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This study initiates a framework to indicate the optimal inputs into complex, high-energy intensity sys-
tems. It has a lower computational load, higher reliability, and better accuracy. The lower load comes
from the developed linearization algorithm of a system. There is the ability to match every output to in-
put to reach reliability, and a sophisticated algorithm guarantees accuracy. An Electric Arc Furnace model
is chosen to validate the framework because of its nonlinear functions, complexity, and significant energy
intensity. The procedure is applied to an EAF model. Liquid mass, liquid temperature, and liquid grade
must reach the desired ranges. This step is to be accomplished at the lowest cost in a determined time.
The technique linearizes the nonlinear model around an operating point in the first step and reduces the
system’s order. A suitable pairing is based on minimum interaction and passing some necessary decen-
tralized integral controllable requirements in the second step. The third step is based on discretizing the
operating point’s linearized system. The algorithm is repeated around new operating points. A compari-
son between the nonlinear system and reduced linear ones with the same feeds is made in any iteration.
If the results are compatible, the next optimum feeds are estimated. Otherwise, the sample time decreases,
and the loop is reiterated for the previous point. The method is carried out on a well-known EAF model
with 14 state variables and seven input variables. The outcomes also are adaptable with the nonlinear
model. They also suggest compound simulation models can be transformed into simpler ones with little
effect on implementing control structure results. © 2022 Journal of Energy Management and Technology
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NOMENCLATURE

i, j, k Index of cluster.
m Feature index for elements of xi.
NCluster Total number of clusters.
Ndataset Number of members of the dataset.
N f Number of features.
c Cluster’s centroid.
cc1, cc2 Centroids of first and second clusters, respectively.
ni, nj, nk Number of members of the clusters i, j and k, re-

spectively.
ra A positive constant which defines the neighborhood

of a data point.
rb A positive constant to separate the cluster centers.
a,b,λ Coefficients.

Pi Probability of the occurrence of the cluster i.
Meandataset The mean of the dataset.
Dbase Dispersion of base dataset.
S f actor Similarity factor.
Dxi Density of each data point.
Dc1 Density of the first cluster’s centroid.
xi Each observation in dataset.
xi(m) The mth feature of the observation xi.
dik, djk, dij The pairwise distances between the clusters i and

k, j and k, and i and j, respectively.

1. INTRODUCTION

Steel is being produced in more than 65 countries [1], and this
alloy contributes to 2.5 percent of world trade. Four reasons
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can underline the importance of optimizing the steel industry’s
consumption and energy, as follows.
1. The iron and steel-making factories are ranked second to the
energy-intensive industries [2]. In 2007, a fifth of the industry
sector’s total energy use was in the steel industry [3].
2. The energy factor’s role in the final steel cost is estimated
to be nearly 30 % in an integrated system [4]. Various steel
manufacturing methods and variations in different countries’
production factors cause this role to be 20-40 % of the overall
cost [5].
3. Increasing demand: the steel demand is predicted to rise by
2.5 % annually until 2030 [1].
4. The discrepancy between energy intensity and theoretical
ideal energy consumption [6]: despite a 60 % reduction in this
industry’s energy intensity during the last six decades [7], there
is a noticeable discrepancy between the actual routine practice
and the minimum practical practice [6].
The majority of steel is produced through two routes: blast -
basic oxygen furnace and oxygen hearth furnace [7, 8]. The
other methods’ share, such as oxygen hearth or plasma arc
furnace, is insignificant.
Global statistics show that steel making’s percentage using
an Electric Arc Furnace (EAF) has climbed. The percentage
increased from 16.9 %, equivalent to 100.439 million tones,
in 1975 [9] to 28.2 %, equivalent to 465.018 million tones, in
2013 [8, 10]. The main reasons behind this global growth are a
decrease in annual investment cost for oxygen furnace [11], the
end of open furnace production [7, 8], and electric arc furnace
improvements [12]. Moreover, compared with the induction
furnace, the EAF is used more because of its low sensitivity to
iron sources’ quality, like scrap, hot charge, Direct Reduced
Iron (DRI), and cast iron. Choosing the production’s technique,
however, relies on available energy resources and materials,
demand, and the construction year of a factory [12].
Nemours studies focused on minimizing the utilization of
material-energy intensity in EAFs. The strategies proposed
by those studies can be classified into four categories: high-
efficiency equipment application, heat recovery, correcting
production management, and controlling the flow of material-
energy. The study concentrates on the last category.
An EAF is a reactor with complex phenomena, high interaction,
and batch processes. It is used to convert direct reduced iron
(DRI) and scrap into a wide range of steel grades. One cycle
of EAF includes six steps: furnace charging, melting, refining,
de-slagging, tapping, and furnace turn around [13].
Before tapping, the liquid steel needs to reach a specific
temperature, mass, and grade. Steelmaker’s profit is affected
by energy consumption and tap to tap time. Thus optimum
feeds have to cause minimum operation cost associated with
satisfying the constraints (mass, temperature, and grade). Many
methods have been developed and used to attain the optimum
feeds for EAF that can be divided into trial and error, optimal
control, and model predictive control. The model-based control,
the considered solution method for the optimization problem,
and available hardware play a major role in selecting one of the
abovementioned methods.

A. Trial and Error
An additional strategy for discovering the optimal inputs is
trial and error, which is spot finding. It examines points with a
higher probability of the objective function. Guo et al. [14], for
example, evaluated the slag height’s influences on minimizing

radiation losses.

B. Optimal Control
In this section, the optimization problem is defined to obtain the
optimal route with one run. This approach’s application is for
those problems with low computational load.
MacRosty and Swartz [15] defined the optimal material-energy
flow to EAF using mathematical optimization. The furnace
operating index was analyzed with profit function, including
operational costs and molten grade at the discharge period.
The identified model was bounded to the differential-algebraic
model of EAF, operation’s restrictions, and endpoints’ limita-
tions. Several practices were suggested to raise precision and
decrease solving time: changing a variable scale for a better
numerical condition, logarithmic conversion to prevent small
negative quantities that must be positive, and approximating
discrete parts with linear ones for diminishing computational
load. gPROMS/gOP commercial software was utilized, and
the EAF model of this study was a derivation of their previous
work [16].

C. Model Predictive Control
The optimal route is determined in pieces by the predictive
control approach, investigating systems with a higher computa-
tional load.
Bekker et al. [17] achieved the optimal furnace consumption in
a particular condition based on an operator’s experiences and
environmental restrictions. The condition was relative pressure
of -5 Pascal, output gas temperature of 500oC, and one percent
mass concentration of CO in the exhaust gas. Predictive control
was employed to reach target points. Although there was no
explanation of why the points were optimal, they were usually
considered the optimum.
Oosthuizen et al. [18], with Model Predictive Control (MPC),
found the best input path for operating an EAF. The opti-
mization problem comprised the quadratic objective function
restricted to a linear EAF model containing input costs and
control variables deviation from the optimum, route constraints,
and final points. Relative pressure, exhaust gas temperature,
slag height, CO percentage in the exhaust gas, dissolved
carbon percentage in melted, melted temperature, and mass
were control variables. Controlling the furnace variables were
the fan’s power, canal width and graphite, oxygen, and DRI
injection rates.
Saboohi et al. [19] brought up a six-step framework to find the
optimal inputs. These steps are: 1) Splitting the discrete process
into several continuous ones, 2) Dividing the system of multi
input- multi output into imaginary connected subsystems in
every operational stage, 3) Defining a multi-objective function
consisting of minimum losses and operational costs and
maximum useful power, 4) Classifying the losses into two
groups, controllable and uncontrollable, and eliminating the
uncontrollable part from the objective function, 5) Changing
point constraints to path ones owing to separating operational
steps and 6) Breaking down the optimization problem into
several problems. Useful energy cost and heating time declined
by nearly 11.3 % and eight percent, respectively. This strategy
adjusted the slag height and arc length during the heating
to increase the chemical energy’s share against the electrical
energy’s fraction.
This study focuses on carrying on Coetzee et al.[20] by
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Fig. 1. Control framework.

introducing a method to investigate the optimal inputs into
systems through linearizing higher interaction nonlinear models.
Operating points can change every moment despite similar
studies assessing linearized models around an operating point.
In the following section, a structure is first offered to obtain
optimum feeds for the nonlinear batch. This algorithm is then
implemented on an EAF model to find optimal economic feeds
in the refining state. In these circumstances, an EAF is not
charged by DRI and flux [20].

2. APPROACH

Fig. 1. shows the suggested control strategy for nonlinear batch
processes. The strategy is iterative. In the first step, which is
control structure configuration, appropriate inputs and outputs
must be determined, and the input and output number should
be equal. The system is linearized in the second step. The third
is about looking for a proper pairing. In the fourth one, the
continuous system is converted to a discrete system. Finally, the
optimum feeds are calculated based on the discrete system. The
loop will be iterated from the second step up to achieving goals.

A. Control Structure Design
The suggested control strategy is suitable for a linear system.
For a system with manipulated variables (M) and controlled
variables (N), three cases are presented:
1. N = M: the system is decentralized.
2. N < M: if some manipulated variables depend on others, the
dependent variables are substituted with independent variables.
After this, if the residual manipulated variables are more than
controlled ones, N manipulated variables must be chosen from
residual manipulated variables.
3. N > M: it is suggested to remove the N-M controlled variables
with lower priorities. Relative Gain Array (RGA) is one of the
fitting tools that can be used.

B. Linearization
A nonlinear system, presented by (1), can be linearized around
x0 and u0 with the help of (2).

ẋ = F(x, u) (1)

ẋ =


∂ f1
∂x1

... ∂ f1
∂xn

... ... ...
∂ fn
∂x1

... ∂ fn
∂xn


∣∣∣∣∣∣∣∣∣
x0,u0

∆x


∂ f1
∂u1

... ∂ f1
∂un

... ... ...
∂ fn
∂u1

... ∂ fn
∂un


∣∣∣∣∣∣∣∣∣
x0,u0

∆u + ẋ0 = A∆x + B∆u + ẋ0 (2)

(2) is derived from (3).

ẋ = A∆x + B∆u + ẋ0 (3)

C. Control Loop Configuration
An appropriate pairing will be introduced by using some rules.
A pairing is proper with minimum interaction and is resistive
against changing controller coefficient and fault in sensors or
actuators.
This section is divided into two subsections. The first part
arranges the parings from the lowest interaction to the highest
one, and the other intends to find decentralized integral
controllable parings if they exist. Some indexes, such as Column
Dominance Ratio, Perron Frobenius Eigenvalue, RGA, Effective
Relative Gain array (ERGA), are utilized to measure interactions.
Before applying these methods, the correct pre compensator
and post compensator are advised to be carried out.

C.1. Interaction

Scaling methods can be applied to reduce interaction. It is hard
to find a fixed operating point in the batch process; changing
the working point causes not to be implemented prevalent
pre-compensator and post compensator based on Perron
Frobenius and Edmund. Unit scaling is strongly recommended
so that all elements become near to each other.
Interaction evaluation of each pairing can be executed with a
summation of Column Dominance Ratio (CDR) of all loops
within a distance of ten times of bandwidth. CDR is calculated
by (4).

CDRi(s) =

m
∑

i=1,i 6=j

∣∣∣qij(s)
∣∣∣∣∣∣qij(s)

∣∣∣ (4)

where, qij(s) is ith row and jth column element of the transfer
function and CDRi(s) is the column dominance ratio of ith loop.

C.2. Eliminating Non-DIC Pairing

Screening nondesirable pairing takes place with necessary DIC
rules. DIC is a property of plant and chosen pairing [21]. It
should be considered there is a chance to find or miss a DIC
pairing since the model is not fitted to the study, Each model
simulates some processes with specific accuracy based on its
aim. Changing the method can alternate the suggested pairing.
Hence, after calculating the pairing, the experts’ and operators’
comments are received.
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If there is a controller 1
s C(s), a closed-loop plant is stable for all

E 1
s C(s), where E 1

s C(s) and E ∈ ε,=
{E = diag(εi) |εi ∈ [0, 1] , i = 1 to m } [22]. Determining
DIC pairing is difficult for large plants [23]. Non-DIC pairings
are proposed to be screened for these plants. Four popular rules
of screening are described as below:

• First Rule: Eliminating pairing with a negative state. RGA
is one of the level measurements of interaction [24] and is
calculated by (5).

Λ = G(s)⊗ (G−1(s))T (5)

where,⊗ is the Schur product, and G is the transfer function.
If computing RGA at steady state is the goal, s must be
zero. Pairing with a negative element of λii has one of the
following properties:

– 1. The closed-loop system is unstable, but without ith
loop, the plant can be stabilized [22].

– 2. The closed-loop system is stable, but if a failure
happens corresponding to the ith loop, the plant will
become unstable [22].

• Second Rule: Eliminating pairing with negative Niederlin-
ski Index (NI).
(6) quantifies NI.

NI =
|G(0)|

n
∏
i=1

gii
(6)

Pairing with negative NI is unstable. The first and second
rules are an essential condition for integrity [22].

• Third Rule: Eliminating pairing with negative Morari Index
of integral controllability.
Calculating the index requires that all diagonal elements of
the steady-state gain matrix are positive, or the signs are
adjusted to positive. In the second step, the eigenvalue of
the changed steady-state gain matrix has to be computed.
Pairings with a negative real part of the eigenvalue should
be erased because they create an unstable closed system
[21].
This index is indicated by (7).

MIC = Re
{

λ(G+(0))
}

(7)

where, G+(0) is a steady-state gain matrix with a positive
diagonal.

• Fourth Rule: Eliminating pairing with negative
Re
{

λ(G+(0) ∗ diag(G+(0)))
}

.
The third and fourth rules are extracted from the DIC
theorem. Based on (8), If the system is DIC, the index
(Ω(G(0))) must be non-negative for all values of K.

(Ω(G(0))) = min
k

min
i

Re
{

λ(G+(0)K)
}

(8)

K is the matrix of diagonal elements of G+(0).

D. Discretization

The optimum trajectory is found around a discrete system.
A continuous system is converted to a discrete one as
written by (9).

x(k + 1) = Adx(K) + Bdu(K) + ẋ0Ts (9)

Where, Ts is sample time.

E. Finding the Optimum Trajectory

Optimum feeds are obtained by solving the below mathe-
matics programming model, as stated by (10).

Min Z =
m

∑
i=1

N

∑
K=1

Piui(K)

st.

x(k + 1) = Adx(K) + Bdu(K) + ẋ0Ts K = 1toN

x(N) = xdesire (10)

∆ui,min ≤ ui(K + 1)− ui(K) ≤ ∆ui,max

ui,min ≤ ui(K) ≤ ui,max

where, ui(K) is ith input at Kth point, u(K) is input vector
at Kth point, ui,max and ui,min are the maximum and
minimum acceptable value of ith input, ∆ui,max and ∆ui,min
are the maximum and minimum acceptable change of ith
input, xdesire is the vector of the state variable’s desire value
at the simulation’s endpoint, N is the rang number, m is the
number of the manipulated variable. The first constraint in
(10) can be modified with (11). In these circumstances, the
computation cost diminishes.

XK = MxK + CUK + Pẋ0TS (11)

where, Ts is sample time. M, C and P matrices are
calculated by (12) to (14), respectively. XK and UK vectors
are computed using (15) to (16), correspondingly.

M =


Ad

A2
d

...

AN
d

 (12)

C =


Bd 0 0 0

ABd Bd 0 0
...

...
...

...

AN−1
d Bd AN−1

d Bd · · · Bd

 (13)
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P =



I

I + Ad

I + Ad + A2
d

...
N
∑

i=1
Ai−1

d


(14)

XK =


xK+1 |K

xK+2 |K
...

xK+N |K

 (15)

UK =


UK |K

UK+1 |K
...

UK+N−1 |K

 (16)

Where, xK+1 |K shows a vector of state variables at the
moment of K+1 based on information of K’s moment.

3. SIMULATION

Bekker et al.’s model [25] is chosen as a case study. The
reason for selecting an electric arc furnace is to show the
model’s strengthen in simplifying the process simulation
model used in the control system with a low effect on
results. There is also no need to be a pairing DIC for each
discrete process. This model explains the phenomena in
EAF with 14 states. Manipulated variables of the model
are oxygen injection rate d1, DRI injection rate d2, Flux
injection rate d3, arc power d4, the graphite injection rate d5,
fan power u1 and slip gas width u2. It is crucial to achieve
certain liquid mass, liquid temperature, and carbon mass in
the refining stage. The manipulated variables in this state
are oxygen injection rate, arc power, and graphite injection
rate. Table 1 gives the initial condition. It is scheduled that
in 6.2 seconds, liquid steel mass and temperature will reach
at least 136054.4 kg and 701.36027 K , respectively, and
dissolved carbon in liquid metal will be lower than 999.7
kg.
The control loop is iterated every 1.6 seconds in the first
part. In any iteration, appropriate pairing is investigated.
There are six states of pairings, and they are expressed
in Table 2. In the second part, the loop is iterated every
four and 16 seconds. At the end of the simulation, the
results are compared with the steel quality viewpoint,
linearization error, and operating costs, such as energy and
raw materials costs.
The first part analyzes a suitable pairing four times. Based
on the RGA method, just one pairing shown by (17) can
be suggested. In this state, liquid mass, carbon mass, and
liquid temperature are paired with graphite injection rate,
oxygen rate, and electrical power, respectively. The pairing
illustrates a high interaction, and it is not reasonable to use

a decentralized controller.

Λ =


−8.3E + 15 −E + 13 8.32E + 15

8.31E + 15 1.02E + 13 −8.3E + 15

0.1137 0.987819 0.125879

 (17)

The results of applying screening tools are briefly stated
in Table 3. Each box of the Table contains the pairing’s
necessary condition.
The proposed strategy is generally described in this study.
There is no need to find pairing DIC to reach the input’s
optimal path. This section was added to the paper because
discrete processes do not have constant operating points,
and therefore, getting a pairing may not be possible.
Table 4 concisely lays out the two models’ comparison.
In the following, the nonlinear system’s simulation results
and reduced linear system are compared with each other,
Fig. 2. Two model inputs are the same.
As it is observed regarding high interaction, a piecewise
linear system acts similarly to a nonlinear system.
The second simulation part evaluates the number of loops
on:
1. an error of linearizing and reducing the state variables,
2. steel specification,
3. Operating cost.

• First Comparison: Linearizing and reducing the system
order.
Increasing the number of loops enhances the results
since repeating the loop can consider other omitted state
variables’ effects. Two error indices measure the difference
between reduced linearized systems. One of them, (18),
shows the error at the end of the simulation, and the other,
(19), indicates error accumulation.

ME(t) =
∣∣∣∣YNonlineari

(t)−YLineari (t)
YNonlineari

(t)−YIntiali

∣∣∣∣ ∗ 100 (18)

AE =

∣∣∣∣∣∣∣∣∣
T∫
0
(YNonlineari

(t)−YLineari (t))dt

T∫
0
(YNonlineari

(t)−YIntiali
(t))dt

∣∣∣∣∣∣∣∣∣ ∗ 100 (19)

where, YNonlineari
(t) is ith nonlinear system output at t,

YLineari (t) is ith reduced linear system output at t, and
YIntiali

is the initial point of ith output.
Table 5 gives errors of linearizing and reducing the system.
Decreasing the linear system is the root cause of reducing
errors by increasing the loops’ number.
The iteration number rise can be interpreted as reducing
error due to the linear system’s adjustment.

• Second Comparison: Steel quality
Table 6 states the liquid steel specification at the end of the
simulation. The results are based on the nonlinear system.
As seen, the constraints are satisfied in the three cases.
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Table 1. Initial conditions

Description Amount

x1 Scrap mass 2000 kg

x2 Liquid steel (LS) mass 136000 kg

x3 Dissolved carbon in LS 1000 kg

x4 Dissolved silicon in LS 850 kg

x5 Solid slag mass 500 kg

x6 Liquid slag (LG) mass 9000 kg

x7 Dissolved iron oxide in LG 650 kg

x8 Dissolved silicon in lS 600 kh

x9 Carbon monoxide 11.7 kg

x10 Carbon dioxide 9.1 kg

x11 Nitrogen mass in the freeboard 17.4 kg

x12 liquid temperature 1700 K

x13 Solid temperature 1460 K

x14 Relative pressure -0.01

u1 16.25 kg/s

u2 0.2 m

d1 2 kg/s

d2 0 kg/s

d3 0 kg/s

d4 80000 KW

d5 1

Table 2. The possible pairing of reduced EAF model

Liquid iron mass Carbon mass Liquid temperature

1 Oxygen Rate Electrical Power Graphite Rate

2 Oxygen Rate Graphite Rate Electrical Power

3 Electrical Power Oxygen Rate Graphite Rate

4 Graphite Rate Oxygen Rate Electrical Power

5 Electrical Power Graphite Rate Oxygen Rate

6 Graphite Rate Electrical Power Oxygen Rate

Table 3. Results of applying DIC screening rules
First Rule Second Rule Third Rule Fourth Rule Conclusion

First Working Point 3 3, 4 1, 4, 5, 6 6 Non

Second Working Point 4, 6 3, 4, 6 3, 4, 6 3, 4, 6 6

Third Working Point 4 Non 2, 3, 4, 6 5 Non

Forth Working Point 2, 5 1, 2, 5 1,2, 5, 6 1, 2, 5, 6 5

Table 4. Results of endpoint

Nonlinear model Reduced linear model

Liquid steel mass 136054.33291 kg 136054.4000 kg

Liquid steel temperature 1703.4075 K 1703.41713 K

Dissolved carbon mass 998.27747 kg 998.275581kg

Consumed oxygen mass 6.28 kg

Consumed graphite mass 3.462681771 kg

Electric energy consumption 251200 KWh
 

 

 

 

Fig. 2. Liquid steel mass and temperature 

 Fig. 2. Liquid steel mass and temperature

• Third comparison: operating cost
Table 7 states the iteration number effect on the operating
costs.
Fig. 3 envisage the iteration number with liquid metal mass
and liquid temperature.

4. CONCLUSION

This study introduces a framework for identifying the optimal
input of complex systems, requiring higher reliability. The
input is calculated through conversion to a linear system in a
repetitive structure. The linear system is adjusted in each step,
and connecting one output to one input examines reliability.
Although it is applicable to use this method on simple systems
to reduce their energy consumption, its main advantage is for
complex ones. EAC is the best instance of an intricate system
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Table 5. Expresses the errors of reducing and linearizing the
nonlinear model

One Iteration Two Iterations Four Iterations

ME 3.031377556 0.532979131 0.123482468

1.582313283 0.255751756 0.109596074

7.462519527 0.35950449 0.2814347

AE 0.081062108 0.018577136 0.002632356

0.046337438 0.011142076 0.002628229

0.301097952 0.084113005 0.014397535

Table 6. The liquid steel specification at the end of the
simulation

One Iteration Two Iterations Four Iterations Expectation

Liquid Mass 136052.79945 kg 136054.11160 kg 136054.33291 kg m >136054.4 kg

Liquid Temperature 1704.839166 K 1704.48487 K 1703.4075 K T >1701.36027 K

Carbon Mass 998.275937 kg 998.27628 kg 998.27747 kg m <999.7 kg

with considerable energy intensity and high energy use owing
to its production volume.
The case study is an EAF model with 14 states and seven input
variables, in which three states are checked for reliability in high
interaction cases. The results imply that increasing the iteration
number improves errors and cost function because of omitting
11 states. The linearization errors are in acceptable ranges. The
interaction measure demonstrates a high interaction between
inputs and outputs, and EAF cannot easily be controlled with a
decentralized controller.
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