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In this paper, an adaptive multi-agent based online-tuned PID controller using Neuro-Fuzzy (NF) is pro-
posed for dynamic management of Distributed Generations (DGs) in an autonomous microgrid. Increas-
ing system stability and decreasing generation costs are the main aims of the proposed management strat-
egy. Instead of one centralized management system, the management and control function is allocated to
several autonomous units which are known as agents. The proposed management system is composed
of fixed and variable units. The fixed variables are the three parameters (Kp, Ki and Kd) of the conven-
tional PID controller which are adjusted based on load variation pattern in offline mode. The parameters
(∆Kp, ∆Ki) of variable unit is generated by neuro-fuzzy system. The load pattern is applied to system in of-
fline mode and agent’s optimizing units optimize the system performance. Distributed multi-agent model
is considered for tuning the neuro-fuzzy parameters, whereas agents establish with neighboring agents.
In autonomous mode of the microgrid, the variable units, after tuning, control the system frequency and
manage energy generation of DGs, beside fixed units, in an online manner. In the study system, various
kinds of DGs including wind turbine, photovoltaic, synchronous generator, and fuel cell are considered.
Linear transfer function models are obtained for each DG unit. In order to achieve a better performance
of the proposed management strategy the modified Particle Swarm Optimization (MPSO) algorithm is
applied for tuning of the NF based PID (NF-PID) controller parameters. Simulation results in various
conditions of microgrid confirm the good performance of the proposed multi-agent management strategy
in comparison to the other existing methods. © 2017 Journal of Energy Management and Technology
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1. INTRODUCTION

Due to global warming, environmental carbon emissions and
increasing prices of fossil fuels, Distributed Generations (DGs)
have become one of the main power generation units of inter-
est [1]. Generally, DGs include small-scale power generation
resource such as wind power, solar photovoltaic, landfill gas,
etc; those are located close to loads. The generated electric
power using DGs is a reliable, efficient, and environmentally
friendly alternative for conventional energy production from
fossil fuels. However, using DGs has arisen many challenges
in power systems [2]. Moreover, full benefits of DG units are
gained if they can operate in both grid-connected and islanded
(autonomous) modes. Hence, microgrid concept was suggested
to overcome problems associated with individual installation
and autonomous operation of DGs [3].

A microgrid is a part of a power system which includes mul-

tiple DG units, storage devices and loads that can operate in
both grid-connected and islanded (autonomous) modes [4].A
technical challenge in enabling a microgrid to remain opera-
tional in both grid-connected and islanded modes is that the
DGs should be equipped with appropriate controllers accom-
modating both modes of operation and the transition process
between the two modes. In grid-connected mode, the grid dom-
inantly dictates frequency and voltage at the point of common
coupling (PCC) of the microgrid, and the DGs control their ex-
changed real and reactive power components with conventional
methods [5]. However, the main problem in microgrid with
a various types of DGs is its stable operation in autonomous
condition [6]. Although the energy storage in the microgrid can
improve system performance in autonomous operation [7], it
is necessary that a suitable management and control strategy
is designed for microgrid in order to maintain the voltage and
frequency of system within prescribed range [8].
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Table 1. Advantage and drawbacks of droop methods control
[17]

Droop

Methods

Advantages

Avoiding of communications

High flexibility

High reliability

Different power ratings

Free laying

Drawbacks

Poor harmonic sharing

Influence of system impedance

Slow dynamic response

Integration of renewable energies

Coupling inductances

Various autonomous control strategies have been so far pro-
posed in literature that can be generally categorized into three
major groups, droop, centralized, and distributed control strate-
gies [9].The control strategy for multiple DG units in an islanded
microgrid, based on frequency/power and voltage/reactive
power droop characteristics of each DG unit, has been reported
in [10, 11]. This method is similar to control of synchronous gen-
erator in power systems. The main advantages and drawbacks
of the droop methods are presented in Table 1. Moreover, to re-
solve the drawbacks associated with these methods, additional
solutions including dynamic slopes [12], additional loop for the
bandwidth [13], virtual impedance [14], harmonic droop coeffi-
cients [15], additional loop with grid impedance estimation [13],
and nonlinear droop control [16]have been proposed. However,
these methods do not directly incorporate load dynamics in the
control loop. Thus, large and/or fast load changes can result
in either a poor dynamic response or even voltage/frequency
instability [17].

In centralized control methods, all data of DGs and loads
are sent to a centralized processor. The centralized processor
analyzes all received data based on network constraints and
objectives. Then, the optimal results and decision are sent to
loads and DGs [18]. These methods have drawbacks including
high communication costs, large data transfer, low degree of
freedom, needed reprogramming in microgrid development,
and complex problem solving [19].

Microgrid control using distributed control strategy was first
proposed in [20]. Afterwards, several methods were proposed
in this filed [21].In these methods, each agent is controlled by a
local controller by receiving only local signals. Therefore, loads
and DGs have the greatest degree of freedom in distributed con-
trol techniques. In addition, in the smart grids, the agents can
communicate with each other. Independence in agents’ opera-
tions, the impact of each agent in the environment, low cost of
communication, low size of computing, and easy development
are among the main advantages of distributed control meth-
ods [22–24]. Thus, it can be said that these methods are more
appropriate for microgrid management with small capacity gen-
erators [25]. Nevertheless, distributed control methods have a
number of drawbacks namely high probability of instability and
non-optimal response to system dynamics [17].

In this paper, to overcome drawbacks of the above controllers,
an optimal Neuro-Fuzzy PID (NF-PID) controller for manage-

ment system based on distributed multi-agent strategy is pro-
posed to dynamically manage microgrids with various types
of DGs. The proposed management system controller is com-
posed of fixed unit with Kp, Ki and Kd parameters and variable
unit consist of ∆Kp and ∆Ki. The fixed unit parameters are
adjusted based on load variation pattern in offline mode. But,
the variable unit parameters are generated as the online man-
ner by neuro-fuzzy system. In order to apply the proposed
manager strategy, the microgrid components including; wind
turbine, photovoltaic, fuel cell, and synchronous generator have
been modeled as a transfer function. The rotational speed of
the wind turbine and consequently its power output are mod-
eled and controlled via manipulation of blades’ pitch angle (at a
constant generator torque).In order to optimal tune of the NF-
PID controller parameters in each DG, the modified particles
optimization algorithm is considered. The parameters of con-
trollers are tuned based on switching of large loads in an offline
approach. In the optimization process, each agent communi-
cates with neighboring agents, and optimizes its own controller
parameters for reduction of its frequency fluctuations and the
neighbors’ frequency in the presence of load variations. Various,
conditions including large switching of loads, the outage of line
with connected loads, outage of a DG, and different wind speed
conditions are considered in order to investigate the efficiencies
of our proposed controller.

In summary, the main contributions of this paper are as bel-
low:

• Designing online neuro fuzzy multi-agent based manage-
ment strategy for various DGs in autonomous operation of mi-
crogrid which is ensures network stability and minimizes gener-
ation costs.

• Modeling the wind turbine, fuel cell, and PV system as first,
second, or third-order transfer function;

• Considering generation cost of DGs and stability parame-
ters of microgrid as a cost function for islanded management;

• Selecting appropriate optimization algorithms by analyzing
various algorithms.

The proposed dynamic multi-agent-based management strat-
egy is applied to a test microgrid system composed of wind, PV,
fuel cell, synchronous generator, and loads. For all generators,
linear mathematical models are used to analyze the dynamic
behavior of the studied microgrid. Simulation results illustrate
the efficiencies of our proposed management strategy in terms
of improving stability and profit of the microgrid components.

2. TEST SYSTEM

A single-line diagram of the studied microgrid system in this
paper is shown in Fig. 1. All details are available in [26]. This
test system consists of radial distribution system which is con-
nected to the utility grid through a 24.9 kV line. The 2.5MVA
substation transformer is configured in delta configuration at
the high voltage side and grounded Y at the low voltage side.
The microgrid contains seven DG units including; wind turbine,
fuel cell, photovoltaic and synchronous generators. DG1 is a
photovoltaic system which is connected to bus number 848. An
asynchronous 300 kW wind turbine is located on bus 822. DG3
is a fuel cell system and all of other DGs are synchronous gen-
erators with excitation and governor control system. Fuel cell
and photovoltaic systems are voltage source converter based DG
system controlled by active/reactive control strategy system.

Electrical parameters of distributed generation and transform-
ers are given in appendix A. All microgrid lines are modeled
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Fig. 1. Case study microgrid system

with a series resistance and impedance model. According to
34-bus IEEE load data which is given in [26], load flow results
in the absence of the DGs are given in Fig. 2. As can be seen,
the phase angle of buses’ voltages are negligible. In dynamic
modeling of the system, which is described in the next section,
phases of buses’ voltages are considered to be zero.

Fig. 2. load flow results of case study 34 buses power system
a) voltage magnitude [19] b) phase angels of busses voltage
(degree)

3. DYNAMIC MODELING

In this section dynamic models for the wind turbine PV are
introduced. The model is used to perform simulations in MAT-
LAB/SIMULINK. The synchronous generator model, which is
given in [27] is used in the study system.

A. Wind Turbine model
The obtained power from wind turbine can be expressed as
follows [28]:

Pa =
1
2

ρπR2Cp (λ, β)V3 (1)

where, Pa is the obtained mechanical power for turbine blades, ρ
the air density, V the speed, 4 rotational radius, the pitch angle
of turbine blades, Cp (λ, β) Wind turbine power coefficient and
λ tip speed ratio in terms of the turbine rotational speed. Using
equation (1), torque of wind turbine is determined as:

Ta =
Pa

ωr
=

1
2λ

ρπR3Cp (λ, β)V2 (2)

By applying the torque of Ta, wind turbine will rotate by
speed of ωr. Moreover, if Tg and Te are generator torque applied
from the gearbox and load torque, the generator shaft will rotate
with ωg [29]. Generally, the turbine and generator dynamics can
be expressed by equation (3)-(5).

Ta − Tm = Jr θ̈r + Cr θ̇r + Krθr (3)

TP − Te = Jg θ̈g + Cg θ̇g + Kgθg (4)

TP θ̇g = Tm θ̇r (5)

where, J, C and K are inertia moment, damping factor and tor-
sion stiffness factor of the shaft, respectively. Subscripts r and g
show rotor and stator parameters and γ factor is determined as
follows:

γ =
ωg

ωr
(6)

Substituting this equation into (4) and (5), characteristic equa-
tion Ta − θr can be obtained as:

Ta − Tg = Jt θ̈r + Ct θ̇r + Ktθr (7)

In this paper, Tg is considered to be constant and equal to T̄g.
Therefore, by considering u = Ta − T̄g, the equation (7) can be
rewritten as follows [30]:

u = Jt θ̈r + Ct θ̇r + Ktθr (8)

Finally, the transfer function of wind turbine system is ex-
pressed as:

GWT (s) =
PWT (s)

U (s)
=

T̄gs
Jts2 + Cts + Kt

(9)

Because Tg is considered to be constant and PWT = T̄gωr, the
output power can be controlled by controlling ωr. The proposed
model for a wind turbine is shown in Fig. 3.

Fig. 3. load flow results of case study 34 buses power system
a) voltage magnitude [19] b) phase angels of busses voltage
(degree)

B. Photovoltaic system model
The output power of a photovoltaic system is defined as [31]:

PPV = ηSΦ (1− 0.005 (Ta + 25)) (10)

where, S is area of panels, η is Energy conversion efficiency of
panels which is considered 12%, Φ is sun irradiation and Ta is
temperature in Celsius. Energy efficiency and area of panels
are constant and the output power of panels is dependent on
temperature and sun irradiation. In this paper air temperature is
considered 25◦C and the output power is controled by variation
of Φ which varies with the angle panel. In order to study the
frequency response, each solar cell and converter can be modeled
by the first order transfer function as follow:

PPVT
Φ

=
KPV

1 + sTPV

KIN
1 + sTIN

(11)

where, PPVT is the output power of a photovoltaic system, KPV
and TPV are the gain and time constant of PV, and KIN and TIN
are the gain and time constant of inverter, respectively. The
parameters of PV system are given in [25].
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C. fuel cell system model
Fuel cell consists of a cathode and an anode electrode with a
Proton-Conducting as an electrolyte among electrodes. Hydro-
gen gas (H2) and Oxygen (O2) applies to the end of the anode
and cathode plate, respectively. The fuel cell has nonlinear char-
acteristics, but a third-order model of the system is sufficient to
study the frequency response [32]. This model can be approxi-
mated as follows:

PFC
UA&C

=
1

1 + sTFC

KIN
1 + sTIN

1
1 + sTIC

(12)

where, PFC is the fuel cell output power, UA&C is the anode and
cathode plate pressure, TFC, TIC and TIN are the time constant
of fuel cell, interconnection device and inverter model. As it can
be seen, PFC can be controlled by variations of UA&C. The model
of PV system and fuel cell are shown in Fig 4.

Fig. 4. PV system and fuel cell model

4. THE PROPOSED METHOD

In this paper, an optimal fuzzy multi-agent control strategy us-
ing distributed control methods is designed for autonomous
operation of microgrids. Limited exchanged data, suitable tran-
sient response, low computational complexity, low implementa-
tion costs, and easy development of microgrid are some of the
advantages of our proposed strategy in comparison with those
of previous studies.

Fig. 5. Multi-agent system models a) Centralized model b)
Distributed model c) Decentralized model

A. control structures using multi agent system
In general, multi-agent control methods are employed in models
wherein the dynamics of each agent depends on agent’s own
state and set of its neighboring agents states [33]. According to
this statement, the multi-agent control models can be categorized

into centralized, distributed and decentralized control models
[33]. Hence, we consider a general multi-agent system model as
follows:

ẋi = f
(

xi,∪j∈Ni xj, ui

)
(13)

where, xi and ui are the state and inputs of agent i and Ni is
the neighbor set of agent i. In this paper, analysis is restricted
to static graphs. Based on used multi-agent control model, the
control signal may depend on the states of the agent itself and
its neighboring agent. Therefore, ui is defined for centralized,
distributed and decentralized as:

ui =


ui(∪j∈λxj)

ui(xi,∪j∈Ni xj)

ui(xi)

(14)

In our proposed method, a distributed multi-agent model is
used for controller selection and tuning of its parameters. This
model is applied offline to the study system. After designing
the controller, system operates in a decentralized manner. In the
next section, formulation of system as a multi-agent model is
described.

B. system modeling based on multi-agent structure
Electrical power systems can be considered as multi-agent sys-
tems as they often cover a large geographical area [34]. Each bus
is often considered as an agent, although the dynamics of each
bus is very complex, it may be well approximated by the swing
equation as follow:

Mi δ̈i + Di δ̇i = − ∑
j∈Ni

Pij + Pin − PLi (15)

where δi and δj are voltage angles of ith and jth buses, Mi and Di
are inertia and damping coefficients, PLi, Pin are the load power
and the generated power at bus i, and Pij is power exchange
between ith and jth buses, which is determined as:

Pij = |Vi| ∑
j∈Ni

∣∣∣Vj

∣∣∣ ∣∣∣Yij

∣∣∣ (cos(θL)− cos(θL + δi − δj)
)

(16)

where, |Vi| and
∣∣∣Vj

∣∣∣ are ith and jth bus voltage amplitudes,

and θL is the line impedance angle which is defined as θ
ij
L =

tan−1
(

Xij

/
Rij

)
.

In the busses with no DG, the value of Pin is considered zero.
Moreover, these busses are modeled as a frequency model and
the value of Mi is also set to zero.

C. The proposed multi-agent system design
In the proposed controller scheme, each DG is considered as an
agent, which is composed of two sections namely PID and neuro
fuzzy based ∆PI. The PID unit parameters are determined opti-
mally in a offline manner. The variable unit parameters, which
are proposed to improve dynamic performance of system, are
tuned using neuro-fuzzy system an online manner. The pro-
posed multi-agent model has a decentralized scheme which is
illustrated in Fig 5c. The PID and neuro-fuzzy system parame-
ters are optimized by the optimizers unit in an offline distributed
manner. The optimal values of parameters are delivered to the
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controller unit to control the system frequency optimally. The
considered objective function of power system is defined as:

FCt =
1
N

N

∑
i=1

FCi (17)

where, FCt and FCi are objective function values of the whole
system and ith agent, respectively. N is the number of agents.
Each agent calculates its own cost function, which is composed
of generation cost and dynamic cost, for load variation of all
busses (see Fig 6) as follows:

FCi =

tsim∫
0

t.

|∆ωi|+
K

∑
=1
6=j

∣∣∣∆ωj

∣∣∣
 .dt

︸ ︷︷ ︸
DynamicCost

+ ci |ui|︸ ︷︷ ︸
GenerationCost

(18)

where, |∆ωi| is frequency variation of ith agent, K the number
of neighbors of ith agent, time, simulation time, ui the gener-
ated power, and ci the cost of generated power of ith agent per
100Kw.Agent Transfer Vector (ATV), which is composed of all
agents’ cost function values and is transferred between agents
during the optimization of system parameters, is defined as:

ATV =
[

FC1 FC2 FC3 · · · FCN

]
(19)

The expressed objective function is optimized under some
constraints. The production constraint of DGs in microgrid
is presented in (21). The minimum and maximum value of
designing parameters is given in (22).

Pt
Gi,min

≤ Pt
Gi
≤ Pt

Gi,max
(20)

Xmin
i ≤ Xi ≤ Xmax

i (21)

In our proposed method, an offline approach is used to opti-
mize parameters of agents’ controllers. In first step, the variable
unit of controllers is inactive. In order to tune the fixed unit
of the controller, the agent i, starting from i = 1 to N in the
sequence, receives the ATV from its neighbor and updates its
control parameters in each iteration during optimization. Then,
the system is simulated by applying load variation of Fig. 6
to calculate of the cost function (FCt). The obtained value of
the cost function is compared with its value before updating
controller parameters. If the obtained value of FCi is smaller,
it is substituted in ATV. This procedure is iterated for agents
i = 1 to N until the variation of the cost function decreases to
a predefined threshold. This procedure is shown in Fig 7. In
the next step, the same stages are applied to tune neuro-fuzzy
parameters of the variable unit controller.

The implementation steps of the proposed management algo-
rithm for designing the controller can be summarized as follows:

Step 1: Selecting the initial value for controller parameters of
each agent by their own optimizing unit.

Step 2: Simulating the system for load variation of Fig 6, to
calculate each agent’s cost function, and creating ATV for the
microgrid.

Step 3: Updating ith agent controller parameters based on the
optimization algorithm and applying them to the system.

Step 4: Calculating FCi and FCt by ith agent, updating ATV
and ith agent controller parameters, and sending ATV to the
neighboring agent.

Fig. 6. Microgrid load variation in order to determine optimal
controller parameters

Fig. 7. Agent communication method and series controller
design structure

Step 5: Repeating steps 3 and 4 for each microgrid agent.
Step 6: Repeating steps 3 to 5 until finishing the iterations of

the optimization algorithm.
Step 7: Selecting optimal parameters for fixed unit of con-

trollers and applying them to the system.
Step 8: Repeating all the steps for tuning neuro-fuzzy param-

eters of the variable unit of the controller.

D. Optimization method and controller model determining
The proposed structure for each agent is composed of two main
modules; optimizer and controller. Moreover, the controller
module is composed of fixed and variable units. The fixed unit
is a PID controller and variable unit is a neuro-fuzzy based PID
controller. Selecting the appropriate method for the optimiza-
tion and choosing the proper controller structure can affect the
performance of the proposed method and there are the system
operations. The optimizer unit of each agent performs the proce-
dure of Fig. 8 using various optimization algorithms including
MPSO, DE, and ACOR, and the cost function value is calculated
for each algorithm. The results of these methods in compari-
son with previous PID method are shown in Table 2. Based on
these results, the MPSO method of the proposed method has
the minimum value of the cost function. In all of the algorithms,
the proposed method objective function amount is less than
the previous methods. Various membership functions includ-
ing triangular, trapezoidal, generalized bell, Gaussian, and two
Gaussian functions are applied for the Neuro-fuzzy system. The
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Table 2. The cost function value for PID and fuzzy controller
for the mentioned load variation

Fixed Unit Results Fixed & Variable units results

Algorithm FCt Algorithm FCt

MPSO 401.5728 MPSO 224.359

DE 421.4464 DE 241.12

ACOR 439.3451 ACOR 247.271

Gaussian function is selected for Neuro-fuzzy controller based
on cost function value for each membership function. The re-
sults related to optimization and controller response are shown
in Table 2.

Fig. 8. Two difference model to control of microgrid agents

The selected membership function is shown in Fig . 9. The
parameters of membership function are given in Tables 3, and
the optimized PID values for fixed unit are given in Table 4.

Fig. 9. The selected Gaussian membership function

5. SIMULATION RESULTS AND ANALYSIS

Several scenarios are considered to investigate the performance
of the proposed control strategy in autonomous operation of
the microgrid. In the islanded mode of the microgrid, several
complex problems such as frequency deviation, load, and gener-
ation matching are available. To test the proposed strategy in the
autonomous mode, several conditions, including load switching,
variation of DG generation, and outage of DG are considered for
simulations.

Table 3. The optimal membership function value of variable
unitusing MPSO

a b c d e f

DG1 -2.32 0 1.47 5.83 2.34 5.29

DG2 -.19 0 .21 .15 .25 .28

DG3 -.01 0 .39 2.4 5.16 6.79

DG4 -.4 0 .01 4.78 3.79 5.22

DG5 -.01 0 .01 6.7 4.6 4.15

DG6 -.01 0 .4 6.07 1.21 3.25

DG7 -.01 0 .27 3.46 4.89 4.64

Table 4. The optimal fixed unit parameters value using MPSO
algorithm

Kp Ki Kd

DG1 14.6970 14.953 0.01160

DG2 10.5205 12.8687 0.00872

DG3 11.2177 19.0046 0.00423

DG4 12.2151 17.2423 0.00646

DG5 15.7482 21.0354 0.00853

DG6 17.8534 14.9397 0.01043

DG7 9.3479 11.5469 0.00574

A. Load increment in autonomous operation

In this scenario, the test system operates in islanded mode as
shown in Fig 1, where all of active and reactive powers con-
sumed by loads are supplied by the DG units (generation and
consumption are equal). At t = 6s, an additional 1pu load is
connected to bus 824. Frequency response of DGs and their
variations in their generated power are shown in Fig 10. From
Fig. 10a and Fig. 10 b, it can be seen the maximum frequency
deviation and increase in generation are related to bus 826 which
is nearest to bus 824. The same load switching condition is ap-
plied to bus 852 and bus 836 and the results of these conditions
are depicted in Figs 11 and 12, respectively. All variations in
frequency and generations are damped after 2 s, and power
shortage is compensated by DGs. In Figs10-12, the performance
of the proposed multi-agent management strategy is shown by
applying a large disturbance in several busses of the microgrid.
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Fig. 10. simulation result related to load variation in bus 826 a)
frequency response b) variations of DGs generations

Fig. 11. simulation result related to load variation in bus 852 a)
frequency response b) variations of DGs generations

Fig. 12. simulation result related to load variation in bus 836 a)
frequency response b) variations of DGs generations

B. Load decrement

In this scenario, the aim is to evaluate the performance of the
proposed control strategy under the load decrement in an au-
tonomous operation mode of the microgrid. We assume that the
microgrid operates in a disconnected mode under a balanced
condition (generation and consumptions are equal) and DGs
feed the entire system load. At t = 6s the line between bus 834
and bus 860 is tripped and all loads at busses 860, 836, 862, 838,
and 840 are disconnected. The total disconnected loads from
the microgrid by outage of this line are 0.164 pu. Therefore, this
condition is one of the worst cases that can occur in the discon-
nected mode. The response of the proposed controller is shown
in Fig. 13. The frequency response in Fig. 13a shows that the bus
844 and bus 832 which are nearest to the event have maximum
variation, and the main reduction in power is related to these
DGs (see Fig 13.b). In all the tests, system frequency remains at
the allowable value and transient response is damped after 3 s.

C. Load variation in low wind speed condition

Although the output power of a wind turbine can be controlled
by pitch angle, wind speed determines the maximum output
power of the wind turbine. In this scenario, the maximum out-
put power of wind turbine is limited to 1pu by considering a
low wind speed. In this condition, the load variation (increase

Fig. 13. simulation result related to outage of line between
busses 834 and 860, a) frequency response b) variations of DGs
generations

of load) of 1pu is applied to bus 824 which is close to the wind
turbine. In addition, the output power of DG4 and DG5 are
initially set close to nominal power which creates a critical con-
dition in the disconnected mode. Fig 14 shows the frequency
deviation and the generation of DGs related to this event. Bus
826 and bus 822 have maximum variation of frequency. Due
to operation of DG4 and DG5 in nominal power, the rest of the
power is compensated by other DGs. The output power of the
wind turbine is limited to 0.1pu.

In the same condition, the 0.1pu load is switched on in bus
846 and the simulation results are depicted in Fig 15. It can be
seen that the frequency variation in this case is less than the
previous case, because this bus is close to DG1, DG2, and DG3.
These simulation results show the robustness of the proposed
controller against load variations even in critical conditions.

Fig. 14. simulation result related to load variation in bus 824 in
low speed wind condition, a) frequency response b) variations
of DGs generations

Fig. 15. simulation result related to load variation in bus 846 in
low speed wind condition, a) frequency response b) variations
of DGs generations
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D. Outage of wind turbine DG
In the previous set of studies, the performance of the proposed
control strategy in the absence of wind turbine generation has
been analyzed in an islanding mode. The microgrid system ini-
tially operates in matching condition wherein the generations
and consumptions are equal. In this scenario, wind genera-
tion which is one of the main power generators of microgrid,
is adjusted to zero. At t = 6s, a 0.1pu load is connected to bus
814 which is close to the wind turbine. Since the production of
wind turbine is zero, a high frequency variation (or instability
condition) is expected at load switching time. The frequency
variations and generations of DGs are shown in Fig 16. Ac-
cording to Fig 16.a, the bus 822 and bus 826, which are nearest
to the connected load, have maximum variations in frequency.
In comparison to other scenarios, this scenario has the worst
variation that is related to the nearest generations of busses 826
and 832 in the nominal capacity before load switching. All the
shortage in power is supplied by far generators DG1, DG2, and
DG3. The simulation results show that in the worst condition,
the proposed controller has maintained the system stability and
frequency has remained within allowable ranges.

Fig. 16. simulation result related to load variation in bus 814
in outage of wind turbine condition, a) frequency response b)
variations of DGs generations

6. CONCLUSION

One of the main challenges of microgrids is the control and man-
agement of distributed generations in autonomous operation.
In the grid connected mode, voltage and frequency are dictated
by the main grid; but in the islanded mode, the voltage and
frequency should be controlled by DGs. This paper first ana-
lyzed the drawbacks of droop and central management methods.
Then, the advantages of distributed multi-agent-based methods,
if designed optimally, were mentioned. In order to design the
performance manager for various types of DGs, a neuro-fuzzy
based PID controller was proposed for microgrid generations.
The proposed scheme is composed of fixed and variable param-
eters. In order to determine the fixed unit parameters, the load
variation condition was considered and, accordingly, controller
parameters were tuned in an offline manner. Also, for tuning
a decentralized model was applied where each agent commu-
nicated with neighboring agents. In addition, to improve the
dynamic response of system optimal neuro-fuzzy parameters
are tuned as the same scheme to generate ∆Kp and ∆Ki. In order
to show the performance of the proposed controller, various
tests, including load variation, outage of line, outage of DG, and
other switching conditions were applied to the system. In all

simulation results, the frequencies of all busses remained within
the allowable range. In addition, the generation of DGs in all
test conditions was changed optimally.
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