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This paper describes a scheduling problem formulation to optimize and trade-off economic and emission
(Eco-Emission) costs of a microgrid (MG). This MG includes solar parking lots (SPL) and local distributed
generation (LDG) with a grid-connected bus to exchange power. The output of this work is an operation
instruction that is applicable for the operator of MG. This MG operator (MGO), located in the control
center of MG, could select either limited power exchange or unlimited power exchange with the main grid.
These conditions are considered as two scenarios for the scheduling problem. The proposed bi-objective
eco-emission problem is solved by using the ε-constraint and max-min fuzzy decision-making method.
In the last section, the input/output power of MG has been studied taking into account demand response
(DR). The simulation of the presented framework is carried out in GAMS software. As investigated the
obtained results, exchange power with a main grid has a positive effect in decreasing total emission and
economic cost of the MG. © 2022 Journal of Energy Management and Technology

keywords: Eco-Emission Cost, uncertainties, scenario Tree, scenario reduction, ε-constraint method

http://dx.doi.org/10.22109/jemt.2021.289829.1306

NOMENCLATURE

Indices
f Index of the linear model of LDG minimum on/off time
i Index of EV
j PL index
k Fuel cell index
l Index of photovoltaic cell
m Energy storage system index
t Sample time index

Parameters

aj, bj LDG cost coefficients
BGrid

t Power transfer price between the MG and upstream
net

Capj Capacity of plants
DRmax Upper bound of allowable DRP participation
Dnj,f/Upj,f Minimum down/up time limit of LDG

EGit The emission factor for each unit
EGrid

t The emission factor of the power purchase from the
upper grid

Gt Sunlight irradiation

loadt
0 Based load without considering TOU

MUTj/MDTj Minimum up/down time of LDG
NEv Total number of EVs in PL
PPV

t PV power output

Pj
LDG,max/Pj

LDG,min Max/Min power output of LDG
Pmax

UG Upper bound of injected power of main grid

Pi
Ch,max Upper bound of EV charge amount

Pi
Dch,max Upper bound of EV discharge amount

RDj, RU j LDG Ramp up/down rate
SOCmax/SOCmin Max/Min state of charge
SOC Max value of predicted SOC value
α Years of the planning horizon
λ The variance of prediction presented EVs in the PL
πs TPossibility of each scenario
µ TThe average number of presented EVs in the PL

Variables

Cj,t
LDG The operation cost of LDG

DRPt Shifted load based on TOU
loadt GEnergy demand considering DRP
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Mi,t Binary variable for the participation of EV in SPL
PGrid

t Power transfer between the MG and upstream net
ICi Investment cost of units
OCt,α

i The operational cost of plants in the planning
horizon

OF1 The first objective function
OF2 The second objective function
PWT

t HThe output power of Wind Turbine

Pi,t
Ch,Ev/Pi,t

Dch,Ev EV charging/discharging power

Pj,t
LDG LDG scheduled power

SOCi,t SOC of EV
SCj,t

LDG The startup cost of LDG
SOCj State of charge of jth EV

U j,t Binary variable for ON/OFF status of LDG

1. INTRODUCTION

Energy hub system (EHS) includes several kinds of generations
and storage units to meet several kinds of demands. Combined
heat and power (CHP) supplies both heat and power demands.
Boilers and heat storage can be utilized to manage thermal loads.
Electric vehicles (EVs) are a new kind of loads which increase
the peak time of the daily load curve (DLC) [1]. To properly in-
tegrate EVs, and have a flat DLC, parking lots (PLs) are located
in the power system. Fuel-cell-based EVs are used to reduce the
amount of destructive emitted gases produced by vehicles. The
combination of the mentioned units is defined as a microgrid
(MG). The optimal setting and sizing of MG is the first problem.
After installing the proper units, managing them is considered
the second problem. First, several studies that are performed on
MG planning are investigated to illustrate the main contribution
of this study.
In [2], a new active controller was employed to the heat-
ing/cooling systems to obtain optimal MG planning results. The
effects of the presented controller were investigated in the con-
text of a smart grid with high integration of renewable sources.
The optimal performance of a smart MG considering both eco-
nomic and emission (eco-emission) cost in a short-term study
was analyzed by [3]. The authors proposed a stochastic pro-
gramming model to minimize total eco-emission costs. Authors
in [4], proposed an MG with EV parking lots and renewable en-
ergies as a case study to investigate its reliability and economic
constraints. Enhancing technical issues of a 33-bus distribution
network by installing a MG was studied in [5], which was formu-
lated as a bi-objective function. The upper level was defined as a
planning problem, and the lower level, which was written as an
inner problem, was proposed as economic dispatch to minimize
the management and operation costs. Authors in [6] proposed
a new approach to solve an optimal configuration of MG. The
configuration problem was formulated as a bi-objective func-
tion with reliability constraints. Private investor benefits were
defined following MGO benefits. The Monte Carlo simulation
method (MCSM) was employed to create problem uncertain-
ties. In [7], the uncertain behavior of renewable sources was
considered in the economic performance of multicarrier energy
systems. In [8], the authors have studied the impact of employ-
ing several kinds of demand response programs (DRPs) on the
optimal configuration of the CHP system. The objective function
was suggested as a cost function, and the DR program with min-
imum total cost was obtained. The influence of employing DRP

on the optimal operation of multi-MG (MMG) was investigated
[9]. A hierarchical energy management system (HEMS) was
implemented for the optimal operation of MMG by consider-
ing the role of the energy management system (EMS). In [10]
authors studied the power flow analysis of distributed energy
resources (DER). The mentioned work was carried out on a sys-
tem including solar/wind droop controllers and electronically
coupled DERs.In [11] authors proposed a planning problem as
an eco-emission. Time of use (TOU)-based DRP was applied to
make a flat DLC.In [12], PLs were presented as a virtual power
plant, and their effects on the unit commitment problem were
investigated. Table 1 summarizes the main contributions and
consideration of the literature in this area with a comparison
with the proposed model in this study.

Table 1. Comparison of the literature and the proposed model
Reference DR Objective functions Uncertain parameters Scheduling time horizon

Economic Emission PV/Wind power Load EV Short-term Long-term

[13] X X X X

[14] X X X

[15] X X X X

[16] X X X

[17] X X X

[18] X X X

[19] X X X X X X

[20] X X X

[21] X X X

Current model X X X X X X X X

Based on the best of knowledge of the authors and compar-
isons made in Table1, researchers have not proposed a combined
long-term and short-term planning of microgrids considering
the uncertainties associated with all the renewable power, load,
and EV parameters. Accordingly, this study aimed at filling
this research gap by proposing a bi-level economic-emission
cost function by using ε-constraint and max-min fuzzy decision
method to solve optimal scheduling problem and utilizing the
scenario tree approach. To summarize, in this paper, a planning
problem is solved with these contributions:
1) Minimizing the total investment cost and the operational cost
of MGs considering economic-emission dispatch of the MG units
and uncertainties associated with MG parameters.
2) Dealing with uncertainties associated with power output of
renewable energy source (i.e., PV system), load of the MG, and
charging/discharging behavior of the EV drivers by employing
the scenario tree approach.
3) Using ε-constraint and max-min fuzzy decision method to ob-
tain the optimal scheduling problem among the Pareto-optimal
solutions with minimum operation cost and emission of pollu-
tant gases
Other sections of this paper are organized as follows: In Section2,
the planning problem is formulated considering the objective
function and operational constraints of DGs. Section3 depicts
the studied MG to evaluate the performance of the proposed
model. Section4 investigates the obtained results, and finally,
the proposed work is concluded in Section5.

2. PROBLEM DEFINITION

A. Objective function
As mentioned in the previous sections, the planning problem
is written as a bi-objective function. The first objective function
(OF1) includes the total investment cost and the operational cost
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of the MG. Eq. (??), shows the economic-based cost function.

OF1 = min f1(x) = min
n

∑
i=1

ICi + πs ×
24

∑
t=1

n

∑
i=1

OCt,α
i (1)

where IC and OC are defined as the total investment and op-
eration costs, respectively. These parameters are introduced as
follows:

IC =
N
∑

j=1
Capj × Cacj

OC =
NT
∑

t=1

Ng
∑

i=1

[ut
i PGitBGit + StartGi ×max(ut

i − u(t−1)
i )+

ShutGi ×max(u(t−1)
i − ut

i )] + PGrid
tBGrid

t]+
NPL
∑

j=1
OCPL

j × PPL
t +

NPV
∑

l=1
OCPV

l × PPV
t +

NFC
∑

k=1
OCFC

k × PFC
t +

NESS
∑

m=1
OCESS

m × PESS
t

(2)

where Capj and Cac are the capacity of the units and the in-
vestment cost of the units The second objective function (OF2)
includes an emission cost of the MG. The emission cost is formu-
lated as follows:

OF2 = min f2(x) = min
NT
∑

t=1
Emission_Costt =

n!
r!(n−r)!

= min
NT
∑

t=1

Ng
∑

i=1
[ut

i PGitEGit + PGrid
t × EGrid

t]

(3)

Where, EGit is the emission factor for each unit, and EGrid
t is the

emission factor of the power purchase from the upper grid.

B. The presented solution approach
In this paper two stage solution method has been proposed to
solve bi-objective cost function. As it is illustrated in the Eq. (4),
in the first stage by using ε-constraint method, bi-objective func-
tion is converted to single objective function. In the second one,
by using max-min fuzzy decision method and making a tradeoff
between functions, optimal solution is obtained among Pareto
optimal front solutions [22].

OF = min(Costop)

s.t Em ≤ ε

allequalityandinequalityconstraints

(4)

Max –min fuzzy decision-making approach is described as fol-
lows: Step 1: for each Pareto solutions (Xn), define a membership
function µ fk(Xn) as follows[23]:

µ fk(Xn) =


0 fk(Xn) > f max

k
f min
k − fk(Xn)

f min
k − f max

k
f min
k < fk(Xn) < f max

k

1 fk(X) < f min
k

(5)

Step 2: Maximization of the minimum satisfaction from all ob-
jectives as:

Np
max
N=1

(
No

min
k=1

(µ fk(Xn))) (6)

C. Operational constraints of MG units
All the DGs are modeled by studying uncertainties in this sec-
tion.

C.1. Modeling the PLs system

The capacity of the EVs’ batteries, the state of charge (SOC) level
for each EV, the charge/discharge schedule for EVs, and the
percentage of EVs in the PL all influence the input and output
power of PLs. All these variables are probabilistic in nature. The
percentage of EVs on the road is determined by the owner’s
driving habits [? ].This parameter can be given as:

EVPi,t = µ× (1 + 0.1λ) (7)

where µ and λ are the random variables that are generated by
a normal PDF with the mean value and the standard deviation
of 13.7 and 4.5, respectively.The travel distance and battery effi-
ciency determine the initial SOC of batteries. SOC is modeled
using a five-step normal distribution. This parameter can be
calculated as (8) [25]:

SOCt,i = SOC× (1 + α ∗ δ) (8)

where δ is a value of (-2.5,-1.5,0,1.5,2.5) , α and SOC are equal to
5% and 0.69, respectively.
For each case, the following values must be determined:
• The realized forecast error in the related scenario is the aver-
age value of each interval.
• The probability of each scenario The scenario-based method
of initial SOC is demonstrated in1
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Fig. 1. Five segment probability distribution (PDF) for SOC

The charge/discharge time of EVs are calculated as [25]

tch =
(SOCmax−SOCj)

Pv

tdisch =
(SOCj−SOCmin)

Pv

(9)

The input/output power of EV PL is achieved by considering
the introduced parameters as follows:

PPL−in/out
t =

24

∑
t=1

m

∑
i=1

CPi,t × Pv × EVPi,t × SOCi,t (10)

D. LDG system modeling
Eq. (11) - Eq. (21) show the constrained model of LDGs. In the
first step, operational and startup costs are formulated asEq. (11)
- Eq. (13) [? ].

Cj,t
LDG = aj ×U j,t + bj × Pj,t

LDG (11)

SCj,t
LDG ≥

(
U j,t −U j,t−1

)
×UDCj (12)
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SCj,t
LDG ≥ 0 (13)

The upper and lower bounds for producing power by LDGs are
achieved as Eq. (14), Eq. (15).Rand up and rand down limitations
of LDGs are shown inEq. (16), Eq. (17).The minimum up/down
times of LDG are limited as Eq. (18), Eq. (19).The minimum
up/down of LDGs is shown as a binary form in Eq. (20), Eq. (21)
[28].

Pj,t
LDG ≤ Pj

LDG,max ×U j,t (14)

Pj,t
LDG ≥ Pj

LDG,min ×U j,t (15)

Pj,t
LDG − Pj,t−1

LDG ≤ RU j ×U j,t (16)

Pj,t−1
LDG − Pj,t

LDG ≤ RDj ×U j,t−1 (17)

U j,t −U j,t−1 ≤ U j,t+Upj, f (18)

U j,t−1 −U j,t ≤ 1−U j,t+Dnj, f (19)

Upj,f =

 f f ≤ MUTj

0 f > MUTj

 (20)

Dnj,f =

 f f ≤ MDTj

0 f > MDTj

 (21)

E. Scenario tree
As mentioned in the last section, demand prediction and
output power of the renewable sources and the state of
charge/discharge are related to their uncertainties [29]. Figure
2 shows the scenario tree of the planning problem. As illus-
trated, each scenario starts from the first node (investment cost)
and meets the demand in the end node by passing through the
leaves. The possibility of each scenario is calculated by multiply-
ing the possibility of the generation and demand uncertainties
as well as the possibility of the unit’s availability. All the scenar-

ios and states are calculated as follows:S =
75
∏
1

SG,D ×
500
∏
1

SA =

30× 300 = 9000. The scenario reduction approach is used to
make a trade-off between computational time and accuracy [30].
In this paper, the Kantorovich distance (KD) algorithm is utilized
as a probability distance. Eq. (22) shows the approach of KD in
reducing problem complexity with scenario reducing [31, 32].

[KD(Q, Q′) = inf


∫

v×v′

L(s, s′)η(ds, ds′) :∫
v

η(., ds′) = Ω,
∫
v′

η(ds, .) = v′


(22)

where L(s, s′) is a non-negative, continuous, and symmetric cost
function, and the infimum is taken over all the joint probability
distributions defined in v×v′ . L(s, s′) that is given as:

L(s, s′) =
∥∥s− s′

∥∥T (23)

F. . Demand Response program (DRP)
To have an active transferrable load, the DR program is em-
ployed as the demand-side management approach. In this paper,
all the simulations are carried out by allowing the transferred
demand as 20% of the total demand. Eq. (24) - Eq. (27) show
how consumers participate in the DR program [33]-[35].

Loadt = Load0 × (1− DRt) (24)
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Fig. 2. Scenario tree

DRt ≤ DRmax × Loadt
0 (25)

DRt ≥ −DRmax × Loadt
0 (26)

T

∑
t=1

DRt = 1 (27)

3. SIMULATION RESULTS

A. Input data
Fig.3 depicts the proposed MG system. To simulate the planning
problem to this system, the input data are given in this section.
Two scenarios are studied using the proposed model, including
1: Limited energy exchange with the main grid, and 2: Unlimited
energy exchange with the main grid. In both cases, the total
electric demand in a day is 1695 kWh, for which the daily load
of the MG is shown in Fig.4.The price of purchased energy at
each time of the day-ahead market is given in 2. Minimum
and maximum operational constraints of LDG are given in 3
3. The cost of power coefficient of DGs is presented in 4 [? ].
The amount of generated emission in kg/MWh is given in 5.
The maximum output power of DGs is given in 6. Simulation is
done using the CPLEX solver of the general algebraic modeling
system (GAMS).

B. Numerical investigation
In this section, the obtained numerical results are discussed. As
mentioned previously, all the simulations are carried out for two
scenarios. The results are given as follows.
A. Scenario 1: Limited energy exchange with the main grid
In this scenario, DGs works in their operational constraints. The
required extra energy in the peak demand time has been sup-
plied with the main grid through the grid-connected bus. Table.7
shows optimal obtained results by utilizing the proposed opti-
mization algorithms. The total value of economic and emission
costs is $139.7634 and 578.901 kg, respectively.

B. Scenario 2: Un-limited energy exchange with the main
grid
In this scenario, the main grid is considered an unlimited unit.
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Fig. 3. The Proposed MG configuration

Table 2. Price of Purchased Energy
Time (Hour) Price ($/kWh) Time (Hour) Price ($/kWh)

1 0.23 13 1.5

2 0.19 14 4

3 0.14 15 2

4 0.12 16 1.95

5 0.12 17 0.6

6 0.2 18 0.41

7 0.23 19 0.35

8 0.38 20 0.43

9 1.5 21 1.17

10 4 22 0.54

11 4 23 0.3

12 4 24 0.26

Table 3. Minimum and maximum active power of LDG [37]

Time (Hour) DG Maximum Power (kW) Minimum Power (kW)

1 LDG 30 6

2 Fuel Cell 30 3

3 PV 25 0

4 PL 15 0

5 Battery 30 -30

6 Main Grid 30 -30

Table 4. Coefficients of units operation cost

Time (Hour) DG On/Off Cost ($)

1 LDG 0.96 0.294

2 Fuel Cell 1.65 2.584

3 PV 0 1.073

4 PL 0 0.38

5 Battery 0 0.457

This unit can exchange unlimited power with the proposed MG
[37, 38]. As illustrated in Table 8, the value of total cost and the

Table 5. Probability of each scenario [4]
Number DG NOx SO2 CO2

(kg/MWh) (kg/MWh) (kg/MWh)

1 LDG 0.1 0.0036 720

2 Fuel cell 0.0075 0.003 460

3 PV 0 0 0

4 PL 0 0 0

5 Battery 0.001 0.0002 10

Table 6. Output active power of DGs
Time (Hour) PV (kW)/installed (kW) PL&LDG(MW)

1 0 0.119

2 0 0.119

3 0 0.119

4 0 0.119

5 0 0.119

6 0 0.061

7 0 0.119

8 0.008 0.087

9 0.15 0.119

10 0.301 0.206

11 0.418 0.585

12 0.478 0.694

13 0.956 0.261

14 0.842 0.158

15 0.315 0.119

16 0.169 0.087

17 0.022 0.119

18 0 0.119

19 0 0.0868

20 0 0.119

21 0 0.0867

22 0 0.0867

23 0 0.061

24 0 0.041

amount of emission are $70.5844 and 528.47 kg, respectively.
As can be seen in the numerical results which are tabulated, the
optimal efficiency of the proposed algorithm is verified. Further-
more, the obtained results from the simulations revealed that
the value of total cost in scenario 2 is reduced compared with
scenario 1. MG sells energy to the main grid in the peak load
time.

4. DISPATCHING POWER OF UNITS

In this section, the dispatching power of each unit in a short time
is depicted. Figures 5-8 show the generated electric power of
each unit. To properly evaluate the problem, all the figures are
illustrated in both conditions, with and without considering the
TOU-based DR program. Overall, 20% of the total demand is
allowed to participate in the DR program.

The output power of LDGs is illustrated in Fig.5 - Fig.6. As
given in the results, according to the operation cost and the
amount of emission output of LDG, and considering the price
of the main grid, the amount of generated power by LDGs in
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Fig. 4. Daily load of the MG

Table 7. Obtained results of scenario 1
Hour Main Grid (kW) Battery (kW) Parking Lot (kW) PV (kW) Fuel Cell (kW) LDG (kW)

1 30 -14.671 1.7016 0 28.9688 6.0005

2 30 -9.2891 1.8004 0 21.4843 6.0042

3 30 -14.266 1.6443 0 26.3488 6.2728

4 30 -16.778 1.7785 0 29.9995 6

5 30 -8.424 1.8045 0 26.6192 6

6 30 -3.913 0.9143 0 29.9992 6

7 30 8.7861 1.7136 0 23.46 6.04

8 13.7467 23.784 1.3315 0.1376 30 6

9 -19.665 30 1.8198 3.8454 30 30

10 -30 30 12.5372 7.4635 30 30

11 -29.7587 30 8.7213 10.4096 29.9998 28.6296

12 -30 30 10.3649 12.022 30 21.6119

13 -29.9854 30 4.0182 23.705 29.9998 14.2617

14 -30 30 2.4628 20.771 30 18.7661

15 -23.2206 30 1.792 7.4275 30 30

16 -15.4526 30 1.301 4.1512 30 30

17 -7.3746 30 1.8159 0.5584 30 30

18 20.2378 30 1.7622 0 30 6

19 22.5505 29.999 1.5019 0 29.9478 6.0002

20 20.431 30 1.4981 0 29.3587 6

21 -13.778 30 1.2773 0 30 30

22 -18.9564 30 1.3132 0 30 28.6428

23 12.8978 15.192 0.9019 0 30 6.0082

24 30 1.1318 0.521 0 18.3466 6

off-peak time is increased compared with that in on-peak time.
Fig.7 shows the remaining SOC of EV in the PL. According to
this figure,employing DR encouraged EVs’ owners to charge
their EV batteries in the off-peak time and discharge and sell
it to the grid in the on-peak time. Since sun irradiation is com-
monly available from 6 A.M to 6 P.M, PV should work at all
times without affecting the DR program. Fig.8 demonstrates the
output power of the PV unit. Fig.9 shows injected power from
the upstream grid in both cases, with and without applying the
DR program. As it can be observed, the amount of the purchased
power in off-peak time is more than others. Figure 10 shows
the effect of applying the DR program in the DLC. As can be
seen, by transferring the flexible demands from on-peak time to
others, the consumers helped to have a semi-flat DLC. Pareto
optimal front in both cases under scheduling short-term study
is depicted in Fig.11. Considering this figure, employing the DR
improves both emission and economic issues.

Table 8. Obtained results of scenario 2
Hour Main Grid (kW) Battery (kW) Parking Lot (kW) PV (kW) Fuel Cell (kW) LDG (kW)

1 57.9916 -15 0 0 3.0023 6.0609

2 70.9586 -29.2011 0 0 3.0065 6.0021

3 70.9872 -30 0 0 3.0059 6.00689

4 71.9985 -29.999 0 0 3.0005 6

5 76.9909 -30 0.009 0 3.008 6.002

6 72.7249 -18.76 0 0 3.04 6

7 65.1048 -4.1048 0 0 3 6

8 28.1242 10.885 0 0 29.985 6.0004

9 -11.6785 25.884 1.7805 0 30 29.9985

10 -27.9992 25.882 15 7.1205 30 29.9984

11 -31.2727 25.999 8.7723 10.4412 30 29.9985

12 -38.3749 25.999 10.4133 11.9622 30 30

13 -21.9226 30 3.9228 0 30 30

14 -41.4301 30 2.3768 21.049 30 18.7661

15 -15.7802 30 1.7836 0.0001 30 30

16 -11.3521 30 1.3016 0.00256 30 30

17 -4.9875 30 0 0 29.9984 29.958

18 22.0265 29.9818 0 0 29.9982 6.0051

19 24.0215 29.9974 0 0 29.9984 6.0003

20 20.9939 29.9999 0.0032 0 29.3587 30

21 -13.7278 30 1.2773 0 30 30

22 -19 30 0 0 30 6

23 14.0254 15 0 0 29.9852 6.0082

24 46.8957 0.1042 0 0 3 6

 

 

Fig. 5. Output power of LDG1 

 

Fig. 6. Output power of LDG2
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 Fig. 7. SOC of EVs in PL
 

 

Fig. 8. Output power of PV unit
 

 

Fig. 9. Injected power from main grid

5. CONCLUSION

The study examined the MG investors’ planning decision on
minimizing both economic and emission costs. To increase the
MG reliability, the planning problem is formulated by consid-
ering the grid-connected bus. The amount of power exchange
between the grid and MG is evaluated in both conditions, lim-
ited and un-limited power exchange. MCS modeled system
uncertainties, and the scenario tree is used to illustrate several
scenarios and their possibilities. The short-term problem has
been written as a bi-objective function, and CPLEX is utilized
to minimize total cost. As demonstrated in the results, the ob-
tained results for the total economic and emission cost in case
1 are $139.7634 and 578.901 kg, respectively. These values are
changed to $70.56 and 528.48 kg, respectively. Performing a

 

 

Fig. 10. DLC under employing DR program
 

 

Fig. 11. Optimal Pareto front

comparison, it is observed that the total emission and operation
cost of MG under un-limited power exchange with the main
grid is decreased up to 49.51 % and 8.06 %, respectively
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