In this case, the smaller time step is
not considered and usually, an hour or a quarter of an hour for
time steps can be considered to be able to ignore the dynamics
and transition of various components of the energy hub. In the
second case, the target is usually the optimum structure design
of the system; for example finding the optimal size of equipment
for a specific demand and considered objective functions. This
case has a longer time horizon from one year up to 20-30 years
which corresponds to a useful lifetime of the system. In this case,
in addition to system operating costs, initial investment costs
are also taken into account and the system is evaluated during
its lifetime.

Such structures need a comprehensive model and an opti-
mization framework. In energy hub models, the objective is
usually minimization of functions such as cost, emissions, pri-
mary energy consumption, peak demand or maximizing func-
tions such as profit, the share of RES and customer satisfactions
subjected to various operational and structural constraints. A
general framework for energy hub optimization models can be
considered as the following relationships:

minimize f(Ij, Fx, Opax)
Subject to:

L,—Cyly=0 Vhc H
Gu(Iy) =0 Vhe H,Va € A

Ih,min I < Ih,mux Vhe H 1)

<
Limin < Onak < Iymax VR € H

Vo € A, Vk € kg
0< vy <1 VheH
,Vao € A, Vk € kg

Where H is the number of energy hubs in a network of inter-
connected hubs. A is the number of energy carriers. K, is the
number of converters that can use energy carrier as input. With
this description can be said that Ij, and Lj, are input and output
matrixes related to the energy hub of k. coupling matrix (Cy,) is
used to link different energy carriers at the input and output.
Fy is the power flow of energy carrier. G is a set of networks
equations and constraints. vy, is dispatch factor that defines
the dispatch of an energy carrier to the converters and their
sum is equal to 1 for energy carrier. So Y, vp,x = 1. Therefore

keK,
relations (1) to (6) is a simplified representation of the general
framework for optimizing energy hubs by varying Ij, , Fx and
Upak- Obviously, other relationships such as storage equations,
reliability indices, etc. can be added to these relationships, but
have been neglected here for simplicity.

In general, these relations are in the form of an optimization
problem with the objective function, equality and inequality
constraints and decision variables. In most cases, due to char-
acteristics of the system, such as nonlinear dependency of the
coupling matrix coefficients to inputs, energy hub optimization
problem is a nonlinear problem. In the case of a convex objective
function and linearized constraints, the problem turns into a
convex problem that can be easily solved using numerical meth-
ods. A common example of this case is the considering of a
linear function for energy costs and assuming constant efficiency
for converters of energy hub. But if the objective function is
concave (or convex in maximization mode), and/or nonlinear
constraints, the problem turns into a non-convex problem and
the solution space is no longer convex. Numerical methods
can be used in this case as well, but it cannot be ensured that
obtained answer is the global optimum solution. So this case
requires more advanced optimization methods.

An optimization problem usually refers to a process for find-
ing an optimal solution among a set of possible answers. An
optimization problem includes a set of objective functions, con-
straints of equality and inequality, and decision variables. Con-
vex optimization refers to finding the minimum of a convex
function (or a maximum of a concave function) among a convex
set of constraints. The main advantage of this type of optimiza-
tion problems is that the local optimization is the global optimal
point. In this method, any optimization algorithm that finds the
local optimal point, in fact, has found the global optimal point.
Due to the diversity of issues related to optimization in various
fields of research, several techniques have been proposed for
optimization which in this paper it is not possible to deal with
all of them. In this section only dominate algorithms and meth-
ods have been discussed that are useful for solving problems
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related to MES and therefore energy hub. These optimization
techniques are discussed as follows:
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¢ Linear programming (LP): LP is a method for finding the
minimum or maximum of a linear function on a convex
polygon. In the case that objective function and constraints
are linear and decision variables are continuous, optimiza-
tion problem will be a linear problem. Therefore, when the
objective function is convex, optimization problem has a
unique solution. LP can be considered as the easiest and
fastest optimization method and even when there is a large
number of variables and constraints the optimization prob-
lem can be solved with an acceptable speed. However, in
real energy hub model with binary variables and nonlinear
relationships, this kind of formulation is less useful [8].

Nonlinear programming (NLP): If the objective function
and/or constraints over a set of unknown real variables are
nonlinear, optimization problem becomes a nonlinear prob-
lem. As mentioned, due to the structural characteristics of
MES most optimization problems related to these systems
are nonlinear in nature. Such nonlinear structures have
been formulated by Geidl and Andersson [4-6] for optimal
dispatch, optimal power flow, and structural optimization
of energy hub, respectively. Other examples can be seen
in Table 1. The existence of nonlinear terms in the model
leads to a reduction of assurance in achieving a global op-
timal solution and such a problem may be convex or non-
convex. Even if be convex, it is still difficult to solve. Some
common methods for solving nonlinear programming are
general reduced gradient method and sequential quadratic
programming [8].

Integer programming (IP): All or some of the variables are
integers. A widely used form of IP is a mixed integer linear
programming (MILP). This is similar to linear programming
with the difference that in addition to continuous variables,
the problem has integer and binary variables. Similar to
linear optimization, MILP aimed at finding the minimum
or maximum of a linear function over a space with linear
constraints, but the existence of discrete variables lead to
discrete and non-convex solution space. Therefore solving
this kind of optimization problems is more complex than
LP requires special methods such as Branch and Bound [8].
In the energy hub by adding the binary control variables,
caused by storage systems or describing the state of equip-
ment using discrete steps such as on/off and standby the
LP or NLP problems turn to an MILP or mixed integer non-
linear programming (MINLP). It can be said that most of
the issues related to energy hubs are NLP or MINLP. To
solve such problems in the energy hub so far two groups
of methods have been used. Linear equivalents or linear
relaxations to convert the NLP and MINLP problems to LP
and MILP problems, respectively. The first case involves
the assumption of linear relations rather than nonlinear re-
lationships for restrictions; as an example using constant
values for the efficiency of converters. A large number of
examples from this application can be seen in Table 1. The
latter case includes processes for linear approximation of
nonlinear relations using different methods such as itera-
tive Branch and Bound, piecewise constant approximation,
Taylor expansion, etc. The examples of this case can be
seen in [8,9]. However, such percussive approximations

despite the simplification of computing, reduce the accu-
racy of the model and does not provide a real vision of the
system operational conditions. On the other hand solving
MILP or MINLP problem in most real systems is difficult
and mainly is nondeterministic Polynomial-time hard (NP-
hard) [10], that has not polynomial time algorithm. Such
problems may need exponential computing time to solve
and solving it may greatly increase the computing time. In
recent years new methods for solving such optimization
problems have been proposed, such as heuristic methods
and artificial intelligence-based techniques.

Heuristic approaches: These methods have been designed
to solve the problems that classic approaches are not able to
solve them or solving them takes a lot of time. These meth-
ods try to solve the problem in a reasonable time and achiev-
ing an acceptable solution. This solution is not necessarily
the optimal solution for the problem and may be an approx-
imation of the exact solution. Therefore, on some issues, it is
difficult to ensure that obtained solution is accurate enough
or how much it is important to get an accurate answer. On
the other hand, heuristic approaches require a good knowl-
edge of the system. If these methods are designed properly,
they are appropriate to reduce the computational load of op-
timization algorithms and achieving an acceptable solution.
The main problems of heuristic algorithms are sticking in a
local optimum, premature convergence on these points and
dependence on good knowledge of the system. Metaheuris-
tic algorithms have been proposed to solve these problems
of heuristic algorithms.

Metaheuristic approaches: These methods are a generaliza-
tion of the heuristic approaches which can be applied to
a wide range of the problems. These algorithms also are
approximation optimization approaches that are capable
of getting out of the local optimum. In spite of heuris-
tics, these methods require fewer assumptions and infor-
mation about the system. Metaheuristic usually divided
into two general categories; Trajectory-based or population-
based. Trajectory-based metaheuristics also known as
single-solution algorithms which are based on a single so-
lution during the search process and focus on improving a
solution and usually provide a single solution. Common
trajectory-based metaheuristic algorithms, are Tabu search
and Simulated Annealing algorithms. Population-based
metaheuristics use multiple solutions and they often use
population characteristics to guide the search. These al-
gorithms create the initial set of potential solutions and
are gradually improving these initial solutions and finally
provide a suitable solution for the optimization problem.
The most known population-based metaheuristics are Ge-
netic Algorithm and, Ant Colony Optimization, Artificial
Bee Colony Algorithm, and Particle Swarm Optimization.
Metaheuristic algorithms can be combined with other opti-
mization approaches, which lead to the Hybrid Metaheuris-
tic. Also, multiple metaheuristics can be used in parallel
which leads to Parallel Metaheuristic.

Parallel Computing: A process in which a large problem
can be divided into several smaller sub-problems which can
then be solved at the same time. Reduction in the computa-
tion time, the possibility of resolving the larger issues, and
overcoming the limitations of memory are the advantages
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of this method. Two known examples of these methods are
Dynamic Programming and Monte Carlo Simulation.

* Multi-objective optimization: Most optimization methods
mentioned above are used to solve single objective prob-
lems, while most problems in the real energy hub models
are multi-objective problems and usually these objectives
are in conflict. Minimizing energy costs while maximizing
comfort whilst maximizing renewable energy share while
minimizing fuel consumption and emissions are examples
of multi-objective optimization problems. Adding more
than one objective to an optimization problem adds com-
plexity and optimal decisions need to be taken in trade-offs
between two or more conflicting objectives. There are differ-
ent methods for solving multi-objective problems include
Bonded objective, Absolute priorities, Goal Programming,
Goal attainment, Weighted sum method, Pareto-based op-
timization that last three of these are most widely imple-
mented. The main idea behind goal attainment method is to
find solutions that satisfy a predetermined objective. A prac-
tical example of this approach in the energy hub in order to
solve a multi-objective power flow optimization problem
in a network of interconnected hubs can be found in [11].
Weighting method is to assign a weight to each of the goals
which lead to the creation of an objective function of the
sum of previous functions. This method can be considered
as the simplest method of solving multi-objective functions.
However, this method is applicable only in the convex prob-
lems. Also, the difficulty of adjusting the weights and not
provided optimal trade-off between conflicting objectives
are the disadvantages of this approach. The shortcomings
of these methods can be compensated with Pareto-based
optimization. The Pareto method is a common method
for solving multi-objective problems and identifying suit-
able trade-off between different objective functions. One
solution is Pareto optimal, if improving an objective func-
tion, is not possible without degrading the other objective
functions. Without any external criteria, all Pareto optimal
solutions can be equally acceptable. Therefore, solving the
optimization problem requires finding all Pareto optimal so-
lutions. All these optimal solutions are not easy to achieve
and so in recent years meta-heuristic methods application
for solving multi-objective problems has been increased
and a large number of multi-objective metaheuristics have
been presented. Some of these methods are non-dominated
sorting genetic algorithm (NSGA/NSGA-II), multiobjec-
tive simulated annealing (MOSA), and multi-objective Tabu
search (MOTYS).

As mentioned, these methods and structures have been com-
monly and widely used in energy hub models, but other specific
methods are also used in energy hubs. For example, Arnold et
al have used a model predictive control (MPC) method for cen-
tralized control [12] and distributed control [13], for a network
of interconnected hubs by considering the dynamic of energy
storage systems as well as energy prices and demand forecast.
Bahrami et al [14] have modeled the interactions between elec-
tricity and gas companies with a set of the interconnected hubs
as an ordinal potential game in a smart environment. Sheikhi
et al [15] have used reinforcement learning (RL) algorithm for
optimal management of a residential smart energy hub to reduce
energy costs and taking into account the effect of the costumers
loads shifting factor on their satisfaction. The summary of mod-

els and optimization techniques used in energy hub models can
be seen in Table 1.

Almost all the models presented in Table 1 and discussed so
far are deterministic models. However, another important part
of the optimization approaches is non-deterministic optimiza-
tion such as stochastic optimization. Another side of realization
coin is the complexity of modeling. This means that taking into
account the real situation of the system in many cases leads to
the complexity of the problem and requires advanced modeling
and solving approaches. Lack of attention to actual conditions
leads to unrealistic modeling, which results in illusory and in-
accurate results. In energy hub models, lower accuracy occurs
in two modes. The first mode is modeling simplifications and
the second one is ignoring the uncertainties. For example, the
efficiency of a CHP is a nonlinear function of its operating point
and taking into account this function leads to the complexity of
modeling and problem solving is more difficult. In the energy
hub models, this efficiency has been usually considered as a con-
stant value. This simplicity leads to a reduction in the accuracy
of the model.

In the literature so far, some limited research have been pro-
vided to improve the realistic modeling of the energy hub. A
new formulation for energy hub has provided in [8] to improve
some operational constraints such as minimum operating time
after equipment start-up, storage losses and piecewise linear
approximation of non-linear efficiency curve. Two limitations
of energy hub models, namely the problem of distinguishing
the appropriate port for connecting different components (espe-
cially RES) and the problem of impossibility of evaluating the
bi-directional power flow have been addressed in [16]. In this
paper, the authors have used a modified version of the energy
hub model by using the graph and network theory to address
the above limitations in steady state. The authors in [17] have
provided a general heuristic optimization framework to solve op-
timal power flow problem in the network of the interconnected
energy hubs which can be used with all evolutionary methods
and provides the possibility of taking a variable function for
efficiency into account. The existence of various connections
within the energy hub and taking into account all these possi-
ble connections leads to an increase in model complexity and
difficulty in optimal control of the system. Authors in [18] have
provided a method for modeling such a complex energy hub
taking into account all the possible connections between sys-
tem components which lead to increased reliability of demand
supply.

As mentioned the latter case that leads to a reduction in the
accuracy of the model is ignoring the impact of uncertainties of
the input parameters in the optimization process. For example,
demand for the future periods is uncertain and taking into ac-
count the known demand or a complete forecast of the demand
will cause illusory results and will not be considered risks of the
changes in demand levels. Other examples include the energy
price, weather conditions, RES output, consumer behavior and
so on. Energy hub models should consider these uncertainties
for achieving a comprehensive and realistic model of the sus-
tainable energy systems in the future. Different approaches for
addressing uncertainties is discussed in the next section.
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Table 1. A summary of models and optimization techniques used for energy hubs in the literature

o ) Horizon ) . Publish
References  Objective function Problem Solution method Description
time year
Minimization of energy ) o o ) : .
4] Nonlinear optimization problem MATLAB optimization toolbox Optimal power dispatch in EH 2005
costs
Minimization of energy ) o o Optimal Power Flow (OPF) a
[51 Nonlinear optimization problem MATLAB optimization toolbox 2005
costs network of EHs
Minimization of energy ) o o ) o
[61 Nonlinear optimization problem MATLAB optimization toolbox Topological optimization of EH 2005
costs
Minimization of energy ) _ ) o N
[19] Linearized Programming MATLAB optimization toolbox Linearized EH optimization problem 2007
costs
Minimization of energy One N L
[20] 1 p problem lop toolbox Hydrogen economy consideration in EH 2007
costs day
Minimizing the cost and ) o o )
[21] - Nonlinear optimization problem ~MATLAB optimization toolbox RES in OPF of a network of EHs 2008
maximizing the benefit
Minimization of energy i L N
[221 Nonlinear optimization problem ~MATLAB optimization toolbox Decomposed OPF of a network of EHs 2008
costs
Minimization of energy One ) N N
[121 Nonlinear optimization problem ~MATLAB optimization toolbox Central controller for a network of EHs 2009
costs day
Minimization of energy o ) : ) )
[23] g - P problem  p as code in the software AIMMS Unit commitment in EH 2009
costs
Minimization of energy One
[24] g Nonlinear optimization problem  MATLAB optimization toolbox OPF of a network of EHs in the presence of RES and grid exchange 2010
costs day
Minimization of energy One : o . o o )
3] Nonlinear optimization problem ~MATLAB optimization toolbox Distributed controller for a network of EHs 2010
costs day
Minimization of energy One ) o v ) ) ) )
[25] linear op problem G Reduced Gradient (GRG2) algorithm Planning of EHs 2010
costs and emissions year
Minimization of energy o MATLAB optimization toolbox using
ne
[26] costs Nonlinear optimization problem  Particle Swarm optimization to EH modeling for Interconnected power exchange 2011
da
and emissions Y improve optimization Performance
Minimization of the total
energy costs, total energy One N o . . .
27 MILP GAMS optimization solvers Optimal Operation of Residential EHs 2012
consumption, peak load, day
and emissions
Minimization of energy One - ) .
[28] MILP GAMS optimization solvers RES and PEV Modeling in EH operation 2013
costs day
Minimization of energy One ) Influence of storage capacity and prediction horizon
[29] Nonlinear Programming 2014
costs day on the cost optimal operation of EH
Minimization of energy
One Nonlinear optimization ) . N
(1] costs Goal attainment method Multi-objective optimization of EHs 2014
day problem
and energy losses
Minimization of energy One - ) )
[301 g MILP GAMS optimization solvers Impact of Energy storage technologies on EH operation 2014
costs day
Minimization of energy
One Nonlinear optimization o ) ) )
[31] costs and temperature Commercial optimization toolbox Optimal operation of commercial EHs 2015
week  problem
deviations
Minimization of energy One
321 MILP GAMS optimization solvers Optimal operation of agriculture EHs 2015
costs day
Minimization of energy One
[33] MILP GAMS optimization solvers Optimal energy management of a smart residential EH 2015
costs and emissions day
Minimization of energy One
[34] MILP GAMS optimization solvers Optimal optimization of a network of EHs 2015
costs and emissions day
Minimization of system
energy costs and the capital  One ) . )
35 MILP GAMS optimization solvers Hydrogen economy evaluation in a network of EHs 2015
cost of the hydrogen year
refueling station
Minimization of energy One Linearizing nonlinear o internal and external dependency model for assessing the
[36] GAMS optimization solvers 2015
costs day formulation as an MILP stochastic behavior of the demand side
Minimization of energy one - ) L )
371 MILP GAMS optimization solvers Optimal operation of industrial EHs 2015
costs day
Minimization of energy One - deri
[38] MILP GAMS optimization solvers Considering thermal energy market and DR 2015
costs day
A general heuristic optimization framework OPF of a network of EHs by using
Minimization of energy Nonlinear optimization
n71 applied by modified teaching learning a generalized heuristic approach 2015
costs problem
based optimization (MTLBO) algorithm and addressing variable efficiency models
Maximization of utility
companies’ profit and to One ) ; :
391 Ordinal potential game - Demand response in the context of smart EHs 2015
minimization of customers’  day
consumption cost
Minimization of energy One ) o i
[40] Non-cooperative game - Cloud computing in a network of smart EHs 2015
costs day
Minimization of energy One ) . . ) ) ) o
[41] MILP Branch and Bound solution method in MATLAB optimization toolbox ~ Optimal operation of a network of EHs and its power exchange with main grid as a prosumer 2015
costs day
Minimization of energy T
en
[421 costs MILP GAMS optimization solvers Optimal planning of network of EHs 2015
ears
and investment costs v
Minimization of energy
One Nonlinear optimization Optimal energy management of a smart residential EH considering
[15] costs and costumer’s learning (RL) 2016
day problem customer’s dissatisfaction level
dissatisfaction level
Minimization of investment ) o
[43]1 15-year ~MILP GAMS Optimal Wind-integrated hub design -

and operation costs



3. UNCERTAINTY CONSIDERATION IN MODELING

In general, it can be concluded from the above discussion that an
optimization problem is essential to obtain optimal planning and
management of the energy hub. Under certain conditions, this
optimization problem has an optimal and unique solution. Ac-
cording to the problem condition, this solution can be obtained
from different optimization methods. However, for nonlinear,
multivariate, and multi-objective functions finding an optimal
solution is not an easy task. In these cases, more advanced
methods can be used to solve the optimization problem and
finding an approximation of the possible optimum solutions.
All of these occur in deterministic conditions but when the input
variables of the optimization problem are not constant small
changes in any of them can change the optimization results.

In an actual environment usually many variables such as
demand, the price of energy, solar radiation etc. are not constant
and have random and variable behaviors. This random behavior
and fluctuating nature, lead to uncertainty in the modeling and
ignoring the impact of these uncertainties leads to inaccurate
models and illusory results. Therefore the impact of these un-
certainties should be considered in the optimization. In general,
uncertainties have different resources and hence different types.
Each of these types of uncertainties may affect one or more steps
of the modeling and optimization processes. Identifying the type
of uncertainty helps to the better understanding of their effects
on system modeling and performance. The authors in [44] pro-
vide a category for a variety of uncertainties that is summarized
in Fig. 3.

Variability uncertainty caused by the inherent variations in
nature, behavior changes, changes in technology and organiza-
tion. Knowledge uncertainty is due to limited knowledge about
scheduling and making decisions about the system. This type of
uncertainty can arise due to the perception of decision makers
and planners about scheduling content include system reali-
ties, uncertainty, and boundary conditions. On the other hand,
knowledge uncertainty can be caused because of the model fea-
tures such as:

* Lack of knowledge of input parameters
* The uncertainty inherent in the model input data
e Measurement errors

¢ Insufficient understanding of the processes and system con-
ditions such as physical and dynamic processes

¢ Simplification and approximations
e Hardware and software errors
¢ The accumulation of all these

Linguistic uncertainty is caused by the information is ex-
pressed by the human that is in linguistic terms and inherently
uncertain. Language restrictions in precisely quantifying a pa-
rameter (Vagueness), a word that has several meanings and its
exact meaning may not clear (Ambiguity), and loss of detail in
specification or generalization of some concepts (Under speci-
ficity) are some of the linguistic uncertainty items. The decision
uncertainty is due to the ambiguity in the definition, quantifi-
cation and comparing objectives and performance indicators.
Procedural uncertainty arises from the imbalance between avail-
able resources and time.
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Fig. 3. Different categories of uncertainty.

Accurate recognition of the uncertainties and their impacts in-
creases the accuracy and realizing of the model. However, this
uncertainty modeling in a multi-carrier, multi-objective, multi-
period and multi-criteria framework is not an easy task. Dif-
ferent methods for addressing and handling of the uncertain-
ties have been presented in the literature so far. The authors
in [45,46] have provided a category of uncertainties modeling
techniques in the process of decision-making in power and en-
ergy systems that is summarized and schematically shown in
Fig. 4. The main similarity between them is that all of these
methods attempt to quantify the effects of uncertainty on the
output parameters and the main difference is in the expression
methods of uncertain parameters.

Probabilistic methods use probability density function (PDF)
to express uncertainty and are used when sufficient data are
available and PDF of uncertain parameters is known. Fuzzy
methods use the membership function (MF) to display uncer-
tainty. Unlike previous methods, Information gap decision the-
ory method does not use the PDF or MF and in fact, reveals the
error between the parameters values and their predicted values.
Robust optimization method uses uncertainty sets to describe
the uncertainty and this model actually is used for the worst
case. Finally, interval method uses interval values with lower
and upper bounds to display uncertainties. In the following
sections, each of the mentioned methods and their application
in energy hub models is described.

A. Probabilistic approach

Deterministic modeling does not provide a real image of the
dynamic behavior of the real world. Dantzig [47] and Beale [48]
(1955) provided the stochastic programming model indepen-
dently that in numerous research have been studied and ex-
panded [49].

Probabilistic methods use statistical distributions such as
Weibull distribution for wind speed and the normal distribution
for load changes to express uncertainty. A heuristic optimization
method known as multi-agent genetic algorithm was used in [50]
to solve an economic dispatch problem in a multi-carrier system
with integrated energy hubs. In this study, uncertainty related to
wind power generation was modeled by Weibull distribution as
probability distribution function and performance of proposed
method was compared with methods such as GA and PSO. A
DR program based on minimizing the cost of a multi-energy
system by considering the level of customer satisfaction has
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been provided in [51]. Uncertainties arising from the behavior of
consumers in multi-energy system management is considered.
These uncertainties include the percentage of consumers who
participate in DR programs, the percentage of consumers who
have the ability to switch between different energy carriers and
consumers who do not participate in DR programs and may
control their demand. A normal distribution has been used to
display the uncertainties and producing related scenarios. An
optimization model is presented in [52] for a hybrid energy sys-
tem by considering the various uncertainties based on statistical
data. The authors have used binomial distribution for solar and
wind power generation uncertainties, a normal distribution for
demand and Bernoulli distribution for inaccessibility of produc-
tion units. The impact of RES on system planning has been
evaluated by proposed model in the presence of uncertainty.
Probabilistic methods are usually divided into two main
groups: numerical methods and analytical methods. Numeri-
cal methods are mainly based on random sampling and Monte
Carlo Simulation (MCS) is the most important ones. This method
is used when the system size is large or have many uncertain
parameters or has a large number of non-linearity. A model for
optimal management of energy hub has been provided in [53]
under uncertainty and changes in electricity prices. Prices of
all input and output energy carriers are regarded as a random
variable and MCS considers thousands of possibilities in prices
of these carriers. An optimal sizing of a system of interconnected
hubs taking into account electric and gas networks physical con-
straints, reliability indicators and environmental issues has been
provided in [54]. The impact of uncertainty in electrical and

thermal loads, as well as uncertainty in energy prices, has been
studied using Monte Carlo simulations and the performance
of interconnected energy hubs system has been proven even in
the presence of these uncertainties. A multi-criteria study for
ranking different RES at the national level in Scotland has been
provided in [55] and the impact of input data uncertainty on the
results have been investigated. For this study different technical,
economic and environmental criteria have been used that each
of these criteria has a wide variation range. To consider this
type of uncertainty, the amount of each of these criteria is shown
by a statistical distribution and the MCS is used to perform the
multi-criteria evaluation. The study showed that the result of
ranking extremely depend on uncertain parameters variations.
The impact of energy hub on reducing energy costs and increas-
ing profits in the presence of uncertainty of the electricity price
has been studied in [56] by using MCS and creating five different
scenarios for different levels of uncertainty. In general, it can be
said that the MCS is easy to run, flexible, usable in convex and
non-convex issues and supports from all types of PDFs. Instead,
the number of required simulations increase by increasing the
solution space’s degree of freedom. So thousands of simulations
to get the exact answer is needed and thus the computational
load of this method is high.

Analytical methods mainly are based on approximation and
use mathematical expressions to display the system’s input and
the output. The first of these methods are based on linearization
and their goal is to make output PDF from input PDF. Methods
such as Convolution, Cumulants and Moments, Taylor series
expansion and First Order Second moment are in this category.
In these methods, mathematical operations such as convolution,
calculating the coefficients of expansions and so on are used to
get output parameter’s PDF from the input parameter’s PDF.

All the above methods are common in linearization and this
linearization is reliable when the expansion of error is approxi-
mated using an appropriate linear function. These difficulties
and inaccuracies in linearization process lead to the develop-
ment of other types of methods. These methods are based on
creating a good approximation of input parameter’s PDF using
the appropriate samples. Point estimate, Unscented Transforma-
tion and Scenario-based decision-making methods are in this
category. Point estimation method includes the use of sample
data to calculate a value as the best estimates and forecasts
of a parameter. This method is non-repetitive, simple to use
and does not have the problem of convergence. However, this
method doesn’t provide information about the exact shape of
output’s PDF and only gives the mean and standard deviation.
This method, like other probabilistic methods, needs PDF of
uncertain parameters and gives a better answer for non-skewed
PDFs. Unscented Transformation method is appropriate to con-
sider the correlation between random variables and is a reliable
method to calculate the output of random variables under a set
of non-linear transformations. This method is highly functional
and its accuracy does not reduce by increasing the number of
random variables but its run time depends on the number of
random variables and also needs to PDF of input parameters.

Uncertain parameters have numerous realizations which are
impossible to consider all of them. However, they can be con-
verted into a number of limited and countable scenarios. This
process is the basis for the scenario method. This method con-
verts continuous space to the limited number of discrete scenar-
ios with the related probabilities and so this method enhance
computational efficacy. However, the scenario-based approach
is an approximate method and requires the statistical informa-
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tion of input parameters. Also in this method size of the model
increases if the dimensions of the system are large or the number
of components is too high. Among the methods of this group
scenario-based method is most widely implemented. The au-
thors in [57] have used discrete statistical distribution to model
the uncertainties of demand and the production of the wind and
solar power. According to the probability of each state, different
scenarios have been provided in the modeling of a real-time
dispatching issue and unit commitment for an isolated micro-
grid. A scenario-based approach for the consideration of energy
price, demand, and wind power generation uncertainties in the
optimal management of energy hub has been provided in [58].
In this paper, a multi-objective decision-making model for the
consideration of energy costs and associated risks has been de-
veloped which provides the ability to make decisions under
uncertainty by creating a trade-off between cost and reliability
of the system.

A model for mid-term management for an energy hub taking
into account uncertainty of wind generation and electricity mar-
ket with the objective of minimizing costs has been provided
in [59]. In this study, Auto Regressive and Integrated Moving
Average (ARIMA) and Auto Regressive and Moving Average
(ARMA) time series have been used to generate different sce-
narios. ARIMA method for prediction of the price of electricity
and ARMA method for prediction of the wind speed used and
the generated scenarios used to model the problem in the frame-
work of a stochastic programming model. By using the mean
and variance of input data, ARIMA method can be used to pre-
dict future changes in parameters. Usually, the models that use
ARIMA method need to be combined with a scenario reduction
method. Here, wind speed and price scenarios for electricity pro-
duction are completely independent of each other and should
be considered all the possible combinations of them. Therefore,
because of the increased number of scenarios, computing time
increases and authors has used a scenario reduction method.
The impact of DER, ESS, and DR on the performance of a com-
mercial energy hub to deal with the uncertainties caused by
wind power, energy prices and demand from the operational
cost, reliability and emissions points of view have been inves-
tigated in [60]. The MCS has been used for the production of
uncertainties scenario tree and a large number of generated sce-
narios have been decreased by using GAMS scenario reduction
tool. The study found that in terms of demand uncertainty,
the impact of energy storage on the energy hub performance
improvement is more than other technologies and in terms of un-
certainty in energy prices, the impact of DER and DR and also in
terms of wind power generation uncertainty the impact of CHP
and heat storage is dominant. In general, the impact of wind
power production and energy prices uncertainties on the en-
ergy hub operation is greater than the impact of energy demand
uncertainty [61]. Authors in [36] have used a scenario-based
approach to consider uncertainties in the behavior of consumers
who participate in DR programs. Customers that in the form of
an energy hub participates in DR programs in addition to shift-
ing or reducing their demand have the ability to switch between
different energy carriers. In this paper, some of the demands
have been considered as dependent loads which can use dif-
ferent energy carriers to deliver a particular service. Therefore,
the management of such loads by consumers to choose between
different carriers will lead to uncertainty. The results show that
the uncertainty in the random behavior of consumers in the
DR program is effective on the share of energy carriers in the
demand supply. Increasing the share of loads that are controlled

Table 2. Fuzzy logic based models in energy systems

Fuzzy Approach  Fuzzy Models Fuzzy Delphi

Fuzzy regression
Fuzzy ANP

Fuzzy AHP

Fuzzy axiomatic design (FAD)
Fuzzy gray prediction

Fuzzy clustering

Fuzzy expert system (FES)
Fuzzy linear programming (FLP)

Hybrid Models Neuro-fuzzy, adaptive neuro-fuzzy inference system (ANFIS)

Fuzzy genetic algorithm, neuro-fuzzy GA

Fuzzy DSS

Fuzzy DEA, neuro-fuzzy DEA

Interval Fuzzy linear programming (IFLP)

Fuzzy-stochastic programming (FSP)
Multi-criteria Decision Models ~ Fuzzy VIKOR

Fuzzy TOPSIS

Fuzzy support vector machine

Fuzzy particle swarm optimization

Fuzzy honey bee optimization

Fuzzy cuckoo search optimization

Fuzzy quantum particle swarm optimization

Fuzzy ant colony optimization

by consumers increases the impact of random behavior of con-
sumers in system performance and leads to increased operating
costs of the system.

B. Fuzzy approach

As mentioned, because of increased uncertainties in the energy
systems, dealing with these uncertainties has become one of the
main issues in MES modeling and scheduling. The fuzzy sets
approach is an efficient method for dealing with these uncer-
tainties and modeling the real behaviors. On the other hand,
energy hub directly interacts with natural processes and hu-
man behaviors and so modeling this behavior with certain and
determined values is not effective because usually human be-
havior and natural processes are not predictability deterministic
and controllable. Whereas that one of the main applications of
fuzzy logic is quantifying of the qualitative and linguistic terms
so using this method for expressing the uncertainties helps to
achieve the realistic models and extraction more accurate results.
Fuzzy sets use the concept of fuzzy membership functions such
as triangular, trapezoidal membership functions and Gaussian
fuzzy set for uncertainty modeling. Fuzzy logic-based models
are used mainly in three ways: fuzzy models, hybrid models
and multi-criteria decision models that are shown in Table 2.
Fuzzy models are usually used in order to realize system condi-
tions and characterization linguistic terms. These models have
applications such as expressing expert linguistic terms, data cap-
turing, finding the relative importance of variables, resources
grouping, data clustering, and predictive purposes. Hybrid
models have a variety of applications in energy systems, from
designing of control systems to locating and determining of the
optimal combination of RES. Multi-criteria models usually have
a lot of computing load and have diverse applications such as
performance optimization, system control and emissions and
financial risks reduction [62].

In this regard, a combination of interval linear programming
(ILP) model and fuzzy logic have been presented in [63] to ex-
press multiple uncertainties for using in long-term planning and
capacity expansion. ILP is an approach for considering uncer-
tainties as interval within the constraints or objective function.
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Therefore it has less complexity and computational load but
because of the lack of time dependencies consideration, its con-
formity with actual results and data is less than other methods.

Stochastic methods use probability distributions. The two-
stage stochastic method uses a two-step decision-making process
that in the first stage a decision is taken based on future events
with uncertainty and when it happened, a corrective action is
done. But this method requires a clear PDF of the input parame-
ters and sometimes PDF of these parameters are not available or
are not accurate or it is not possible to use them in large-scale
problems. To solve this problem authors in [64] have used a com-
bination of ILP, two-stage stochastic programming (TSP) and
fuzzy logic for optimal planning of a regional energy system that
enhances the functionality of the model to deal with uncertain-
ties. Also, TSP has some problems for reflecting the dynamics of
the energy system. Multi-stage stochastic programming (MSP) is
an extension of the TSP that is able to display the dynamic char-
acteristics. Uncertainties in the MSP are modeled through multi-
layer scenario trees that lead to flexibility in decision-making
processes and scenarios modeling, especially for the large-scale
problems. A combination of interval fuzzy linear programming
(IFLP) and MSP has been provided in [65] that uncertainties
have been considered by using fuzzy sets, probability distribu-
tions and interval values in the framework of an MILP problem.
The proposed model has been applied to a case study based
on energy and environmental management. The results help to
decision makers in the resources allocation, pollution reduction
planning and resulting in a trade-off between system cost and
environmental requirements under multiple uncertainties. So a
combination of fuzzy logic models and stochastic programming
have been used for considering the multiple uncertainties in
optimal scheduling of energy systems.

Energy storage systems are used to benefit from the excess
energy produced by RES at any time. Optimal operation of this
complex need for a control strategy to coordinate their perfor-
mance. Battery charge and discharge control program has been
modeled in [66] by using fuzzy logic. In this study, the system
has been considered as a set of elements that each element has
been assumed as an agent that can control their behavior ac-
cording to environmental conditions and changes. An optimal
operation model for a hybrid system based on fuzzy logic has
proposed in [67] which is the combination of PSO and fuzzy the-
ory. In order to control fluctuations and changes in the system,
a fractional order fuzzy PID controller has been used to con-
trol charging/discharging of battery and production of a diesel
generator. The proposed algorithm has high robustness against
changes in input parameters and increases system reliability. A
fuzzy expert system has been used in [68] to control the output
of storage system in the context of a GA-based optimization
algorithm and is an example of combining fuzzy theory and
GA. This model leads to lower system costs compared using the
charging/discharging the battery control based on a threshold.

With the growing penetration of RES in the energy system,
output fluctuations of these sources can cause problems such
as variations in system voltage and frequency. A method for
leveling the renewable energy output changes by using fuzzy
control has been presented in [69]. It also controls the power
output of PV according to system conditions and taking into
account the solar radiation in order to make maximum use of
sunlight. As a result, presented fuzzy control make a trade-
off between reducing fluctuations and maximizing the use of
radiation. A PID controller based on fuzzy logic has been used
in [70] to minimize the frequency and voltage deviations in a

hybrid system. PID controller alone cannot prove well act under
conditions of intermittent wind speed and even adding storage
system also doesn’t make the system robust against sudden
changes in wind speed. But adding a fuzzy controller to the
system leads to the successful performance of the system under
load and wind speed uncertainty conditions.

Using interval methods along with fuzzy methods have be-
come very popular that describe uncertainty variations in the
form of intervals with the upper and lower boundary values. In
the literature, several interval methods such as fixed intervals or
functional intervals are used to display uncertainty. An interval
fuzzy approach has been proposed in [71] to change the bound-
aries in accordance with the system dynamic and confidence
level. In this paper, a scenario-based energy management system
for a microgrid has been provided that scenarios are produced
using interval fuzzy model and taking into account the uncer-
tainty arising from demand and RES. Fuzzy linear programming
(FLP) is an effective method for quantification of ambiguity and
uncertainty of information on energy management system that
has been developed based on the combination of interval and
fuzzy sets but this method for large-scale systems become more
complex. Interval linear programming (ILP) makes it easier to
address the uncertainties but when the uncertainty level of pa-
rameters is high does not provide a reasonable solution. So the
combination of these two models is used to benefit from the
advantages of both of them. A combination of ILP and FLP has
been used in [72] to show the uncertainty in an energy system
management problem with the objective of minimizing energy
and environmental costs. A hybrid model of ILP and FLP has
been presented in [73] that by using Type 2 fuzzy sets increases
the amount of fuzziness that can be faced with a higher level of
uncertainty and improve the performance of IFLP hybrid model.
This method offers a realistic simulation of the energy flow in
the system that can be used in decisions related to the capac-
ity expansion and resource allocation. A combination of fuzzy
programming models and stochastic linear programming has
been presented in [74] that express uncertainties by using proba-
bilistic distribution and Type 2 fuzzy sets. This method without
unrealistic simplifications improves the system efficiency and
energy security.

In short, it can be said that fuzzy logic has wide applications
in modeling and scheduling of energy systems. One of the main
applications of fuzzy methods is the modeling and expressing
of the uncertainties and ambiguities of energy systems. The
use of fuzzy logic to deal with these uncertainties leads to
model realization and obtaining more accurate results and
also facilitates optimization and decision-making processes.
Fuzzy logic controllers are widely used in controlling the power
flow of energy systems. As well as hybrid models, including
the combination of fuzzy methods, heuristic techniques or
multi-criteria decision-making approaches have been used in
literature and their number is increasing. The combination of
fuzzy models with heuristic techniques despite the complexity
of such methods leads to simplicity in using (user-friendly)
and the accuracy of these methods. The combination of fuzzy
models and methods such as time series, neural networks,
and regression are used in prediction models to increase the
accuracy of the model. Despite the high potential for application
of fuzzy sets in energy hub, however, so far there has not been
any research on the use of fuzzy methods in optimal scheduling
of energy hub. Therefore, there is a great potential for the use of
fuzzy models in the management of energy hub.
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C. Information gap decision theory

When there are not sufficient data about the uncertain parame-
ters, PDF or MF cannot be used and methods like Information
gap decision theory (IGDT) can be useful. The purpose of this
procedure is to reveal the results of the difference between actual
and predicted values of uncertainty. In decision-making based
on IGDT, two cases occur; risk averse or risk seeker [75]. In
the first case (risk averse) the decision-maker is looking for a
robust decision against possible errors of uncertain parameters
prediction. This decision is created when the objective function
be protected against the maximum variations radius of uncer-
tainty. In other words, a forecast of the uncertain parameter is
performed and for an authorized range for the objective function,
the maximum permissible variation range of uncertain param-
eters is calculated. Risk seeker case tries to find the minimum
variations range of uncertain parameters. This means that for
a degree of freedom for the objective function, it find the mini-
mum variation range of uncertain parameters. In other words,
decision maker decides in the worst predicted case. Soroudi and
Keane [76] have provided a good example of the use of IGDT
in optimal management of energy hub. In this study, by taking
into account the wind power generation, electrical and thermal
loads as uncertain parameters, a prediction of these parame-
ters has been carried out and the maximum allowed variations
intervals for this parameter have been calculated in different sce-
narios. Finally, the necessary measures to achieve a risk-averse
management of energy hub have been provided. In [77], risk con-
strained scheduling of head and power producer is formulated
using IGDT considering risk-averse and risk-seeker options.

Other examples of the use of IGDT in energy systems [78],
energy markets [79,80], GenCos scheduling [81,82], power distri-
bution network dispatching [83,84], UC [85], self-scheduling [86]
and so on can be found in the literature and take into account
the proven effectiveness of this method there is a good potential
for application of this approach in the management of energy
hub.

D. Robust optimization

Robust Optimization (RO) are used when the statistical
information of input parameters is insufficient and there is
no possibility of extracting PDF of uncertain parameters. In
this method instead of PDF, the interval values are used for
displaying uncertainty and the problem is solved for the worst
case at any interval. Thus, this method is very conservative.
In the case of a parameter that is characterized by uncertainty,
robust optimization ensures the decision maker that even
if there are errors in the prediction of uncertain parameters,
the objective function value will remain optimized. A robust
optimization has been used in [87] to consider the uncertainty
arising from demand and cost (such as emissions tariffs) and the
price of electricity and gas in hybrid energy system planning
problem for a commercial building. The authors in [88,89] have
developed a model for optimal management of a micro-grid
based on robust optimization. In this paper, the uncertainty
arising from wind power generation and load are displayed as
prediction intervals and up and down boundary values have
been predicted by a Non-dominated Sorting Genetic Algorithm
(NSGA-II) - trained Neural Network (NN). Results of RO-based
optimal management have been compared with the results
of optimal management based on expected values in terms
of performance and reliability of the system in conditions of

happening different uncertain events. Results indicate better
performance for RO-based optimization. In order to secure the
operational model of an energy hub in the face of uncertainties
caused by the deviation of the equipment efficiencies from
their nominal values, a robust optimization method has been
used in [90]. Authors have shown that for securing the model
against uncertainties operating costs of the system will rise,
but instead, the possibility of complete demand supply grows.
As a result, a robust optimization is a conservative approach
which increases the robustness of the system against the uncer-
tain parameters, but the result is not always the optimal solution.

E. Interval analysis

Interval method usually is used when we have variations on
the interval of uncertain input parameters. In this method, the
upper and lower boundary values for output parameters can
be obtained by defining upper and lower boundary values
for uncertain input parameters. Interval numbers have been
used in [91] for considering the uncertainty of the wind power
in an operational optimization problem of an interconnected
electricity-gas energy system taking into account DR programs.
In this study, the power flow problem in the interconnected
system has been solved with the objective of minimizing the
operating costs. As previously mentioned, ILP is a way to
handle uncertainties that are displayed as intervals and without
a known statistical distribution or membership functions. In
this way, uncertain parameters are displayed by crisp intervals
with fixed lower and upper bounds. In the real world, uncertain
parameters are changing and these changes are affected by the
various parameters and so presenting this changes with fixed
intervals does not show the impact of these changes on system
performance. An effective way for considering such changes is
the functional intervals. In this way, lower and upper bounds
are shown as a function of effective parameters and therefore the
interval boundaries of uncertainty parameters are variable. An
application of the functional intervals method in urban energy
system planning, with different primary energy sources, has
been provided in [92] to determine appropriate energy resource
alternatives. In this paper, the boundary of the electricity price
and purchased power have been considered as a function of
energy prices. In this model, the intervals have been assumed
to be a linear function of a parameter but in many real cases
these functions may be non-linear relationships or intervals may
be a function of several effective parameters. Therefore, this
model can be used for taking into account such uncertainties
in energy hubs management. Interval methods, usually are
used in the form of hybrid models with other methods for the
consideration of uncertainty. In this case, multiple uncertainties
can be considered as statistical distributions, membership
function, interval values or a combination of them in energy
hubs modeling. Examples of the use of this hybrid modeling
method can be found in [71,73,74].

Interval optimization is easier to use in engineering systems.
Its computational load is less than the stochastic methods and
instead of finding the worst case (RO), recognizes the optimal
interval of the objective function. But in this method, there is
no possibility of taking into account the correlation between
uncertain parameters.
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F. Z-numbers

The concept of Z-numbers that is related to the reliability of
information was introduced by Zadeh in 2011 [93]. As discussed
in the previous sections, different methods are used for the
uncertainty modeling. However, the Z-number offers a better
representation of the uncertainty of the real world. Z-number
is displayed as a binary pair Z = (A,B) that first component,
A, is a restriction on the value of an uncertain parameter, X,
and the second one, B, shows the reliability of A. In fact, Aisa
restriction on the amount that X can take and B is a prediction
of reliability of A and is considered as probability measure of
A. This concept represents reliability of input data that can be
used in many areas such as decision making, forecasting, risk
assessment, economics, engineering, and so on. For example,
if we speak about oil prices in the near future. We say that
the price of oil in the next year is about $ 40. Expression of
this concept by Z-numbers is in the form of Z = (about $ 40,
most likely). So, many linguistic terms can be displayed using
Z-numbers theory. The Z-number is trying to consider the
input information uncertainty and formulation the remarkable
ability of the human mind in decision making in the ambiguous
and uncertain environment. Therefore, it can be said that
the evolution of the uncertainty models is in the form of real
numbers, intervals, fuzzy numbers, random numbers, and
now is Z-numbers. In fact, can be said that most concepts and
numbers in the real world are in the form of the Z-numbers
and all of the methods that were used for the realization of the
models have been a simplification of Z-numbers concept [93].

One of the main problems associated with Z-numbers is
information processing and solving the problems related to
them. So many different works have been presented in the
literature to simplify the calculation and application of the
concept of Z-numbers. The incentive to use Z-numbers, simple
examples of its concept, calculations with simple operations
and concepts such as Z-numbers ranking have been presented
by Zadeh in [93]. The authors in [94] have provided a method
for converting the Z-numbers into fuzzy numbers. In this
way, the second component of Z-number has been defuzzified
to a real value and by multiplying the numeric value by the
first component, a fuzzy number is obtained and considered
as the representative of Z-number. By using this method,
it becomes easier to use Z-numbers in calculations, but the
original information of Z-number are lost. The same authors,
based on their approach have developed a framework of
multiple criteria decision-making in uncertain environments
in [95], where the weight of each criterion has been described
by using a linguistic term and considered as Z-numbers. Then
Z-numbers have been converted to the crisp numbers and
evaluation of the alternatives has been done based on this
numbers. The authors in [96] have provided a model of analytic
hierarchy process (AHP) based on Z-numbers to deal with
problems related to decision-making based on linguistic terms.
In this study, the weights of criteria have been described as
Z-numbers and the proposed method in [94] has been used for
converting Z-numbers and then comparing process has been
done in the field of real numbers. A model of decision-making
in an uncertain environment based on information described
by Z-numbers has been provided in [97] and after converting
the Z-numbers to fuzzy numbers, the decision has been carried
to choose alternatives using a fuzzy measure and within
the fuzzy framework. A method for decision making under
interval set-valued fuzzy and Z-numbers uncertainties has

been presented in [98]. Yager [99, 100] has offered a new
methodology and application of Z-number in different fields
by using sample distributions and certain assumptions. Also
in [101], the issues of continuous Z-numbers calculation and
examples of their use in various fields has been discussed.
Applications of Z-numbers in calculating with words (CWW)
and the issues and problems related to their integration have
been offered in [102,103]. Different ways for evaluation of a
Z-number with a reduction in the computational complexity
has been presented in [104]. Authors in [105] have provided
a method for direct calculating of the discrete Z-numbers to
avoid simplifications and data loss of Z-numbers. A model
for the integration of LP methods and Z-numbers in the form
of a Z-numbers based LP (ZLP) problem has been presented
in [106]. In this paper, the reliability of input data in the LP
model has been considered as Z-numbers. The authors in [107]
have used the Z-numbers for evaluating the effect of system
resilience on risk and hazard parameters in a petrochemical unit.

As can be seen, different studies have been carried out
on the Z-number concept and efforts for developing the
concept and facilitating the calculation of Z-number is ongoing.
Z-number is a comprehensive concept for taking into account
the uncertainties of the real world and the reliability of input
data that improves the accuracy and the ability of the model
for decision making in the uncertain environment. Since the
energy hub directly faced with the uncertainties of the input
data, the use of Z-numbers for more realistic energy hub models
is inevitable and by developing and improving the arithmetic of
Z-numbers its applications in energy hub models can contribute
significantly to realize these models.

4. GENERAL COMMENTS AND SUGGESTIONS FOR RE-
SEARCHERS

As described, several methods have been presented for
modeling uncertainties in the literature and these methods have
been used in various fields. An overview of various methods
for modeling uncertainty in energy systems, the advantages
and disadvantages of them, and their application in different
energy systems were provided to prove the performance of the
different methods in dealing with different uncertainties. Table
3 summarizes the use of these methods in the energy hub. As
can be seen, despite the necessity of uncertainty modeling in
optimal management of energy hubs, so far very little studies
have been done in this area. It represents a weakness in energy
hub models in the literature, because of deterministic modeling
of the energy hub management problem. At the same time
represents a high potential for research in the field of uncertainty
modeling in MES in the content of energy hub.

Therefore some of the main uncertainties in energy systems
that most commonly mentioned in models and their modeling
approaches using a variety of methods are proposed in Table
4. As can be seen, the scenario-based method has many appli-
cations in the modeling of uncertainties and even in dealing
with multiple uncertainties. The reason is easy applicability of
this method and low computational load (with the exception of
cases where the number of scenarios is very large) compared
to other models. Fuzzy methods have more application in the
wind and solar power generation uncertainties modeling. As
well as it is a useful method for use in combination with other
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Table 3. Summaries of uncertainty modeling applications in
energy hub

Uncertainty modeling methods References
Probabilistic,approaches Monte Carlo simulation (MCS) [53,54,56]
- Point estimation method [108]

- Scenario-based decision making  [36,58-61]
Fuzzy approaches - -
Information gap decision theory - [76]

- [90]
Interval analysis - -
Z-numbers - -
Hybrid approaches - -

Table 4. Summary of most popular uncertainty modeling ap-
proaches dealing with most common uncertainty types in
multi-energy systems

Probabilistic
YPSNMCS PEM Scenario
[57,59-61,109-111]  [71,109,112]  [76,85] [8,89] 1]
1 169,71,109,112] - [113]

611 71 el [87-89,113)

153 - [59-61,110] - - 1871 1921
[114]

Fuzzy IGDT RO Interval Hybrid

55 - [41,52,60,61] [63-65,72,73,115,116]

methods in hybrid models to consider multiple uncertainties.
However, fuzzy methods so far have not been applied in the
energy hub models. As shown by increasing the number of
uncertain parameters, the complexity of the problem increases
and the need to use hybrid methods in dealing with multiple
uncertainties rises. Obviously, all this kind of uncertainties listed
in Table 4 can also appear in the energy hub modeling. Table 4
helps to select the appropriate method for modeling various un-
certainty and illuminates the route for enthusiast researcher for
modeling energy hub under different and multiple uncertainties.

5. CONCLUSION

In this paper, the importance of addressing the uncertainties in
the optimal scheduling of energy hub have been discussed. It
is obvious that energy hub, as a concept for integrated manage-
ment of MES is influenced by several factors that many of these
factors are main sources of uncertainties. For example, the grow-
ing interest in RES and the increased share of these resources in
energy systems due to the fluctuating and uncertain nature of
these resources add uncertainties to energy hub models. On the
other hand, energy hub has various consumption areas and be-
havior of consumers in each of these areas is uncertain and leads
to uncertainty in the prediction of actual demand of energy hub.
On the other side, energy hub for supplying energy demand
and selling their excess energy, interact with energy markets
such as electricity and gas markets. Due to the structure of these
markets, (particularly in competitive and deregulated markets)
pricing of energy and the behavior of other market participants
are the main sources of uncertainty and so modeling of energy
hub can be affected by uncertainties arising from the interaction
with these markets. On the other hand, as the energy hubs do
not have a limit on the size and can range from a residential
building to even an entire city energy system, and so widely
associated with environmental and climate issues. Therefore
forecasts taken from the environment is also a major source of

uncertainty in the energy hub models. Simplifications and ap-
proximations in the modeling of energy hub can also lead to
unrealistic models and results. These cases are just a few exam-
ples of the energy hub interaction with uncertain parameters.
Despite the necessity of taking into account the uncertainties
in the modeling and optimization of energy hub, most models
proposed for energy hubs in the literature have been scheduled
in a deterministic environment. This leads to a reduction in
the accuracy of these models and unrealistic results as well as
ignoring risks arising from variations in uncertain parameters in
optimal decision making. Therefore, future energy hub models
need to the realistic modeling of multi-energy systems to be
able to achieve a realistic and comprehensive model of future
sustainable energy systems.
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