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The accuracy of the load-frequency control (LFC) system depends on the accuracy of models used for the
components that affect the frequency response. In the conventional LFC system, the frequency-sensitive
loads, including induction motors, are simply modeled by the load-damping coefficient. The purpose of
this paper is to obtain the fifth-, third- and first-order induction motors models for applying in the LFC
system. Also, in this paper, the performance and accuracy of these models on the frequency response in a
small-scale stand-alone microgrid are compared. In addition, the effect of system and motor parameters
on the frequency response characteristics are investigated. The simulation results point out that the com-
monly used constant load-damping coefficient model can’t always appropriately reflect the impact of the
induction motors on the frequency response. © 2022 Journal of Energy Management and Technology
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1. INTRODUCTION

The type and characteristics of electrical loads are the most
important factors affecting power system frequency response,
especially in the low-inertia stand-alone microgrids. Although
the importance of load modeling with abundant research results
in dynamic systems is widely known, it is still a very challeng-
ing problem needed to be improved due to the continuous
complexity of the load component of industrial development.
The load model and modeling method continuously improved
with the continuous deepening of research [1]. Since frequency
variation affects the electrical power of the frequency-sensitive
loads, proper modeling of such loads is crucial in the load
frequency control (LFC) system. Among the frequency-sensitive
loads, induction motors can be considered as the most used
ones in the power systems. About 20 to 30 percent of the
electrical loads are induction motors and consume more than
half of the total energy provided by an electrical system [2]. Due
to the low inertia of MGs compared to the grid, maintaining
an active and reactive power balance between supply and
consumption, especially in the presence of motor loads and
frequent load changes, is a challenge [3]. Proper modeling of
the induction motors could lead to a more accurate LFC system.
In the large-scale power systems, the frequency-sensitive
loads, including induction motors, are simply modeled by
the load-damping coefficient [4, 5]. Also, this simple model
has been widely used in the LFC system of the stand-alone
microgrids [6–8]. Even in [9], the linear relationship between

active power and frequency changes has been further described,
but induction motor dynamics have not been considered and
just the static aspect has been studied. The static models of the
induction motor simplify model the induction motor behavior
using a load-damping coefficient. In addition, the load-damping
coefficient is usually assumed as a constant under different
operating points. However, in this paper, it is shown that a
constant load-damping coefficient cannot present an accurate
model for all induction motors when a significant disturbance
has occurred in the low-inertia microgrids.
Recently, a few papers are being published to model the
dynamics of induction motors in the LFC systems. In [10], the
first-order induction motor model has been introduced, and
is shown that the induction motor behaves similarly to the
derivative-proportional when an active power disturbance is
occurred. In [11], the same simplified first-order model has
been examined in more detail, showing the coefficients that
increase the sensitivity of the electromagnetic torque and affect
the frequency response.
Dynamical model of a induction motor helps in understanding
the physical behavior of the motor system [12]. Generally,
all proposed methods for load modeling are categorized into
frequency and time-domain methods. Most identification
methods apply time-domain modeling to model the loads in
the power systems [13, 14]. Load modeling involves two main
steps: 1) selection of load model structure and 2) specifying the
load model parameters using measurement-based methods [15].
a method for motor model order reduction is developed using
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the Cauer ladder network (CLN) [16], but a commonly accepted
model of an induction motor applicable to transient studies
after a considerable event is the fifth-order Park model, which
is also referred to as the two-axis model. For dynamic studies,
it is more useful to apply low-order models, which decreases
the complexity of the system. The order of the induction motor
model can be reduced from 5 to 3 by ignoring the transient
stator flux changes. This is called the neglecting stator transients
model (NST). In the first-order model, the only variable is the
rotor speed, and the electromechanical torque is a function
of the rotor speed. To obtain the first-order model, the flux
transient changes in both the stator and the rotor are ignored
[17].
The purpose of this paper is to obtain the fifth-, third- and
first-order induction motors models for applying in the LFC
system. Also, in this paper, the performance and accuracy
of these models on the frequency response in a small-scale
stand-alone microgrid are investigated. Finally, this paper
seeks to answer this question: is the commonly used constant
load-damping coefficient model could appropriately reflect the
impact of the induction motors on the frequency response in the
small-scale stand-alone microgrids?
Point of views of this article are abbreviated as follows:
1- The eigenvalues of several small and large induction motors
are obtained for the first-, third- and fifth-order models and by
using the bode diagram and eigenvalues it is concluded that
always cannot use the first-order model instead of the fifth-order
model. But by applying several conditions, this model can be
replaced. In [10, 11], these subjects have not been followed and
have directly used the first-order induction motor model.
2- The reduced model is applied to the LFC system after
conversion to a simpler form, and the effects of the induction
motor on the frequency response are analyzed. The remainder
of this paper is organized as follows: The first-, third-, and
fifth-order models of induction motors for applying in the LFC
system are presented in Section 2. In Section 3 these models are
compared through their Bode diagrams. The performance and
accuracy of these three models and the conventional model on
the frequency response in a stand-alone microgrid are surveyed
in Section 4. Finally, the conclusion is presented in Section 5.

2. INDUCTION MOTOR MODELING

A. Park Model (5th Model)

The standard park model requires some simple assumptions,
as following: - The device is designed to have a smooth air
gap. - The considered winding has a sinusoidal distribution
over the surface of the air gap. - The saturation and skin effects
are ignored.
By applying these assumptions, the equations of the Park model
for an induction machine are as follows:

us = isRs +
dϕs

dt
+ jωk ϕs (1)

0 = irRr +
dϕr

dt
+ j(ωk − pωm)ϕr (2)

Jm
dωm

dt
= Te − Ts (3)

Te = pIm(ϕs ∗ is) (4)

Where is and ir are the stator and rotor current vectors, respec-
tively, ωm is the rotor mechanical speed and ωk is the angular
speed of the coordinate system. Ts is the torque applied to the
shaft, Te is the electromechanical torque, and us is the source
voltage vector. Rs and Rr are the rotor and stator resistances,
respectively. Jm is the moment of inertia of the motor and p is the
number of pairs of poles. Rotor and stator leakage flux vectors
are as follows:

ϕs = Lsis + Lmir = (Lsλ + Lm)is + Lmir (5)

ϕr = Lrir + Lmis = (Lrλ + Lm)ir + Lmis (6)

Ls, Lr, and Lm are the inductances of the stator, rotor and mag-
netic, respectively. Lsλ and Lrλ are the leakage inductances of
the stator and rotor. Leakage flux equations can be used instead
of the current equations as the state variables, by replacing (5)
and (6) in (1) and (2), one can deduce

us =

[
Rs

Ls
′ + jωs

]
ϕs +

dϕs

dt
− kr

Rs

Ls
′ ϕr (7)

0 = −ks
Rr

Lr
′ ϕs +

[
Rr

Lr
′ + j(ωs − pωm)

]
ϕr +

dϕr

dt
(8)

The electromechanical torque can be expressed as follows.

Te = p
kr

Ls
′ Im(ϕs ϕr

∗) (9)

In addition, the motion equation is:

Jm
dωm

dt
= Te − Ts (10)

Equations (7) and (8) can be represented in dq frame. Since the
voltage changes are ignored in the LFC systems (∆usd, ∆usq ∼= 0),
we can obtain the fifth-order Park model around the induction
motor operating point. In this model, the stator and rotor flux
changes and the rotor speed changes are the state variables
and the frequency and the motor torque changes are the input
variables.

•
X = AX + BU

Y = CX + DU
(11)

Where

X =



∆ϕsd

∆ϕsq

∆ϕrd

∆ϕrq

∆ωm


, U =

 ∆ωs

∆Ts

 (12)

A =



− Rs

Ls
′ ωS0

Kr Rs

Ls
′ 0 0

−ωS0 − Rs

Ls
′ 0 Kr Rs

Ls
′ 0

Ks Rr

Lr
′ 0 − Rr

Lr
′ ωS0 − p.ωm0 −p.ϕrq0

0 Ks Rr

Lr
′ −(ωS0 − p.ωm0) − Rr

Lr
′ p.ϕrd0

− pKr ϕrq0

Ls
′ Jm

pKr ϕrd0

Ls
′ Jm

pKr ϕsq0

Ls
′ Jm

− pKr ϕsd0

Ls
′ Jm

0


(13)
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B =



ϕsq0 0

−ϕsd0 0

ϕrq0 0

−ϕrd0 0

0 − 1
Jm


(14)

C =

[
− pKr ϕrq0

Ls
′

pKr ϕrd0

Ls
′

pKr ϕsq0

Ls
′ − pKr ϕsd0

Ls
′ 0

]
(15)

D = 0 (16)

B. Third-order model

Ignoring the transient stator flux changes
(dϕsd/dt = 0 , dϕsq/dt = 0), the order of the induction
machine can be reduced from 5 to 3. Considering this assump-
tion, the state and input variables, and other parameters in the
state space equation (11) for the 3rd order model of induction
machine will be obtained as the following:

X =


∆ϕrd

∆ϕrq

∆ωm

 , U =

 ∆ωs

∆Ts

 , ∆usd, ∆usq ∼= 0 (17)

A =


A1 B1 C1

A2 B2 C2
A3
Jm

B3
Jm

C3
Jm

 , B =


D1 0

D2 0
D3
Jm

− 1
Jm

 (18)

C =
[

A3 B3 C3
]

, D =
[

D3 0
]

(19)

The parameters A1, A2, A3, B1, B2, B3, C1, C2, C3, D1, D2, and
D3 are presented in appendix.

C. The first-order model

In the first-order model, the state variable is the rotor speed,
and the flux transient changes in both the stator and the rotor
are ignored. The state equations in this model are obtained as
follows:

∆Te = (A3 ∗ S1 + B3 ∗ S3)∆ωm +(A3 ∗ S2 + B3 ∗ S4 + D3)∆ωs
(20)

•
∆ωm = (A3∗S1+B3∗S3)

Jm
∆ωm

+ (A3∗S2+B3∗S4+D3)
Jm

∆ωs − ∆Ts
Jm

(21)

The parameters S1, S2, S3, and S4 are presented in appendix.

3. COMPARATIVE STUDY

s mention in Section 2, the mechanical torque and the grid fre-
quency changes are considered as the input variables. The elec-
trical torque of the induction motor will have changed, if any of
these input variables change. Another variable that can affect
the motor’s power is the motor voltage. Since the frequency
changes do not have a significant effect on the voltage, the volt-
age changes are disregarded in the LFC systems.
Disregarding the voltage changes, to compare these models,
in this paper, two transfer functions include ∆Te/∆Ts and
∆Te/∆ωs are obtained for every three models. In addition,
this investigation is performed for the low- and high-power
induction motors. The specifications of the considered induction
motors are presented in Table 1 [18]. Fig. 1 shows the bode dia-
grams for the high-power induction motor) 250hp motor (. As
can be seen, the first-order model is identical to the fifth-order
model up to about 5 Hz. The third-order model has also the
behavior similar to the 5th order around 12 Hz.
For the low-power motor (3hp motor), the bode diagrams are
plotted in Fig. 2. As one can see, in this case, the first-order
model behaves similar to the fifth-order model up to a frequency
about 10 Hz. In addition, the first-order model has the same
behavior as the third-order model up to 30 Hz.
The eigenvalues of the investigated induction motors for the
three models of 11 induction motors in the nominal operating
point are given in Table 2. Two pairs of complex conjugate eigen-
values of the fifth-order model, are related to the transient stator
and rotor flux changes, and the negative real eigenvalue is the
eigenvalue corresponding to the rotor speed. In the 3rd-order
model, the complex conjugate eigenvalues corresponding to the
transient stator flux changes are ignored. And in the first-order
model, only the eigenvalue related to the rotor speed remains.
Table 2 shows that first-order models for motors over 100hp are
not very accurate. This is mainly due to the relatively smaller
separation between the eigenvalues in the second column. This
means that the traditional quasi-steady-state circuit representa-
tion of the algebraic equations corresponding to (1,2) may not
be valid for larger machines. Since these algebraic equations
are only the zeroth-order approximation of the corresponding
integral manifolds, there is a need to go to higher-order correc-
tions in order to improve the accuracy of the first-order models
[19]. The eigenvalues obtained in table 2 are almost similar to
the values in [19, 20], and it can be concluded that these values
are reasonable.
To examine the dynamics of an induction motor, the LFC system
shown in Fig. 3 is considered, which includes a synchronous
generator with constant time Tg and Tt, which are related to
the governor and turbine. The inertia of the synchronous gen-
erator is indicated by the inertia H. And R is the drop of the
synchronous generator governor. The studied system parame-
ters are presented in Table 3.
As can be seen in Fig. 3, there are two types of loads for this
system. The first type is the static loads that are sensitive to

frequency changes and are shown with a sensitivity factor D, and
the second type is a dynamic load, which is an induction motor.
The induction motor is represented with two transfer functions,
∆Te/∆ωs represents the electrical torque changes with respect
to the frequency changes, and ∆Te/∆Ts indicates the electrical
torque changes with respect to the motor torque changes. These
two transfer functions are obtained in Section 2 for the first, third,
and fifth-order models.
The impact of these three models on the LFC frequency response
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Fig. 1. Bode diagrams for the induction motor 250hp:
(a) ∆Te/∆Ts , (b) ∆Te/∆ωs

respect to 0.2 pu step change in the motor torque are shown in
figures 4 and 5 for two motors with Jm = 0.089 and Jm = 6.91.
Fig. 4 depicts that the system frequency response for the first-,
third-, and fifth-order models of the motor with Jm = 0.089 are
quite similar. But as shown in Fig. 5, when the moment of
inertia of the motor is 6.91 (high-power motor), due to the zero-
order estimation of the manifold, the first-order model results
in a different frequency response than the third- and fifth-order
models.

4. SIMPLIFIED INDUCTION MOTOR MODELING IN LFC
SYSTEM

Considering (20) and (21), the terms H1, H2, H3, and H4 are
defined as follows:

H1 = (A3 ∗ S1 + B3 ∗ S3) (22)

 
(a) 

 
(b) 

 
Fig. 2. Bode diagrams for the induction motor 3hp:
(a) ∆Te/∆Ts , (b) ∆Te/∆ωs

H2 = (A3 ∗ S2 + B3 ∗ S4 + D3) (23)

H3 = (A3 ∗ S1 + B3 ∗ S3) (24)

H4 = (A3 ∗ S2 + B3 ∗ S4 + D3) (25)

Using defined terms, (20) and (21) can represented as follows:

∆Te = H1∆ωm + H2∆ωs (26)

sJm∆ωm = H3∆ωm + H4∆ωs − ∆Ts (27)

Considering the input equal to zero, one can deduce:

∆ωm =
H4

Jms− H3
∆ωs (28)
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Table 1. Specifications of the investigated induction motors [18]

Motor hp P VLL(volt) Rs(Ω) Rr(Ω) χls(Ω) χlr(Ω) χm(Ω) Jm(kgm2) Hm(s)

1 3 4 220 0.434 0.815 0.754 0.754 26.12 0.089 0.7065

2 25 4 460 0.248 0.535 0.565 0.565 22.13 0.55 0.5277

3 50 4 460 0.086 0.228 0.301 0.301 11.51 1.66 0.7916

4 100 4 460 0.0309 0.133 0.150 0.150 7.12 4.44 1.0595

5 250 4 2300 0.68 0.399 2.45 2.45 8.58 6.91 0.6590

6 500 4 2300 0.262 0.187 1.206 1.206 52.02 11.06 0.5269

7 800 4 2300 0.131 0.0939 0.716 0.716 36.07 21.26 0.6329

8 1000 4 2300 0.112 0.073 0.603 0.603 54.13 29.86 0.7113

9 1500 4 2300 0.055 0.036 0.376 0.376 19.86 44.50 0.7072

10 2250 4 2300 0.0289 0.022 0.226 0.226 13.04 63.86 0.6760

11 6000 4 4160 0.022 0.022 0.301 0.301 22.20 674.94 2.6790
*hp: horsepower *P: poles/phase *VLL: line-to-line voltage
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Fig. 3. LFC system with induction motor dynamics.
 

 

Fig. 4. LFC frequency response in the presence of a motor with
Jm=0.089

∆Te = H1.
H4

Jms− H3
∆ωs + H2.∆ωs (29)

The relationship between frequency and torque changes can be
obtained as equation (30):

 

 

Fig. 5. LFC frequency response in the presence of a motor with
Jm=6.91

∆Te

∆ωs
= H2 +

H1.H4
Jms− H3

= H2 + (−H1.H4
H3

).
1

(− Jm
H3

)s + 1
(30)

If (30) reconstructed to the standard form, it becomes as
shown in (31). Which Ke1 = H2, Ke2 = H1.H4/(−H3), and
Tm = Jm/(−H3). In addition, K0 = Ke1 is the initial value at
t = 0+, K∞ = Ke1 + Ke2 is the steady state value, and the time
constant Tm is related to the motor inertia.

∆Te

∆ωs
= Ke1 +

Ke2
Tms + 1

= K0 +
K∞ − K0
Tms + 1

(31)

To verify the accuracy of the simplified first-order model,
a fifth-order non-linear 3-phase motor is considered that
connected to an AC voltage source. The model of 3-phase
induction motor and AC voltage source is simulated using
Sim Power System toolbox in Simulink environment. The
induction motor is selected from Table 1 and has Jm = 0.089.
Here, since the voltage amplitude is constant, the effect of the
voltage change is ignored. The constant values of the first-order
model are K∞ = 0, K0 = 9.51 and Tm = 0.052 s. Fig. 6 shows
the electrical torque changes when the frequency of the voltage
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Table 2. Induction motor eigenvalues for the three models

Motor 5th-order 3th-order 1th-order

1

- 18.90 ±335.73i - -

- 289 ±287.8i - 183.03 ±299.2i -

- 17.03 - 16.91 - 19.02

2

- 2.77 ±360.50i - -

- 327.94 ±397.85i - 206.09 ±441.36i -

- 26.68 - 25.26 - 22.04

3

- 2.64 ±376.79i - -

- 186.40 ±402.74i - 131.81 ±421.91i -

- 20.28 - 20.01 - 22.04

4

- 1.63 ±376.90i - -

- 198.37 ±396.03i - 159.10 ±412.58i -

- 16.22 - 16.09 - 17.20

5

- 59.21 ±373.55i - -

- 18.97 ±56.62i - 18.93 ±56.30i -

- 30.42 - 30.20 - 68.06

6

- 41.68 ±373.69i - -

- 15.71 ±68.33i - 15.73 ±67.97i -

- 27.19 - 26.98 - 104.5

7

- 35.00 ±374.64i - -

- 13.36 ±64.35i - 13.38 ±64.11i -

- 22.87 - 22.74 - 99.41

8

- 35.37 ±374.78i - -

- 12.41 ±59.71i - 12.43 ±59.49i -

- 20.73 - 20.62 - 86.42

9

- 27.94 ±375.63i - -

- 9.76 ±61.84i - 9.805 ±61.70i -

- 16.69 - 16.63 - 97.96

10

- 24.39 ±375.79i - -

- 31.07 ±41.11i - 31.03 ±41.001i -

- 25.27 - 25.20 - 99.64

11

- 13.87 ±376.53i - -

- 7.21 ±27.41i - 7.19 ±27.381i -

- 13.32 - 13.31 - 15.28

Table 3. Studied system parameters

Value Parameter Value Parameter

0.08 Tg(s) 1 D(Pu/Hz)

0.15 Tt(s) 2 2H(Pus)

25 R(Hz/Pu)

source is changed 0.02 pu at t = 1 s. Fig. 6 depicts that for this
motor the first-order model behaves almost like a simulated
fifth-order model. But for the larger motors, these difference
become more apparent and for the motors with the power more
than 100hp, the difference is quite noticeable.

A. Effect of parameters on the frequency response
a Frequency deviation in the steady-state

 

 

Fig. 6. Electric torque changes respect to the frequency step
changes.

If a step disturbance ∆PL(s) = ∆PL/s is applied to the sys-
tem and all frequency-dependent loads including induction
motors are modeled by the constant load-damping coeffi-
cient D, the frequency deviation is obtained using (32).

∆ω(s) = ∆PL(s)

 1
2Hs+D

1 +
(

1
(2Hs+D)

) (
1

(Tts+1)(Tgs+1)R

)

(32)

In the steady state, the frequency deviation can be deduce
as follows.

∆ω(t)|t=∞ =
∆PL

D + 1
R

(33)

If the first-order model is used to model the induction
motor (as shown in Fig. 3), the system’s frequency response
is obtained as follows:

∆ω(s) = ∆PL(s)


1

2Hs+(K0+
K∞−K0
Tms+1 )+D

1 +
(

1
2Hs+(K0+

K∞−K0
Tm s+1 )+D

)(
1

(Tts+1)(Tgs+1)R

)


(34)

In this case, the frequency deviation in steady state can be
calculated as follows.

∆ω(∞) = lim
S→0

s
∆PL

s
∆ω(s) =

∆PL

K∞ + D + 1
R

(35)

Equation (35) shows that when the induction motor is
modeled as a dynamic frequency-dependent load, the
frequency deviation in the steady state also depends on the
factor K∞. As can be seen from (34) the frequency deviation
in the steady state does not depend on the inertia of the
motor.
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b Maximum rate of change of frequency (ROCOF)

For equations (32) and (34), ROCOF can be obtained using
(26)

d∆ω

dt

∣∣∣∣
t=0+

= lim
s→∞

s∆ω(s)− ∆ω(t)|0− =
∆PL
2H

(36)

Equation (36) shows that ROCOF is inversely proportional
to the system inertia H and the inertia of the induction
motor has no effect on its value.

c Effect of system parameters on the frequency response

The effect of system parameters on the frequency response
are depicted in Figs. 7 to 9. Fig. 7 illustrates that, with
decreasing the system inertia from H = 1.5 s to H = 1 s, the
accuracy of the first-order model is reduced. Fig. 8 depicts
the results for the case where the 250 hp induction motor is
modeled either using a first-order model or by a damping
factor D. As can be seen in Fig. 8, if the induction motor
is removed from the studied system, the steady-state fre-
quency deviation and the frequency response is changed.
The steady state frequency deviation can be estimated by
a damping coefficient, which in this case the impact of the
induction motor on the steady-state frequency deviation
can be modeled by D = 1. Despite the accurate frequency
deviation in the steady state when the induction motor is
modeled by a D-factor, the frequency response is still differ-
ent with the case that the induction motor is modeled by a
first-order model. Fig. 8 shows that, the frequency nadir in
the case that the induction motor is modeled by a first-order
model is 56.7 Hz but if the induction motor is modeled by
D = 1, the frequency nadir is equal to 57.9 Hz.
Fig. 9 presents that, with increasing the system inertia,
the frequency response of first-order model and D-factor
model become closer. Therefore, it can be concluded that
the damping factor D can be used instead of the induction
motors when the system inertia is large enough.
The parameters Tg, Tt and R can change over the time, or
their actual values may differ from those intended at the
design stage. Figures 10 to 12 show the uncertainty effects
of these three parameters on the MG frequency response.
Fig. 10 depicts the effect of a 50% change in R. As one can
see in this figure, decreasing the value of R reduces the
MG stability and increases the difference between obtained
results from the first-order model with those obtained from
3rd-order and 5rd-order models. Also, increasing the value
of R leads to more frequency deviation, but it brings the
first-order model accuracy closer to the higher-order mod-
els. Fig. 11 and 12 illustrate the MG frequency response
considering Tg and Tt variations, respectively. As one can
see, the augmentation of the governor and turbine time
constant degrade the MG dynamic response. And the ef-
fect of changing the turbine time constant is similar to the
governor time constant.

d Effect of motor parameters on the frequency response

Motor inertia is directly related to Jm and is calculated from
the relation Hm = Jmω2

0/2Sb. Fig. 13 shows that in the same
initial conditions, by increasing the inertia of the motor, the
frequency undershoot is reduced. However, motor inertia

 

 

Fig. 7. Frequency response by changing the system inertia in
the presence of a 250hp motor.

 

 

Fig. 8. Frequency response by changing the parameter D in
the presence and without the motor 250hp and H = 1s.

 

 

Fig. 9. Frequency response by changing the H parameter in
the presence and without the motor 250hp.

does not affect the steady state frequency deviation, and
ROCOF for all cases are the same value. As one can see in
Table 4, with increasing inertia of the induction motor, the
frequency of the oscillations decreases, and the damping
coefficient increases, which is more evident in the pole of
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Fig. 10. MG frequency response considering R variations
 

 

Fig. 11. MG frequency response considering Tg variations
 

 

Fig. 12. MG frequency response considering Tt variations

the first-order model.
Fig. 14 illustrates the influence of K∞, and K0 coefficients
of the first-order model on the frequency response. Accord-
ing to this figure, decreasing K∞ increases the steady state

 

 

Fig. 13. Influence of induction motor inertia on frequency
response.  

 

Fig. 14. Influence of K∞ and K0 parameters of the first-order
model on the frequency response.

frequency deviation, but does not significantly affect the
ROCOF. Contrary, by changing the value of K0, the steady-
state frequency deviation does not change, but it will have
a small effect on the frequency damping.

5. CONCLUSION

This paper uses the park model to provide a reduced model
for the induction motor. By adding this model to the LFC
system, the effect of parameters such as network inertia, motor
inertia and coefficients of motor transfer function on the
system frequency were examined. Using the bode-diagram
and the eigenvalues of the induction motor, it was found that
first-order model for high-power motors (above 100 hp) is not
very accurate, but if the system inertia is high enough, the
first-order model will behave closely to third- and fifth-models.
In addition, this paper shows that although the steady-state
frequency deviation is the same for both modeling with the
constant damping coefficient and the first-order model, the
frequency nadir will be different when the system inertia is low.
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APPENDIX

Defined parameters
ks =

Lm
Ls

, kr =
Lm
Lr

, Ls
′
= Ls − Lm

2

Lr
, Lr

′
= Lr − Lm

2

Ls

A1 = dab
b2+c2 − e , B1 = acd

b2+c2 + f , C1 = −pϕrq0,

D1 =
[(

d
b2+c2

) (
bϕsq0 − cϕsd0

)
+ ϕrq0

]
A2 = ab2d

c(b2+c2)
− ad

c − f , B2 = abd
b2+c2 − e , C2 = pϕrd0,

D2 =
(

db
c(b2+c2)

) (
bϕsq0 − cϕsd0

)
− dϕsq0

c − ϕrd0

A3 = g

 − abϕrq0

b2+c2 +
ab2 ϕrd0

c(b2+c2)
− aϕrd0

c

+ϕsq0


B3 = g

(
− acϕrq0

b2+c2 +
abϕrd0
b2+c2 − ϕsd0

)
C3 = 0,

D3 = g

 −ϕrq0(bϕsq0−cϕsd0)
b2+c2

+
ϕrd0(b2 ϕsq0−bcϕsd0)

c(b2+c2)
− ϕrd0 ϕsq0

c


a = Kr Rs

Ls
′ , b = Rs

Ls
′ , c = ωs0 , d = Ks Rr

Lr
′ , e = Rr

Lr
′

, f = ωs0 − pΩm0 , g =
pKr

Ls
′

S1 = (B2∗C2−C2∗B1)
(B1∗A2−A1∗B2) , S2 = (B2∗D1−D2∗B1)

(B1∗A2−A1∗B2)

S3 = − A1∗S3
B1 − C1

B1 , S4 = − A1∗S2
B1 − D1

B1
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