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The impact of the COVID-19 pandemic on power demand has been studied in some countries. In this
study, we investigate the effects of the COVID-19 pandemic on power demand in Tehran, Iran. Hence,
power demand variations between 2016 and 2020 are investigated in this research. Results indicate that
the effects of the COVID-19 pandemic on power demand vary from month to month and day to day, de-
pending on various factors such as government limitations and the COVID-19 mortality. It is observed
that power demand annual growth is changed during both the COVID-19 pandemic and financial crisis.
For instance, the average power demand growth in 2020 is 1.03%, while was 4.96% in 2019. Also, most
power demand forecasting algorithms have been developed for the normal situation; therefore, we in-
troduce two forecasting algorithms to forecast power demand. The first algorithm is developed based
on the principal component regression (PCR), and the second is developed based on the twin support
vector machine and quantile regression (TWSVQR). The PCR is selected due to its simplicity and high
performance. The proposed PCR model considers daily, annual, and biennial power demand variation
rates. The advantage of the TWSVQR method is that it is so accurate, requires a small training dataset,
considers various factors for forecasting power demand, and is robust against outlier data. Finally, we
investigate our proposed algorithms to forecast power demand in Tehran. Results illustrate proposed
algorithms can predict power demand © 2022 Journal of Energy Management and Technology
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NOMENCLATURE M2 Annually power demand variation rate
ay(i,t)  Power demand in the previous day (i-1/* day) and Ml Daily power demand variation rate
hour t for nth observation x M1 P(@) Initial demand power
Yn(i,t) Power demand in the similar day (it day) and hour Pava Is maximum achievable power

pn(i,t)  Power demand in the similar day (i day) and hour

M3

t for previous year for nth observation x M2 E(i,i) Self-elasticity at i-th hour

t for two years ago for nth observation x M3 co(i) Actual electricity price for an hour i($/MW)

0,(i,t) Power demand in the day and hour t-1 for n** ob- < Initial electricity price for an hour i($/MW)
servation Y Vector of power demand
Error of model X Matrix of PCR variables
Coefficients of PCR o? Variance of model error
Two-years power demand variation rate Lixn Identity matrix

Bk Estimation of Coefficients of PCR
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P(x) Mapping function
w Weight vector
b Threshold of SVR model
L{(v) Pinball loss function
¢ I-dimensional threshold variables for SVM
’* I-dimensional threshold variables for SVM
Yi The i-th target in SVM ( in this case 1 or -1)
X P-dimensional real vector
K Kernel function
by and by Offsets of two hyperplanes in TWSVM
6 and & Slack variables in TWSVM
uy and up ~ Normal vectors of two hyperplanes in TWSVM
e1 and e Unit column vectors in TWSVM
c1 and ¢ Penalty parameters in TWSVM
L2 (u) e-insensitive pinball loss function
T Regulation parameter
Training sample points of class ‘+1’
B Training sample points of class -1’

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an infectious illness
identified in December 2019 in Wuhan, China. It has been the
deadliest disease in the last century, infected more than 203 mil-
lion people and killed more than 4.3 million individuals world-
wide until August 9, 2021. Although vaccination has begun in
many countries and the pandemic seems to be under control
in some regions, different variants of the virus such as Alpha,
Beta, and Delta have emerged or become dominant in many
countries since the beginning of 2021. Therefore, the end of this
pandemic is not clear and some effects may be remained for
several years [1]. This had a significant impact on the human
lifestyle. Many activities were shut down, while some were in
a recession. Many companies chose telecommuting for all or
part of their employees. Some jobs were lost, and some new jobs
were created. Because almost all of these activities depend on
electrical energy, it might have considerable impacts on power
demand trends [2]. This encourages researchers to investigate
effects of the pandemic on electricity demand in power systems.
This investigation helps companies to improve the grid flexibil-
ity.

Recently, the pandemic impacts on power demand have
been explored in some researches. For instance, the challenges,
lessons, and emerging opportunities for energy demand during
the COVID-19 pandemic were investigated in [3]. This research
indicated that the overall energy demand is declining while spa-
tial and temporal variations are complex. The power demand
in China during the pandemic has been studied in [4]. Results
show that the COVID-19 pandemic significantly affects the elec-
tricity demand, directly or indirectly. The demand for petroleum
and electricity has experienced a reduction of 0.1% and 0.65%,
respectively.

The power demand variations in Europe were inspected in
[5]. Studies showed that the power demand has moderately

declined during the pandemic. Compared to similar days in
2019 (before the COVID-19 pandemic), power demand has de-
creased in Spain, Italy, and most of European countries between
11 to 25 percent. However, in Sweden, the power demand raised
about 2.1 percent. The effect of the pandemic on the power de-
mand in Italy was investigated in [6]. That study illustrates the
policies of the Italian government during the Coronavirus pan-
demic have greatly influenced the various sectors of industry,
tourism, and services. These effects are variable for different
weeks and months. For instance, power generation approxi-
mately decreased 15 percent between the last week of March
2019 and the last week of March 2020. Studies on power demand
during the pandemic in Spain were provided in [7]. In Spain,
the power demand decreased 13.49% from March 14 to April 30,
compared to the average demand of the last five years. Effects of
the COVID-19 pandemic on power demand and generation in
several European countries were also investigated in [8]. During
the pandemic, the power profile has changed, and peak hours
have shifted in some regions. Power demand has increased for
some consumers, such as hospitals and residential consumers,
and decreased for other consumers, such as tourist sites and
shopping centers.

Power demand variations during the pandemic in Ontario,
Canada, were investigated in [9]. That research indicated the
total power demand has reduced during the COVID-19 pan-
demic. In addition, results showed the power demand reduction
was different in various regions and hours during the pandemic.
Also, the effect of power demand in Japan was evaluated in
[10]. Japan’s power demand has reduced due to a slowdown
in industrial activities during the COVID-19 pandemic. Power
demand changes in Brazil due to this pandemic were considered
in [11]. This research showed a decreasing trend in electricity
consumption that varies from region to region: the southern
of Brazil subsystem showed the most significant decline, -19%
compared to the baseline. Southeast and Northeast regions were
affected with a decrease of -15% and -14%, respectively. How-
ever, the northern region experienced the least variation with a
3% decline compared to the baseline.

Due to the vast effects of the COVID-19 pandemic on power
demand, researchers have attempted to improve the perfor-
mance of power grids during the COVID-19 pandemic. For
instance, in [12], researchers improved the flexibility of power
grid during the pandemic using multi-objective formulation.
Also, in [13], researchers introduced a new demand forecasting
algorithm during the COVID-19 pandemic in France. The model
was developed based on the time series. Forecasting time se-
ries can be complex due to the inherent uncertainty nature of
power grids. It seems very difficult to tell whether a series is
stochastic or deterministic chaotic or some combination of these
states. Therefore, novel methods for power demand forecasting
should be introduced that are applicable in both COVID-19 pan-
demic and financial crisis. In this paper, two new methods are
introduced.

Nowadays, complex relationships between demand and ex-
ternal factors for demand forecasting can be considered based
on regression or machine learning models. Researchers in [14]
reviewed energy demand forecasting methods published in 2005-
2015. That paper indicated traditional power demand forecast-
ing techniques such as econometric and time series models and
soft computing methods such as neural network, support vector
machine (SVM), and fuzzy logic have been used widely. Also,
some papers used regression models for power demand fore-
casting. For support vector regression (SVR) models, different
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kernel functions were used to determine the SVR parameters. It
was observed that different influential factors such as economic
factors, industrial structure, population, import and export of
energy were considered to develop forecasting models.

In [15], researchers were introduced monthly electric energy
demand forecasting based on the feedforward neural network.
In that paper, neural network was trained with normalized se-
ries. Two new series were used including the trend and the
fluctuation around it. Neural networks were trained, separately.
Also, four kinds of moving averages have been tested depend-
ing on the weights. It was observed that periodic components
have already been eliminated from the trend series, meteoro-
logical and social factors can influence the trend behavior, and
those factors usually repeat annually. However, neural networks
have some limitations. For instance, their computation speed is
very high because of distributed nature of network knowledge.
Moreover, their structure, such as the number of hidden layers,
learning rate, and so on, is also dependent on experience, which
may effectively limit the interpretability.

In [16], a method is introduced for demand forecasting using
interval time series. The paper compares vector autoregressive
(VAR) and interval multi-layer perceptron (iMLP) methods. Both
methods are used to forecast the demand in different periods
of a day. For the VAR algorithm, two models were fitted every
hour, one composed of the center and radius, and another one of
the lower and upper bounds, according to the interval represen-
tation assumed by the interval time series (ITS) in the learning
set. However, VAR may give a wide variety of different results,
and a single measurement may provide limited information. For
iMLP, the model composed of the center and radius is fitted. It
was observed that ITS forecasting methods reduce forecasting
risk during power system planning and operational decision
making.

In [17], deep recurrent neural network (DRNN) model was
used to forecast long-term power demand. DRNN has a bet-
ter performance comparing to the traditional machine learning
methods such as artificial neural network and linear regression
models. Different DRNN variants were compared in the study
for mid-term and long-term predictions of heating and electricity
consumption. However, DRNN methods have high computa-
tional complexity and need an extensive dataset for training;
therefore, they are not suitable for short-term power demand
forecasting. Also, the long computation time and the conver-
gence issue are other drawbacks of the model.

Although linear regression is still widely used in forecasting
applications, other regression models such as quantile regression
(QR) are recently used instead of linear regression in order to
improve the regression model. QR method was used in [18]
to forecast power demand. In QR, one or more quantiles of
the dependent variable is calculated. QR usually has better
performance and fewer predefined assumptions comparing to
linear regression. QR is also used in cases where the aim is to
obtain the conditional distribution of the dependent variable.
SVQR is a kind of SVR that combines both QR and SVR. The
SVQR is used to forecast power demand in [19].

However, there are some factors that are not still considered
in power demand forecasting which might affect the accuracy of
the forecasting model. Traditional models are usually developed
for power demand forecasting over a long-term period, and it
is necessary to develop a model for forecasting power demand
during a day. Machine learning-based algorithms, usually need
a big dataset for training. Also, the performance of these al-
gorithms may be affected using outlier data. To address these

research gaps and improve the accuracy of forecasting, a novel
model is introduced in this paper.

This paper is organized in two main parts. In the first part,
the power demand variation during the COVID-19 pandemic is
investigated in the capital city of Tehran, Iran. This research com-
pares power demand in Tehran during five consecutive years.
In the second part, two power demand forecasting models ap-
plicable for pandemic periods are introduced. The first model is
developed based on the principal component regression (PCR)
analysis. In this model, power demand is estimated based on
the power demand in the previous days and years considering
the daily, annual and biennial power demand variation rates.
The model is capable of forecasting the power demand in dif-
ferent normal or unpredictable conditions such as COVID-19
epidemics, economic collapse, etc. As mentioned before, ma-
chine learning models can be used to improve the performance
of power demand forecasting. Therefore, the second model is
introduced based on the SVR model. SVR is a kind of SVM
applied to regression problems. SVR offers several advantages
comparing to other approaches and provides broad application
prospects in forecasting. SVR provides the flexibility to define
how much error is acceptable in the model. SVM is a set of super-
vised learning methods used for classification, regression, and
outliers” detection. The main advantage of support vector ma-
chines is their effectiveness in high dimensional spaces. Higher
speed and better performance with a limited number of samples
are other advantages of SVM. However, SVR models have some
limitations. For instance, two hyperparameters need to be ad-
justed manually. Therefore, a novel method is introduced in this
paper named as TWSVQR. The main contributions of this model
are as follows:

* A new SVR model is developed based on QR.

* A novel twin support vector machine (TWSVM) model
is used for the first time to forecast the power demand.
Unlike conventional SVM models that only find one optimal
hyperplane for separating the data points, TWSVM finds
two non-parallel hyper-planes leading to more accurate
results.

® The robust kernel function is used in the proposed model.

¢ Different factors for forecasting power demand are consid-
ered. These factors can be modified based on the situations
or changed for different regions.

¢ A formula is introduced to calculate electricity prices.

The main aspects the study is summarized and depicted in Fig-
ure 1. The rest of the paper is organized as follows; in section
2, effects of the COVID-19 pandemic on the Tehran power grid
are investigated. The proposed model for forecasting power
demand is introduced in section 3. Numerical results and con-
clusion are presented in section 4 and 5, respectively.

2. POWER DEMAND VARIATIONS DURING THE PAN-
DEMIC

COVID-19 pandemic was first reported in Iran on February 19,
2020. Until August 8, 2021, more than 95000 people have died
of the infection. The government canceled public events and
closed all public centers such as schools, universities, shopping
centers, holy shrines and bazaars [20]. People stayed at home for
the most of their time. The Iranian New Year (Nowruz) holidays,
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| Step 1: Investigation of power demand changes in Tehran in the last five years

Step 2: Investigating the effect of Covid-19pandemic on energy consumption
in different months and days

L

Step 3: Proposed a forecasting model to estimate power demand

L

Step 4: Proposed an incentive model to encourage subscribers to manage their
power demand

L

Step 5: Investigating the Proposed model by using numerical examples

Fig. 1. aims of this research

which begin on March-19 and last until April-1 every year, were
affected by the pandemic. The government limited the travel
and encouraged people to stay at home. Since then, the reactions
of people to the pandemic condition and the government policy
have changed over time. Some activities returned to normal,
and some restrictions were reduced or increased over time. The
power demand has also been affected due to the new situations.
Figure 2 shows the daily death due to the COVID-19 pandemic
in Iran from February 19, 2020, to February 18, 2021. In this
figure, label 1 on the horizontal axis corresponds to February 19,
2020, while the last label corresponds to February 18, 2021. It is
observed that the number of deaths varies from day to day. The
government changed limitations according to these fatalities.
Some of these limitations were temporary, and some limitations
are still ongoing. For example, for several months, intercity
travel limitations were imposed, and then these limitations were
reduced as the number of deaths from the pandemic decreased.
People were also forced to stay at home after 10 p.m. All of
these limitations affected people’s lifestyles and activities. The
tourism industry was almost shut down. It is expected that
these variations will cause changes in power demand in Iran.
In general, limitations were increased in Iran in three periods,
temporary; between February and March 2020, in the middle
of summer 2020, and the middle of autumn 2020. During these
periods, the disease mortality was sharply increasing. Evalua-

600
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Fig. 2. daily death due to COVID-19 pandemic in Iran

tion of the power demand in Tehran is very important because
Tehran is the biggest and the capital city in Iran, which has the
most significant role in the country’s economy. Tehran is also the
largest energy consumer in the country. Moreover, the highest
number of deaths due to COVID-19 was reported in Tehran.
The historical electricity consumption data is gathered from [21].
Figure 3 shows the average peak power demand between 2016
and 2020 in Tehran. It is observed that the average monthly peak
in 2019 is more than 2018, while the peak value in 2020 is lower
than 2019. In some months of 2018, power demand has been less
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Fig. 3. average monthly peak load demand in Tehran in 5 re-
cent years

than the corresponding months in 2017. In most months of 2018,
Iran experienced a financial crisis. Thus, both the COVID-19 pan-
demic and the financial crisis might affect the power demand.
Meanwhile, figure 3 indicates that the average monthly peak
in 2020 is higher than the average monthly peak between 2015
and 2019. In addition, it seems that the COVID-19 pandemic
has reduced the annual growth of the power demand. Table 1
shows the changes in power demand for all months between
2016 and 2020 compared to the previous year in percent. The
power demand in February 2020 is 1.02% more than the power
demand in February 2019. Also, the power demand in June
2020 is 2.59% less than power demand in June 2019. The table
provides that in four months, including April, June, September,
and January, power demand has decreased in 2020 compared
to 2019. During these months, the government increased limita-
tions because of the increase in deaths. This table provides that
the number of months in 2018 and 2020 in which the growth of
power demand has decreased compared to the similar months
in the previous year is more than other years. It is worth to note
that Iran has been in a financial crisis in 2018 and the COVID-19
pandemic in 2020, so this table shows that both the COVID-19
pandemic, and the financial crisis have affected the growth of
power demand. Daily demand profiles for different days in

Table 1. Shape Functions for Quadratic Line Elements
2020 2019 2018 2017 2016
February 1.02 386 0.6 8.48 -5.05

March 351 -14 491 242 -404
April -3.69 699 -067 -045 254
May 594 571 -59 587 -132
June 259 323 651 095 547
July 454  0.69 3.6 1.8 7.33
August 22 082 -134 438 425

September -2.63 877 231 324 09
October 413 331 -061 359 323
November 0.39 882 -427 389 736
December 274 613 -0.67 532 256
January 323 93 -l6l1  3.05 42
Average 1.03 469 024 355 229

2018, 2019 and 2020 are presented in figure 4. In this figure, W.D
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Fig. 4. daily power demand for different days since 2018

refers to weekdays, while H.D refers to holidays. It is observed
that the power demand profiles for different years are similar to
each other. February 19 is investigated because the first COVID-
19 disease in Iran was confirmed on February 19, 2020. It is
observed that the power demand profiles in 2020 and 2019 are
similar on this day, while they have grown significantly compar-
ing to 2018. Thus, in this subfigure, the impact of the economic
crisis is visible, but the effect of the pandemic is unclear. Also,
it is observed that in November 30 afternoon, power demand
in 2020 is lower than the same day in 2019, though it is higher
than November 30, 2018. It should be noted that November 30,
2018, was a holiday, and usually, the power demand decreases
on holidays. In this subfigure, effects of both the economic crisis
and the pandemic are clear.

On September 11, daily power demand in 2020 is less than
power demand in 2019 and 2018. It is observed that the power
demand in 2020 is decreased compared to other years. On
August-5, the demand did not considerably change during three
years. Also, the power demand on May-28 did not noticeably
differ between 2018 and 2020. This subfigure indicates that, by
decreasing the COVID-19 pandemic mortality, the power de-
mand has reached the same level as the last year. Therefore,
it can be concluded that while the pandemic causes the power
demand to decrease, the ending of limitations can also increase
the power demand, rapidly. On January 19, the power demand
in 2019 and 2020 were similar, and they were higher than a
similar day in 2018. During these three days, many limitations
were lifted by the government due to the reduced number of
confirmed COVID-19 cases. The variations of the peak power
demand at different monthly periods are also investigated in
this study. The first period is the first month that the COVID-19
cases were confirmed in Iran. The last week of this period was
the Iranian New Year holidays. The peak power demand and
the variations compared to the same day in the previous years
are shown in Figure 5. Power consumption patterns seem to
be similar in 2018, 2019 and 2020. The second period is shown
in figure 6. The first half of this period is the Iranian New year
holiday. It can be seen that power demand decreased in 2020
compared to 2019. The third period is shown in figure 7. During
this period, the number of confirmed COVID-19 cases increased
sharply, and the Iranian government imposed many limitations.
The peak power demand in 2020 in similar days decreased con-
siderably compared to 2019, and in some days, it also decreased
to the same level as 2018. These figures indicate that the COVID-
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Fig. 6. peak power demand in the second period

19 disease has affected power demand in Tehran and caused a
change in the monthly demand variation rate. Figure 8 shows
the fourth period. In this period, many limitations were termi-
nated, and people almost returned to a normal lifestyle. It is
observed that the peak demand in 2020 increased during this
period compared to the same period of previous years. As
depicted in figures 5- 8, similar patterns are repeated in each
year. These figures indicate same patterns are repeated on some
days with a delay that are marked with brown circles in each
figure. It is observed that these patterns are similar to each other
for different days. Therefore, we conclude that the most signifi-
cant impact of the economic crisis and the pandemic is on the
variation rate of power demand. Actually, these factors do not
change the power demand pattern. In other words, there is a re-
lationship between power demands in different years. Thus, we
can use historical power demand data to forecast future power
demand, although the power demand prediction models must
be modified considering the effect changes mentioned above. In
the next section, two novel algorithms are introduced to estimate
the power demand.

3. FORECASTING POWER DEMAND

Power demand variation during the pandemic in Tehran was
investigated in the previous section. It is observed that the de-
mand pattern during this pandemic is similar to the last years.
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In fact, the COVID-19 pandemic has affected the annual growth
of energy consumption. Results in the previous section showed
that it is necessary to consider the rate of power demand varia-
tion in different years. Therefore, in this section, two forecasting
methods are introduced. The first method is developed based on
the principal component regression (PCR), while the second is
developed based on the twin support vector quantile regression
(TWSVQR).

A. Power Demand forecasting based on the PCR

Regression analysis is a set of statistical processes for estimating
the relationships among several variables. The most common
form of regression analysis is linear regression, in which it a
line that most closely fits the data according to a specific mathe-
matical criterion is specified [22]. PCR is a regression technique
based on principal component analysis. More specifically, PCR
is used to estimate the unknown regression coefficients in a
standard linear model. PCR is a powerful method to estimate
power demand. Instead of regressing the dependent variable
on the explanatory variables directly, the principal components
of the explanatory variables are used as regressors in PCR. The
principal components with higher variances are used as regres-
sors. One significant application of PCR lies in overcoming the
multicollinearity problem, which arises when two or more of

the explanatory variables are close to being collinear. A main ad-
vantage of PCR is the availability of charts illustrating the data
structure [23]. In this paper, new factors are presented for intro-
ducing a new forecasting model. Figure 9 shows the flowchart
of the proposed model. The ideas behind the proposed model
can be summarized as follows:

1. In two consecutive hours, many influential factors such as
temperature and day type (holiday or workday) are usually
similar or close to each other.

2. Usually, social limitations due to the COVID-19 pandemic
or economic crisis are similar on two consecutive days (ex-
cept the beginning day of the imposed limitations).

3. Investigation of the power demand variations in Tehran
indicated that the power demand patterns on identical days
in consecutive years are usually similar, and the difference
between them can be obtained considering the annual (or
biennial) growth rate.

Power Demand Data

Power Demand in Last hour, Last Calculate the ratio of changes

Calculate Caffeinates

1

1

1

day, previous year and Two years - - - :

ago

1

\ |

1

1

1

1

Fig. 9. Flowchart of the proposed PCR method

It is assumed that the power demand is estimated using follow-
ing equation:

Pu(i t) = Bran(i— 1,£) + Boyn (i, t)+ (1)
Bapn (i, t) + Babn(i,t — 1)

where B, is a coefficient and «;,, v, 4y and 6, are variables of
the n'" observation. In addition, M1, M2 and M3 are adjustment
coefficients defined as follows:

M, — power demand in(t — 1)"hour @
! power demand in (t — 1) hour previous day

power demand in(t — 1)*hour
M, = - m : (3)
power demand in (¢ — 1) hour previous year

M = power demand in(t — 1)"hour @
’ power demand in (¢ — 1) hour intwo years ago

M1 is the daily power demand variation rate, M2 refers to the
annual demand variation rate and M3 is the two-year power
demand variation rate. For different observations, the Equation
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(1) can be rewritten in matrix form as follows:

Py (i, t)
Py (i, t)
= (5)

| Pu(i, )

(=10 nlt) mGt) 6Gt-1)] [p

ar(i—=1,t) 72(it) w2l t) 92(1',%—1) B2 i
B3

ln(i=1,8)  yu(it)  pa(it) Ou(it—1)] [Ps

where n is the number of observations, { which is a random
value with variance ¢? , is the unavoidable error of the model.
Equation (5) can be rewritten as follows:

Y =XB+¢ ©®)
where
[Py (i, 1)
Pi(i,t)
y=| 7| = )
| P (i, t)
[ar(i=1,8) m(t) wm@t) 6(it—1)
Déz(i— 1,t) ’)/z(i,t) ]xlz(i,f) Gz(i,t— 1)
x=|"" o | ®
lan(i—1,8)  vu(i,t) un(it) 6,(,t—1)
1
g |P? ©)
B3
| B4
var)e) = 0 Iyxn (10)

The aim of the regression model is to find . Solving Equation
(6) using the least squares method, the optimal value for § is
obtained:

B=(X"x)"'xTy a1

The application of Equation (11) might have some limitations.
For instance, (X! X)~! may be a non-invertible matrix. There-
fore, the singular value decomposition (SVD) method is used
assuming that X = UAVT , where the dimension of matrix U
and V are n x 4 and 4 x 4, respectively. Here, A is a diagonal
matrix where its elements are singular values (J) that are listed
in descending order.

Upxa = [U1, ..., g] (12)
Vﬂ><4 = [vl/'-'/ U4] (13)
A = diag(dy, ..., 6n) (14)

Now, to calculate the coefficients based on PCR, it is assumed
that:

Wk =X X Vk (15)

where k is the new dimension of the problem and must be less
than 4. The value of B is estimated as follows:

B = Viedk (16)
where
P = (W W) T WY 17)
The optimal value for 8 is estimated from Equation (16)

B. power demand prediction by using TWSVQR

Generally, PCR has some limitations in selecting the optimal set
of principal components for the model. Also, the applicability
of PCR is based on the assumption of normality. The principal
components are defined according to the maximization of classi-
cal variance, which is an optimal estimator of scale at the normal
distribution. When data is impregnated with outlier information,
the PCR may not be appropriate. Another problem arising in
practice is that sometimes the data is inadequate. Actually, data
can be missing due to different reasons. Underfitting and Over-
fitting are other issues in utilizing the PCR model. Overfitting
happens when the details and noise in training data negatively
impact the model’s performance on new data. This means that
the noise or random fluctuations in the training data is picked
up and learned as real data by the model. Underfitting refers to
a model that can neither model the training data nor generalizes
to new data. Considering these imperfections, it seems necessary
to use other forms of regression models. Investigation of power
demand variations in Tehran showed that other some factors
such as electricity price, weekday type and temperature might
affect the power demand. Hence, machine learning models are
appropriate and powerful tools for developing accurate demand
forecasting models.

As mentioned before, new versions of SVM have been intro-
duced recently to improve the model performance. TWSVM
is a machine-learning algorithm that is developed based on
SVM. It calculates a pair of non-parallel hyperplanes. The main
advantage of TWSVM comparing to classic SVM is its fewer con-
straints, and consequently, less training time. Similar to SVM,
TWSVM obtains the best classification based on an optimization
tool. The objective function of quadratic programming corre-
sponds to a particular class while its constraints are related to
another class. In this section, we combine the SVQR model and
TWSVM to introduce a novel algorithm named as TWSVQR.
The proposed model is organized in four steps as follows:

Step 1: Introduce an SVOR formulation
Step 2: Introduce a TWSVM formulation
Step 3: Describe the proposed TWSVQR model

Step 4: Power demand forecasting using TWSVQR

Step 1:

The main objectives of SVQR are to forecast future cases calcu-
lating a regression model for the given data set T = {x;,y;}} ;,
where x; € R? and y; € R . For some scenarios, it is difficult, or
even impossible, to regard linear functions between inputs and
an output.

To solve this challenge, a nonlinear function, m(x), is applied
to perform the local polynomial regression which is defined as
follows [24]:

f(x) = m(x) = wyp(x) +b (18)
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where 1(x) is a mapping function defined by a kernel function,
w is the weight vector, and b is the threshold. The SVQR model
estimates f(x) in the feature space for estimation of the 7"
quantile. Equation (18) can be considered as an optimization al-
gorithm in which the optimal values for w and b for v quantile,
can be obtained using the follows optimization problem:

. 1 l
min = (3l + C L Lol ~ @ +8) ) a9
(w,b) 2 i—

where C > 0 is a user-defined parameter, L is the pinball loss
function as follows:

TV v>0

Le(o) = {(T - 1o O.w @0

Equation (19) is a standard form of SVM that can be converted
to a Quadratic Programming Problem (QPP) by defining { =

(C1,82, -, ¢1) and T = (3,83, --, ¢} as follows:

!
min = (%Hw|\2+CZ(T§i+(Tfl)ﬁ)) @1
i=1

(Wbl
Subject to:
yi(w p(x) +b) < g @2)
(w"yp(x) +b) —y;) <G} 23)
7>0, ;>0 (24)

Equations (22) (24) present the constraints of the optimization
problem. These constraints are defined to prevent data points
from falling out of the margin. QPP is a standard form of SVQR
and can be calculated using its corresponding Wolfe dual prob-
lem.

Step 2:

The equation (21) and its constraints in (22) (24) are converted
into two optimization problems. As mentioned before, the opti-
mal problem in TWSVM is divided into two optimal subprob-
lems: TWSVM1 and TWSVM2. These optimization subproblems
are defined as follows [25]:

TWSVMI:
min%HK(A,CT)ul +e1by||? 4 crels (25)

Subject to:
—(K(B,CTuy +exby)+6>e1 6>0 (26)

TWSVM2:
min%HK(A, CTYuy + eyba ||? + cpel 6 (27)

Subject to:
—(K(B,CTupy +e1by) +6>e; 6>0 (28)

where K is the kernel function, and #; and u, are the normal
vectors of two hyperplanes. Also, b; and b; are the offsets of two
hyperplanes. C is the training sample points Matrix, and e; and
ey are the unit column vectors. 6 and J are the slack variables. ¢q
and c; are the penalty factors. In Equations (25) and (27), matrix
A represents the training sample points of class ‘+1’, and matrix
B represents the training sample points of class ‘-1’. Each row
in matrix A represents a sample point belonging to class ‘+1’,

while each row in matrix B represents a sample point belonging
to class “-1’. In TWSVM, the testing sample point belongs to the
class which hyperplane is close to it and is obtained as follows:

Label (x) = (29)

arg min

=1,z,..,

(K(A, CT)uk + #>
ul K(A, CT)uy

Step 3:

A novel method is introduced in this step based on the descrip-
tions in steps 1 and 2. First, it is noted that pinball loss function
has an error for v < 0. Hence, the novel loss functions have
been introduced in some recent researches. We use a new loss
function introduced in [26], which is defined as follows:

L‘Sf(u) =max(—(1—1)(v+71¢),0,7(v — (1 —7)¢)) (30)

In fact, Equation (30) is the new version of the pinball loss func-
tion based on the e-insensitive factor that improves the model
against outlier data. Then the optimal SVR model is defined in
the form of TWSVM. The new method is named as TWSVQR,
and defined as follows [26]:

TWSVQRI:

min (E(Aw(l) +e1bM)T (Aw™ + M) + clegé) (31)
wp),g \ 2

subject to:
— (Bw(l) +ezb(1>) +l+ee>e 32)
— (BwM + b)) 4 ey + % +e2; (33)
=0 (34)
TWSVQR2:
i (%(Bw@) +eb@)T (Bw® 4 e2b?) + CzelTC) (35)
subject to:
— (A +e1b@)) + L +e1e > e (36)
— (Aw® +¢;6?)) ¢y + % + el% (37)
>0 (38)

Similar to standard SVR, constraints are defined to prevent data
points from falling behind the margins. The optimal parameters
of TWSVQR are obtained using the Lagrange method.

Step 4:

Now the TWSVRQ method is used to forecast the power de-
mand. The main advantage of the proposed method is its flexi-
bility. Based on the conditions, the input features can be changed.
The features that are used for forecasting power demand on i-th
day and t-th hour in this paper are listed as follows:

1. Power demand on i-th day and (t-1)th hour (previous hour)
2. Power demand on (i-1)th day and t-th hour (previous day)

3. power demand on i-th day and t-th hour on a similar day
in last year considering average annual power demand
changes
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4. power demand on i-th day and t-th hour on a similar day in
two years ago considering average annual power demand
changes

5. Electricity price on i-th day and (t-1)th hour (previous hour)
6. Electricity price on (i-1)th day and t-th hour (previous day)
7. Temperature on i-th day and (t-1)th hour (previous hour)
8. Temperature on (i-1)th day and t-th hour (previous day)
9. Humidity on i-th day and (t-1)th hour (previous hour)

10. Humidity on (i-1)th day and t-th hour (previous day)

11. A binary factor for day’s type. The number one is used for
working days and the number zero is used for holidays.

12. A binary factor indicating unusual conditions. This factor
is assumed one for normal days and zero for unusual days
such as days during the COVID-19 pandemic or financial
crisis.

Features 1 4 indicate the power demand in the previous days
and hours. Electricity prices are used to consider demand re-
sponse and encourage customers to manage their consumption.
Environment temperature is also considered as an input because
it plays an important role in energy consumption. In Iran, heat-
ing systems usually works with electrical energy; therefore, by
increasing temperature, energy consumption increases (features
7 and 8). Humidity can be essential in some cities (features 9
and 10). Feature 11 is used because the energy demand can be
different for different day types. As some researches point, un-
usual conditions may change power demand. Therefore, feature
12 is considered to improve the power demand estimation by
adding uncertainty factors to the model.

It is worth noting that when the electricity price is increased,
people reduce their power demand and shift some loads such as
dishwashers and washing machines from peak hours to other
times. Therefore, features 5 and 6 have important roles in power
demand management. The energy consumption of cooling sys-
tems depends on the temperature. On hot days and hours, these
devices consume more energy. Also, heaters may be used for
heating on cold days. On hot days and hours, heaters consume
more energy. Therefore, we need to consider features 7 and 8 in
our model. Figure 10 indicates the flowchart of the proposed al-
gorithm. When the power demand for a spatial hour is obtained,
the electricity price can be calculated as follows:

P(i, 1)

price(i, t) = P10

x price(i—1,t) x A (39)

Equation (39) indicates that the electricity price is related to
power demand and the price at the previous day. Here, A is a
regulating factor that can be obtained as follows:

price(i,t — 1)

= 7 4 ;  aN (40
price(i—1,t—1)

1

| Power Demand Data 1

I

: — " Power Demand in Calculate 1

i Electricity TE;]‘;‘::;‘:["'E Last hour, Last the ratio of |

Price L day, previous year changes 1

: and Humidity and Two years ago |
|

A binary factor for days

A binary factor for
unusual conditions

Fig. 10. the flowchart of the proposed TWSVQR algorithm

4. NUMERICAL EXAMPLES

The aim of this section is to investigate the performance of
the proposed algorithms to forecast power demand in Tehran.
Power demand data and electricity prices are collected from [21].
Historical temperature data are gathered from [27]. Power de-
mand, electricity prices, and temperature data are used as input
of algorithms. For both algorithms, the power demand data
from 50 days is used as training data. After training the PCR
algorithm, PCR coefficients are obtained and shown in table 2. It
is observed that these coefficients may be changed for different
days and grids.

Figure 11 indicates training data and estimated values for
both PCR and TWSVQR algorithms on November 14, 2020. In
this figure, blue circles showed training data in 2020, and cyan
circles showed training data in 2019, and magenta circles showed
training data in 2018. The annual growth rates of power demand
are evident in training data. The values of these rates for Novem-
ber are shown in table 1. This figure clearly shows that the an-
nual growth rate should be considered in the power demand
forecasting model. The red line indicates the forecasted value
of the proposed PCR model. It can be seen that this model has
been able to calculate the value of power demand. However, the
green line illustrates actual power demand, and it is observed
that we need a more accurate model for forecasting power de-
mand. The black line shows the TWSVQR model. This model
has been able to estimate power demand more accurately. Figure
12 indicates the effect of quantile regression. This figure shows
that outlier data can be visualized using quantile regression. The
data points above or below the red lines are outlier data. The
range of outlier data points can be changed by selecting different
quantiles.
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Fig. 12. Outlier detection using quantile regression

Table 2. coefficients of the PCR model
Date B1 B2 B3 B
February 22, 2021 1.094 0986 0.8765 1.036
November 14,2020 1.089 1.024 0.8641 1.029

Table 3 provides the actual power demand, estimated power
demand, and absolute errors in percent for both algorithms. In
this table, actual power demand data is collected from [21], and
second and third columns are calculated using our algorithms. It
is observed that the maximum errors for both algorithms are less
than 10%. In addition, the average error for the PCR algorithm
is 3.15% and for the TWSVQR algorithm is 1.61%. Therefore,
the performance of the TWSVQR algorithm is better than the
PCR algorithm. In addition, it is observed that the error of the
algorithms is different for various days.

Table 4 provides the actual power demand, estimated power
demand, and relative error in percent for different hours on
February 22, 2021, for both PCR and TWSVQR algorithms. It is
observed that the maximum relative errors for both algorithms
are less than 10 percent. The average error for the PCR algorithm
is 4.88%, while the average error for the TWSVQR algorithm is
2.05%. These results show that the performance of the TWSVQR
algorithm is better than the performance of the PCR because
more features are used to predict power demand in the TWSVQR

algorithm. Tables 3 and 4 provide that both algorithms can
forecast power demand, but the performance of the TWSVQR
algorithm is better than PCR.

Table 5 provides the average errors for some different days.
Details of these days are shown in this table. It is observed that
some days are holidays and others are weed days. This table pro-
vides that both proposed algorithms can predict power demand
during the pandemic and normal days, but the performance
of the TWSVQR algorithm is better than the PCR. This table
shows that the performance of the TWSVQR algorithm is better
for unusual days. In addition, in figure 5, the performances of
both proposed algorithms are compared with the SVOR algo-
rithm that was introduced in [19], and the feedforward neural
network (FNN) algorithm that was introduced in [15]. It is ob-
served that the proposed TWSVQR has a better performance
than SVQR. The performance of the proposed PCR algorithm
and the SVQR is almost the same. However, PCR is a simple and
low-computational algorithm and has better performance dur-
ing the pandemic. FNN algorithm has the worst performance.
In [19], researchers were used a standard pinball loss function
while we use a novel loss function that is robust against outlier
data.

Table 3. hourly power demand forecasting and errors for both
algorithms for November 14, 2020

PCR Es- TWSVQR

Hour Actual PCR Rela- TWSVQR

power timated Estimated tive Error Relative
demand power power (%) Error (%)
demand demand
1 5,235 5148 5198 1.66 0.71
2 5,097 4926 5036 3.35 1.20
3 5118 4816 4979 5.9 2.72
4 5,000 4912 4939 1.76 1.22
5 5,025 5016 4987 0.18 0.76
6 5,104 5026 5126 1.53 043
7 5,018 5148 5097 2.59 1.57
8 5,241 5326 5292 1.62 0.97
9 5,666 5819 5776 2.7 1.94
10 6,107 6237 5913 2.13 3.18
11 6,445 6753 6329 478 1.80
12 6,710 6983 6816 4.07 1.58
13 6,744 6982 6823 3.53 1.17
14 6,538 6784 6621 3.76 1.27
15 6,719 6820 6798 1.51 1.18
16 6,645 6980 6761 5.04 1.75
17 6,733 7152 6819 6.22 1.28
18 7,122 7298 6987 2.47 1.90
19 6,978 7189 7069 3.02 1.30
20 6,784 6983 7028 2.93 3.60
21 6,630 6721 6598 1.37 0.48
22 6,419 6265 6325 24 1.46
23 6,112 5820 6216 4.78 1.70
24 5,702 5462 5917 421 3.77
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Table 4. hourly power demand forecasting and errors for both
algorithms for February 22, 2021

PCR Es- TWSVQR

Hour Actual PCR Rela- TWSVQR

power timated Estimated tive Error Relative
demand power power (%) Error (%)
demand demand
1 5659 5216 5432 7.83 4.01
2 5501 5129 5329 6.76 313
3 5416 5046 5284 6.83 2.44
4 5406 5098 5324 5.70 1.52
5 5499 5098 5309 7.29 3.46
6 5447 5129 5329 5.84 2.17
7 5736 5369 5468 6.40 4.67
8 6249 5760 6106 7.83 2.29
9 6733 6584 6687 2.21 0.68
10 6843 6625 6718 3.018 1.82
11 7066 6726 6918 4.81 2.09
12 7288 7073 7152 2.95 1.87
13 7282 7103 7199 2.46 1.14
14 7003 7160 6921 2.24 1.17
15 7114 6729 6983 5.41 1.84
16 7028 7124 6986 1.37 0.60
17 6985 6520 6857 6.66 1.83
18 7043 6533 6979 7.24 0.91
19 7320 7038 7216 3.85 1.42
20 7195 7639 7462 6.17 3.71
21 7021 6831 6919 2.71 1.45
22 6798 6909 6629 1.63 249
23 6487 6219 6354 413 2.05
24 6080 6355 6102 452 0.36

Table 5. Compare the performance of both proposed algo-
rithms for different days

Date Day Average Average Average Average
Error Error Error Error
PCR (%) TWSVQR  SVQR (%) ENN (%)
(%)

February 19, Tuesday 5.32 2.36 5.37 5.79
2020

February 19, Wednesday 3.75 1.29 3.63 4.92
2019

April 3,2020  Friday 4.19 1.97 443 4.29
April 3,2019  Wednesday 3.72 142 3.79 4.42
June 30,2020 Tuesday  7.63 431 7.83 8.53
June 30,2019  Sunday 4.34 2.85 3.92 4.78
October 23, Friday 4.74 2.84 5.18 5.62
2020

October 23, Wednesday 3.28 1.96 3.09 4.37
2019

November Friday 524 3.75 5.87 5.98
12,2020

November Wednesday 4.52 2.84 4.29 4.86
12,2019

December 4, Saturday 5.17 3.49 5.31 5.74
2020

December 4, Thursday 3.34 191 2.88 3.45
2019

5. CONCLUSION

This paper has two purposes. The first purpose is to investi-
gate the effect of the COVID-19 pandemic on power demand
in Tehran. The second one is to introduce novel methods for
forecasting power demand. Power demand variations between
2016 and 2020 are investigated. This paper indicates that both
the COVID-19 pandemic and economic crises affect power de-
mand. During the pandemic, the power demand is affected by
governmental limitations. Results indicate annual power de-
mand growth is reduced during the pandemic and economic
crisis. In 2018, Iran was in a financial crisis, and in 2020, the
COVID-19 pandemic affected Iran. The average power demand
growth in 2018 is 0.24% and is less than in 2019 and 2017. Also,
results indicate the average power demand growth in 2020 is
1.03% and less than in 2019. Although power demand is affected
by the pandemic and financial crisis, the power demand pattern
is almost similar on the same days. Our study illustrates that to
estimate the power demand, the rate of power demand changes
in the different years must also be considered. In this paper,
two models are introduced to forecast power demand. The first
model is developed based on PCR. This model considers power
demand in the previous days and hours by considering daily,
annual, and biannual power demand variation rates. The sec-
ond model is developed based on TWSVQR. In this model, a
new loss function is used to robust the model against outlier
data. This model considers different factors such as electricity
price and air temperature and humidity to estimate power de-
mand. Also, this model can be modified for considering unusual
conditions such as the COVID-19 pandemic. In the simulation
results, we investigate the performance of our algorithms to
predict power demand in Tehran. It is observed that the average
errors for TWSVQR, PCR, SVQR, and FENN are 2.58%, 4.60%,
4.63%, and 5.23%, respectively. Our proposed TWSVQOR has the
best performance because it uses a novel loss function that is
robust against outlier data. In addition, TWSVQR needs less
data to train. Therefore, we can conclude, the main advantage
of this model is its flexibility and robustness.
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