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In traditional networks, power transmission from production centers to consumption centers causes many
issues such as energy losses, decreased reliability, and low power quality. These issues have given rise
to a new trend in electricity networks known as microgrids. This paper presents a new hybrid two-stage
operational model based on the information gap decision theory (IGDT)/stochastic method for optimum
energy management of an islanded microgrid under uncertainties. The suggested model investigates the
uncertainty associated with wind energy using the IGDT method without using a probability distribu-
tion function or scenario creation. Uncertainties in electricity demand and vehicle owners behavior are
also examined using a two-stage stochastic method. The suggested hybrid method, which is described
as a bi-level two-stage optimization framework, benefits from both IGDT and scenario-based stochastic
programming methods. Furthermore, the proposed microgrid includes new energy sources such as intel-
ligent electric vehicle parking lots, energy storage devices, and demand response programs, all of which
work together to decrease the cost of daily operation. According to numerical findings, the optimum uti-
lization of new energy sources under the suggested hybrid approach lowers operational costs by 4.8%. ©

2022 Journal of Energy Management and Technology
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NOMENCLATURE

Sets
b Bus index
g DGUs index
es EES index
el Power load index
pl EVPL index
t Time index
wp Wind turbine index
s Scenario index
ps Scenario probability
βg, cg Cost factor of DGUs

Cevpl
pl Cost of EVPL in V2G mode

Cbes
es Cost of ESS in discharge mode

Cedr
el Cost of applying DR

sug,t, sdg,t Cost of startup and shutdown

Rup
g /Rdn

g Up/down ramp rate of DGUs
MDTg/MUTg Minimum down/up time of DGUs

Pdis,min
es /Pdis,max

es Minimum/maximum discharge rate of
EES

Pch,min
es /Pch,max

es Minimum/maximum charge rate of EES

DRup_ max
el, t /DRdn_ max

el, t Maximum participation rate in
DRPs

Npl,t,s/Cappl,t,s Number/capacity of EVs in EVPL
Pg,t,s/Qg,t,s Active/reactive power generated by DGUs
Ig,t State of DGUs in network

Pdis_evpl
pl,t,s , Pch_evpl

pl,t,s Power dispatch of EVPL in dis-
charge/charge mode

Pdis_es
es,t,s , Pch_es

es,t,s Power dispatch of EES in discharge/charge
mode

DRdn
el,t,s, DRup

el,t,s Downward/upward changes of power
demand
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xch
es,t,s, xdis

es,t,s Binary variables related to
charge/discharge of EES

SOCes,t,s, SOEpl,t,s State of charge of EES and EVPL

dDR
el, t,s, del, t,s Power demand after and before DR

Pwp,t,s Wind power generation

UPL2G
pl, t,s , UG2PL

pl, t,s Binary variables related to charge/discharge
of EVPL

PFb,b′ ,t,s,QFb,b′ ,t,s Active and reactive power flow
δb,t,s, Vb,t,s Angle and voltage of buses

1. INTRODUCTION

In recent years, the growing trend of energy consumption and
the constraints, economic and environmental problems caused
by fossil fuel sources have made the issue of energy management
one of the most important issues. The concept of microgrids
(MGs) has become very important due to goals such as the de-
velopment of renewable energy sources (RESs), technological
advances and government policies to reduce fossil fuel consump-
tion and the deprivation of some areas of energy distribution
networks. The MG is a part of the electricity generation and
distribution network that consists of a number of distributed
generation units (DGUs), energy storage systems, loads and pro-
tection equipment and can operate in two modes: connected to
the grid or independent of the national grid [1]. The advantages
of MGs include reducing energy and fuel costs, increasing sys-
tem reliability, increasing power system flexibility, improving
the quality of services for consumers, and improving the man-
agement of renewable resources uncertainty [2]. Furthermore, as
the use of RESs has increased, new difficulties in the operation
of power networks have emerged owing to the uncertain nature
of these resources. To meet these challenges, it is necessary to in-
crease flexibility in the operation of power systems. Operational
flexibility in the power grid means creating a balance between
production and consumption with the lowest operating costs.
Various solutions have been proposed to enhance the flexibil-
ity of electrical networks, such as using modern approaches to
uncertainty management [3], using resources with fast startup
[4], improving network infrastructure and efficiency, and apply-
ing emerging resources [5].The presence of emerging flexible
sources such as intelligent electric vehicle parking lots (EVPL),
energy storage devices (EES) and demand response programs
(DRPs) are good options to decrease the impact of uncertainty
on the output power of RESs and create. Also, with the enhanc-
ing penetration of EVPLs and RESs in power systems, the need
to provide a modern uncertainty management approach has
become very important. Therefore, this paper proposes a new
two-stage optimization problem to manage uncertainties related
to RESs, power demand, and the behavior of EV owners in an
islanded MG integrated with emerging energy sources.

A. Literature review
Several studies on MG energy management have been con-
ducted in recent years. In [6], an optimum pricing approach
for a MG in the energy markets utilizing the MG reconfiguration,
which is stated as a two-stage optimization scheme with the
AC power model in consideration. As mentioned in [? ]one of
the distinguishing features of MGs is their capacity to operate
in an islanding mode, which may offer many advantages to
both customers and energy providers. This literature offers a
novel optimum approach for configurable MGs that seeks to

minimize the overall cost of operation in terms of reliability cost,
fuel cost, and the cost of buying energy from the upstream net-
work. Due to the existing uncertainties and limitations of AC
power flow, in [7], The authors of [7],presents a comprehensive
optimization framework for scheduling an MG including RESs,
microturbine generators, as well as batteries. In [8], an optimum
scheduling model for an MG’s involvement in the energy distri-
bution market is given in conjunction with a distribution market
operator. The authors of [9] propose a stochastic model for as-
sessing economic-environmental problems in a reconfigurable
MG integrated with combined heat and power, with the goal of
minimizing the overall operating cost of a power and heat-based
MG.
The authors of [9] examined energy management and operation
from the fundamental elements of industrial performance, where
intelligent systems and MGs are presented as the next step for
industrial facilities to utilize and manage energy usage. The au-
thors of [10] propose a stochastic structure for optimal planning
and operation of long-term development of heat and power-
based MGs as part of an active distribution network, wherein
the optimal location and capacity of thermal and electrical fa-
cilities, as well as the effect of RESs and DRP, are determined.
In [11], information gap decision theory (IGDT) was utilized
to describe load uncertainty in order to achieve optimum MG
scheduling in the short term. To offer a thorough analysis of
load uncertainty, the best and worst conceivable circumstances
are assessed using the robustness and opportunity functions of
IGDT, resulting in risk-averse and risk-seeker models. In [12],
a methodology for power management of a multi-MG system
with the objective of decreasing emissions as well as other fi-
nancial goals is given as a stochastic programming model in
an unpredictable environment, in accordance with worldwide
legislation to decrease pollutants. In [13], a stochastic technique
to address uncertainties in MGs is studied by considering carbon
emissions and energy costs as objective functions, focusing on
the role of DRPs and EESs on the mentioned objective functions.
In [14], a robust model for optimal management of multi-MGs
in the presence of power-to-X technologies and EVPLs is pro-
posed, in which a decentralized technique is employed to solve
the model by considering their private information. A multi-
objective IGDT model is proposed in [15] to control uncertainties
linked to renewable energy resources in hydrogen-based MGs,
where the influence of EVPLs on the energy cost of MGs is also
studied.
The authors of [16] developed a robust-stochastic hybrid ap-
proach to find the optimum MG scheduling without taking into
account the network’s technological constraints. In [17], an
IGDT-stochastic programming technique was assessed for the
optimum performance of an energy hub, in which wind unit un-
certainty is controlled using a probabilistic strategy and power
price uncertainty is addressed using the IGDT method. A hy-
brid stochastic-IGDT approach for simultaneous optimization of
gas and electricity providers in the presence of electricity to gas
conversion units is also presented in [18], at which uncertainties
related to wind energy are modelled using a stochastic approach
and uncertainties related to gas demand are modelled using an
IGDT approach. In [19], a hybrid two-stage hybrid-IGDT tech-
nique is suggested to address the electricity and heat markets,
wherein the uncertainty related to wind power production is
modelled using the IGDT approach and the uncertainty related
to electricity demand and heat is modelled using the stochastic
approach. In [20], the linked scheduling of electricity, gas, and
heating networks is addressed using a combination stochastic-
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robust method, wherein wind energy uncertainty is represented
using a robust solution while electricity, heat, and gas demand
uncertainty is managed using a stochastic approach. In [21],
a mixed robust-stochastic model is introduced to consider un-
certainties linked to wind and energy price in multiple energy
systems.

B. Contributions
In the reviewed studies, the authors focused mainly on stochas-
tic, robust, and IGDT approaches to managing uncertainties in
islanded MGs, ignoring the role of hybrid approaches in ad-
dressing uncertainties in islanded MGs. In addition, the role of
emerging energy sources under a coordinated plan to decrease
the cost of operating an islanded MG has not been comprehen-
sively studied in the reviewed articles. According to Table 1
and reviewed studies, in this paper, a new two-stage hybrid
stochastic-IGDT approach for optimal management of power
sources in an islanded MG in the presence of EVPL, DRP, and
EES is evaluated. The main contributions to this paper are as
follows:

• Presenting a hybrid two-stage stochastic-IGDT approach to
managing wind energy uncertainties, power load, and the
behavior of electric vehicle owners in an islanded MG. In
the introduced model, the uncertainty in wind power gen-
eration is modeled under an IGDT-based robust approach
and the uncertainties related to power load and electric
vehicles are modeled under the stochastic programming.

• Evaluating the effect of the DRP and EES on the optimum
operation of an islanded MG, taking into account the tech-
nical limitations of the MG.

• Investigating the effect of the vehicle-to-grid (V2G) capa-
bility of EVPL on the optimal scheduling of the islanded
MG and the daily operating cost, taking into account the
uncertainties related to the time of entry and exit of EVs
from the parking lot, as well as the state of charge (SoC) of
vehicles when entering and leaving the parking lot.

Table 1. Comparison between the proposed model and
previous works

Refs Islanded MG EVPL EES DRP Uncertainty modeling

[? ] X × X × Chance-constrained stochastic

[11] × × X X IGDT

[13] × × X X Stochastic

[14] × X X X Robust

[15] × X X X IGDT

Proposed model X X X X Hybrid IGDT/stochastic

2. PROBLEM FORMULATION UNDER THE STOCHAS-
TIC MODEL

A. Objective function
The suggested stochastic programming model aims to minimize
the cost of operating the islanded MG in the face of uncertain-
ties due to electric cars and power demand, regardless of wind
power output uncertainties. The suggested model’s goal func-
tion is represented as a stochastic planning problem in 1, which
is divided into five sections. The first section details the costs
of starting up and shutting down DGUs. The operating costs of
DGUs are shown in the second portion of the objective function.

The third component of the goal function depicts the cost of
operating the EVPL. The fourth and fifth parts of the objective
function also indicate the cost of operating the EES and carrying
out the DRP, respectively.

min
NT
∑

t=1

NG
∑

g=1

(
sug,t + sdg,t

)

+
NS
∑

s=1
ps


NT
∑

t=1

NG
∑

g=1

(
βgPg,t,s + cg Ig,t

)
+

NT
∑

t=1

NPL
∑

pl=1
Cevpl

pl Pdis_evpl
pl,t,s

+
NT
∑

t=1

NES
∑

es=1
Cbes

es Pdis_es
es,t,s +

NT
∑

t=1

NEL
∑

el=1
Cedr

el DRdn
el,t,s


(1)

B. Constraints
In recent years, DGUs have received much attention due to
their unique characteristics, such as rapid response, extremely
low pollution, low operating costs, and greater environmental
friendliness. A set of limitations related to the operation of
DGUs is presented in relationships 2 to 12. Eqs. 2 and 3 show
the active and reactive power limits of DGUs. Eqs. 4 and 5 show
the power ramp rate limit of DGUs. The minimum up and down
time of DGUs is given in 6 to 9. The on and off states cost of the
DGUs are also expressed by 10 to 12 [21].

Pmin
g Ig,t ≤ Pg,t,s ≤ Pmax

g Ig,t (2)

Qmin
g Ig,t ≤ Qg,t,s ≤ Qmax

g Ig,t (3)

Pg,t,s − Pg,t−1,s ≤ Rup
g (4)

Pg,t−1,s − Pg,t,s ≤ Rdn
g (5)

Ig,t − Ig,t−1 ≤ Ig,t+UTg,u
(6)

UTg,u =

 u u ≤ MUTg

0 u > MUTg
(7)

Ig,t−1 − Ig,t ≤ 1− Ig,t+DTg,u
(8)

DTg,u =

 u u ≤ MDTg

0 u > MDTg
(9)

0 ≤ sug,t ≤ SUCg(Ig,t − Ig,t−1) (10)

0 ≤ sdg,t ≤ SDCg(Ig,t−1 − Ig,t) (11)

The set of limitations related to battery performance is given in
12 to17. Battery charge and discharge limits are given in 12 and
13. The logical relationship between charge and discharge, which
indicates that the battery can only be in a charge or discharge
operation at any one time, is given in Equation 14. The SoC of
the battery is given in 15. The equality of the initial and final
conditions of battery SoC is given in 16. Finally, the battery SoC
should be limited by the minimum and maximum values given
in 17 [22].

Pdis,min
es xdis

es,t,s ≤ Pdis
es,t,s ≤ Pdis,max

es xdis
es,t,s (12)

Pch,min
es xch

es,t,s ≤ Pch
es,t,s ≤ Pch,max

es xch
es,t,s (13)

xch
es,t,s + xdis

es,t,s ≤ 1 (14)
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SOCes,t+1,s = SOCes,t,s + ηch
es Pch

es,t,s −
Pdis

es,t,s

ηdis
es

(15)

SOCes,t=24,s = SOCes,int (16)

SOCmin
es ≤ SOCes,t,s ≤ SOCmax

es (17)

According to the DR scheme, consumers can shift their load
from high-priced hours to lower-priced hours, thereby reducing
their electricity bills and receiving a reward for reducing their
load. The network load after running the DR program is defined
by 18. Eq. 19 states that the total amount of shifted load over the
entire time period is zero. In addition, the amount of shiftable
load per hour has a limit expressed by 20 and 21 [17].

dDR
el, t,s = del, t,s − DRdn

el,t,s + DRup
el,t,s (18)

NT

∑
t=1

(DRup
el,t,s − DRdn

el,t,s) = 0 (19)

0 ≤ DRup
el,t,s ≤ DRup_ max

el, t (20)

0 ≤ DRdn
el,t,s ≤ DRdn_ max

el, t (21)

The equations for EVPL are given in 22 to 34. In the proposed
model, the EVPL, in addition to the responsibility of charging
electric vehicles, taking into account the preferences of vehicle
owners, can also work in the V2G mode. In relations 22 to 26,
the time of entry and exit of vehicles to/from the parking lot and
their SoC at the time of entry and exit to/from the parking lot are
expressed by the Gaussian probability distribution function. In
these relationships,µ andσ2 are mean and variance of uncertain
parameters, respectively.

tarv
ev = fTG(χ; µarv, σ2

arv, (tarv,min
ev , tarv,max

ev )) (22)

tarv
ev ≤ tdep

ev (23)

tdep
ev = fTG(χ; µdep, σ2

dep, (tdep,min
ev , tdep,max

ev )) (24)

SOCarv
ev = fTG(χ; µSOCarv , σ2

SOCarv
, (SOCarv,min

ev , SOCarv,max
ev ))

(25)
SOCdep

ev = fTG(χ; µSOCdep , σ2
SOCdep

, (SOCdep,min
ev , SOCdep,max

ev ))

(26)
The number of vehicles in the parking lot at time t is determined
by 27 and the parking capacity at time t is obtained from Equa-
tion 28 according to the capacity of the vehicles that are in the
parking lot at this time.

Npl,t,s = Npl,t−1,s + Narv
pl,t,s − Ndep

pl,t,s (27)

Cappl,t,s = Cappl,t−1,s + Caparv
pl,t,s − Capdep

pl,t,s (28)

The maximum allowable power between the parking lot and
the MG at time t is provided by 29 and ??. As can be seen,
this amount depends on the number of vehicles in the parking
lot and the charge and discharge rate. In order to prevent si-
multaneous discharging and charging in the parking lot, 31 is
considered. The SoC of the parking lot is obtained at any given
moment from 32. The maximum and minimum parking energy
levels are presented as a function of parking capacity in relation
33 [3].

PPL2G
pl, t,s ≤ γdis Npl,t,sUPL2G

pl, t,s (29)

PG2PL
pl, t,s ≤ γch Npl,t,sUG2PL

pl, t,s (30)

UPL2G
pl,t,s + UPL2G

pl,t,s ≤ 1 (31)

SOEpl,t,s = SOEpl,t−1,s + SOEarv
pl,t,s − SOEdep

pl,t,s

+ηchPG2PL
pl,t,s −

PPL2G
pl,t,s
ηdis

(32)

SOCmin
PL CapPL,t,s ≤ SOEPL,t,s ≤ SOCmax

PL CapPL,t,s (33)

The set of limitations related to the power grid, including the
balance constraints and the power flow relationships, is stated
in the set of relations 34 to 38. The limits of active and reactive
power balance and power flow of different sources are expressed
in ?? and ??. The AC power flow relationships for active and
reactive power are shown in 36 and 37, respectively. The heat
limit of the transmission line is given in 38 and 39. Finally, the
voltage limit for each network bus is given in 40.

Gb

∑
g

Pg,t,s +
WPb

∑
wp

Pwp,t,s +
ESb

∑
es

(
Pes_dis

es,t,s − Pes_ch
es,t,s

)
+

PLb

∑
pl

(
PPL2G

pl, t,s − PG2PL
pl, t,s

)
−

ELb

∑
el

ddr
el,t,s = ∑

b′
PFb,b′ ,t,s

(34)

Gb

∑
g

Qg,t,s +
WPb

∑
wp

Qwp,t,s −
ELb

∑
el

Qdr
el,t,s = ∑

b′
QFb,b′ ,t,s (35)

0 ≤ PFb,b′ ,t,s ≤ PFmax
b,b′ (36)

0 ≤ QFb,b′ ,t,s ≤ QFmax
b,b′ (37)

0 ≤ PFb,b′ ,t,s ≤ PFmax
b,b′ (38)

0 ≤ QFb,b′ ,t,s ≤ QFmax
b,b′ (39)

Vmin
b ≤ Vb,t,s ≤ Vmax

b (40)

3. 3. PROBLEM FORMULATION UNDER HYBRID
STOCHASTIC-IGDT

As previously stated, the IGDT technique was employed in this
research to simulate the uncertainty of wind power output. In
general, the following is the mathematical explanation of the
problem uncertainty:

U = U(Ψ, ε) =

{
Ψ :

∣∣∣∣Ψ−Ψ
Ψ

∣∣∣∣ ≤ ε

}
(41)

Where and are the forecasted and actual values of the uncertain
parameter. is the difference between the forecasted and the
actual value of the uncertain parameter [19].
This approach, which is frequently employed by conservative
decision-makers, improves the objective function’s performance
against the potential of mistakes in estimating the unknown
input parameter. The collection of decision variables must be
established in such a manner that the real objective function is
computed against the uncertainty parameter’s deviation from
the anticipated value. When the goal function is secured against
the maximum uncertainty radius, a risk-averse decision is taken.
In other words, the decision-maker will be confident that the
value of the objective function does not exceed the allowed limit
for an undefined parameter within the range of the obtained
uncertainty radius. These are the mathematical connections that
describe this strategy:
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α(X, ∆C) = Max

ε :

 Max
Ψ∈U(

−
Ψ, ε)

OF ≤ ∆C = (1 + β)OFb


(42)

In the above relation, and are the critical value and the base
value of the objective function and X are the problem decision
variables, respectively. The unknown parameter has a negative
impact on the objective function in the risk aversion strategy. As
a result, the system operator considers a higher cost in propor-
tion to the undesired wind energy deviation in this plan, which
is expressed as a two-level problem in the following equations.

α = max ε (43)

max
NT
∑

t=1

NG
∑

g=1

(
sug,t + sdg,t

)

+
NS
∑

s=1
ps



NT
∑

t=1

NG
∑

g=1

(
βgPg,t,s + cg Ig,t

)
+

NT
∑

t=1

NPL
∑

pl=1
Cevpl

pl Pdis_evpl
pl,t,s

+
NT
∑

t=1

NES
∑

es=1
Cbes

es Pdis_es
es,t,s

+
NT
∑

t=1

NEL
∑

el=1
Cedr

el DRdn
el,t,s


≤ ∆C

(44)

(1− ε)
−

Pwp,t ≤ Pwp,t ≤ (1 + ε)
−

Pwp,t (45)

(2)− (41) (46)

In this section, the suggested two-level optimization problem
has been reduced to a single-level problem in order to be solved
by standard solvers. As previously stated, forecast error in wind
power output is modelled using a risk aversion methodology,
which raises operational costs. As a result, only the decrease in
wind power output has a negative impact on the MG operat-
ing cost in this methodology. As a consequence, the two-level
problem denoted by 43 to 46 may be reduced to a single-level
problem, as shown below. The flowchart of how to solve the
introduced model is presented in Figure1.

α = max ε (47)

NT
∑

t=1

NG
∑

g=1

(
sug,t + sdg,t

)

+
NS
∑

s=1
ps



NT
∑

t=1

NG
∑

g=1

(
βgPg,t,s + cg Ig,t

)
+

NT
∑

t=1

NPL
∑

pl=1
Cevpl

pl Pdis_evpl
pl,t,s

+
NT
∑

t=1

NES
∑

es=1
Cbes

es Pdis_es
es,t,s

+
NT
∑

t=1

NEL
∑

el=1
Cedr

el DRdn
el,t,s


≤ ∆C

(48)

Pwp,t = (1− ε)
−

Pwp,t (49)

(2)− (41) (50)

4. RESULTS

An islanded MG with the existence of developing energy sources
under uncertainties is investigated in order to assess the sug-
gested model. The studied MG with respect to developing
sources is shown in Figure2. Information about the MG is given
in the reference [22]. Information on DGUs can be found in[23].
In addition, the entry time of vehicles into the parking lot, their
exit time and their SoC when entering and leaving the parking
lot are determined based on the Monte Carlo simulation, with
an average entry time of 8, an exit time of 16, and an initial
and final energy level of 0.4 and 0.8. The maximum charge
and discharge rate of the EES is 20 kW. The EES capacity is
also considered to be 100 kWh. The efficiency of charging and
discharging EES and EVPL are also assumed to be 0.9. The con-
sumer participation factor in DRP is assumed to be 10% and
the cost of implementing the DRP is estimated at 5 cents per
kilowatt-hour. The electrical demand and predicted power of
the wind unit is shown in Figure3. To simulate the uncertainty of
power load and the behaviour of electric cars, 1000 scenarios are
created using Monte Carlo simulations, which are then reduced
to ten scenarios with the probability given in TAble2. To simplify
the scenario, the SCENRED tool in GAMS software was utilised
[25]. The suggested model is represented as a mixed-integer lin-
ear programming (MILP) problem that is handled using GAMS’
CPLEX solver. The proposed method is a convex optimization
model and can be solved by commercial solvents such as CPLEX.
The solution time of the proposed model is less than 5 seconds,
which can be easily used for MGs with more DGUs, loads, and
lines. To assess the suggested model, the following two cases
are studied:
Case 1: Optimal operation of islanded MG under two-stage
stochastic programming
Case 2: Optimal operation of islanded MG under hybrid IGDT-
stochastic model

 

Solving stochastic approach to minimize the islanded MG cost without wind power uncertainty

Considering the wind power uncertainty using IGDT technique

Applying risk-averse (RA) strategy 

Updating expected cost based on RA strategy and robustness parameter

Determining optimum robustness function α

Start

End

Calculating the expected cost of islanded MG without wind power uncertainty

Generating scenarios for electric vehicles and load using Monte Carlo simulation 

Decreasing the number of scenarios by SCENRED tool in GAMS 

Fig. 1. Flowchart related to how to solve the proposed prob-
lem
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Fig. 2. The studied MG with emerging resources
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Table 2. The probability of scenarios
Scenarios 1 2 3 4 5

Probability 0.11 0.04 0.07 0.13 0.15

Scenarios 6 7 8 9 10

Probability 0.07 0.18 0.1 0.07 0.08

Case 1: In this case, uncertainties related to electric demand
and electric vehicles are considered and uncertainties related to
wind units are ignored. Figure 4 shows the hourly scheduling
of DGUs. It can be seen that units G1 and G2 are committed at
all hours in order to meet the maximum demand for electricity
since these units are the cheapest power plants. Unit G3 also
participates in all hours, but the amount of participation depends
to some extent on the amount of demand. Unit G4, as the most
costly unit, also participates between hours 10 and 22, when the
demand is high and the production capacity of the wind unit
is low, and provides part of the electricity demand required by
the system. In this case, the operating cost is $1217.62. Figure5
depicts the EES charging and discharging schedule during a 24-
hour cycle. It can be observed that the EES system is in charging
mode in the early hours when the network’s electrical demand
is minimal. It is subsequently worked in discharging process
during the hours when the network demand is mostly increased,
resulting in a reduction in operating costs. Furthermore, while
the EES system is in the charging mode, the energy level in the
EES is boosted, and when the EES system is in the discharged
mode, the energy level in the EES is decreased. The EES’s goal

is to decrease the power output of costly power plants during
peak hours of energy pricing. Without taking into account the
EES, the operating cost is $1235.9.
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DR also transfers the load from peak to low demand hours,
lowering the cost of daily operation. Figure6 illustrates that a
substantial percentage of the load is moved from peak to non-
peak hours, resulting in a decrease in the involvement of costly
unit G4 to satisfy part of the peak demand. Electric vehicles are
also charged based on the time of entry, exit and their initial
and final energy level in the MG. It can be seen from Figure7
that in the early hours of entering the parking lot, the operator
tends to charge the vehicles because the amount of electricity
demand is lower during these hours. In addition, smart parking
acts as a producer during peak hours of electricity demand and
can inject some power into the grid, reducing the participation
of expensive power plants G4 to provide part of the load. The
operation cost without the presence of DR and V2G mode of
EVPL is equal to $1259.41. It should be noted that without the
presence of all emerging energy sources, the cost of operation is
equal to $1276.31.

Case 2: In this case, in addition to the uncertainties stated in
the previous case, the uncertainties associated with wind energy
are taken into account. The value of β is raised from 0 to 0.05
in order to assess the IGDT-based robust strategy. The base
operating cost is assumed to be $1217.62, which is equivalent to
the expected operating cost in the presence of emerging energy
sources. Figure8 shows that as β increases, the value of the
optimal function α and the daily operating cost increase. This
means that the operator must incur higher operating costs to
handle a broader range of the wind energy prediction error.
For example, for β equal to 0.01 and 0.04, the optimal value of
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α is equal to 0.07 and 0.33, respectively, which means that by
increasing β by 0.04, the operator can guarantee a maximum
operating cost of $1266 if the error in wind energy prediction
does not exceed 33%. Figure9 shows the impact of the parameter
β on the power dispatch of unit G4. It is observed that with
increasing β, the participation rate of unit G4 has increased
significantly in order to supply the network load. This is due to
the fact that with enhancing β, the operator takes a more risky
approach in order to make the robust strategy to wind power
uncertainty. Therefore, under the risk aversion strategy, the
operator’s dependence on changes in wind production capacity
decreases, and instead, the participation rate of expensive power
plants and the daily operating cost increase.
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5. CONCLUSION

This paper presented a two-stage hybrid IGDT-stochastic ap-
proach to the optimal energy management of an islanded MG
under uncertainties. In the proposed model, wind energy uncer-
tainty was modeled based on the IGDT method without the use
of scenario generation. Uncertainty related to electric charge and
the behavior of electric vehicles were also modeled under a two-
stage stochastic approach. The proposed hybrid approach si-
multaneously benefits from both IGDT approaches and scenario-
based stochastic programming. In the investigated approach,
the MG operator was able to achieve an acceptable operating
cost within a tolerable range of wind power generation errors
and plan the resources under its ownership accordingly. In addi-
tion, the operator must incur higher operating costs to achieve a
robust model to managing fluctuations in wind power. Also, the
proposed MG was equipped with emerging energy sources such
as EES systems, EVPL and DRP, which the optimal use of these
resources under the integrated approach reduced the daily op-
erating costs by 4.8%. In future works, we will mainly focus on
the optimal scheduling of energy-water MGs in the presence of
multiple conversion resources. In addition, new hybrid models
will be adopted to control uncertainties.
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