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This paper addresses the stochastic optimal day-ahead microgrid (MG) energy resources scheduling, con-
sidering the uncertain load, price of electricity, and generated electrical power by wind and solar units.
Moreover, the vehicle-to-grid (V2G) implementation, load curtailment cost, and spinning reserve require-
ments are modeled to make the results more practical and applicable. Furthermore, the price elasticity of
supply is considered to explore the relation between V2G capability and the optimization process. The
stochastic energy resources scheduling problem is formulated in a two-level optimization framework.
The unit commitment of dispatchable resources is analyzed in the upper level, and the lower level is
formulated as a scenario-based two-stage stochastic programming problem that minimizes the operation
cost of MG considering all the constraints. The risk of attaining unfavorable high costs of MG scheduling
is considered using the variance approach. The generated scenarios are reduced by using the backward
reduction method for each uncertain variable at each hour, independently. The artificial intelligent-based
methods, including differential evolution algorithm (DEA), particle swarm optimization (PSO), and co-
variance matrix adaptation evolution strategy (CMAES) are applied to solve the problem. The effective-
ness of the proposed approaches is confirmed by simulations on a modified 13-bus IEEE test system, in
two cases of neglecting the risk and including the managed risk by applying the real-world data. The re-
sults confirmed the better performance of CMAES for solving such optimization problems. © 2021 Journal

of Energy Management and Technology
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NOMENCLATURE j The index of non-dispatchable generation units.

Indices and Sets | The index of loads able to be curtailed.

Np The total number of loads
S The index of scenarios.

NEg The total number of energy storage systems.
BESS Battery energy storage system.

Ng The total number of dispatchable generation units. ESS Energy storage system.

Nj The total number of non-dispatchable generation units. FC Fuel-cell unit

Np The total number of loads able to be curtailed. MT Micro-turbine unit.

Ns The total number of scenarios. N The upstream /utility network.

d The index of loads. PEV The plug-in electric vehicle fleet.
e The index of energy storage systems. PV Photovoltaic array unit.

¢ The index of dispatchable generation units. WT Wind turbine unit.
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SR Spinning reserve.

0 The index of initial state of parameter or variable.

Parameters, Constants and Variables
b The bid/price of electricity.

E Price elasticity of power supply.
h Time period counter (24 hours).

P Active power.

Py Exchanged power with the upstream/utility network.

SUC Start-up cost constant

SUC Shut-down cost constant

U Unit-commitment decision set

u Unit-commitment decision variable, u € {0,1}.
(0)<S) Parameter or variable (0) in scenarios

71() Occurrence probability of scenario s.

x; Lower-level variables in two-level problem.
xyp Upper-level variables in two-level problem.

B Risk aversion factor.

Vectors, Matrixes, and Sets

A First-stage left-hand side matrix in the constraints.
¢ First-stage objective vector (cTx).

d First-stage right-hand side vector in the constraints.
m Right-hand vector in the constraints.

q Second-stage objective vector (q7y).

T Technological matrix.

W Recourse matrix.

x First-stage decision variable vector.

y Second-stage decision variable vector.

Symbols

min Minimum of the parameter

max Maximum of the parameter.

1. INTRODUCTION

A microgrid (MG) is a complex of distributed energy resources
with energy storage devices and controllable loads, with the ca-
pability of operating as a self-sufficient energy network [1]. MGs
help to modify reliability, resiliency, flexibility, and accessibility
of safe and green energy resources with some significant abili-
ties such as cost optimization, and implementation of demand
response programs (DRP) [2]. Energy management is a critically
important task in MGs [3].

Nowadays, a transition from consumption of fossil fuel to
renewable and sustainable energy is occurring [4, 5]. High fuel
economy and low pollution emissions of plug-in hybrid electric
vehicles (PHEVs) have caused them to be more attractive [6].
Vehicle-to-grid (V2G) technology is defined as the ability of elec-
tric vehicles (EVs) to inject electrical power into the grid [7]. The
applicability of assigning EVs to discharge some unused energy
by V2G technology was proposed in [8]. The V2G capability
helps to improve the system reliability and plays the role of a
backup system for renewable power sources [9]. This technology
reduces the impact of sharp fluctuations of renewable power
sources, the carbon emissions, and procurement costs of the
transportation section [10]. In addition, the V2G technology can
provide energy storage by matching the time of supply to the
time of consumption [11].

However, the advantages of this technology for the power
system depend on the proper scheduling of these resources.
Utilities must be assured of the reliable availability of the power
of plug-in electric vehicles (PEVs) over extended periods.

Addressing the challenges of the operation of PEVs in an
MG with renewable energy sources is a novel research field.
Several studies have been conducted on PEVs. Investing in V2G
technology in MG economics was investigated in [12]. Based on
Markov chain optimization [13], it was realized that an efficient
EV charging plan needs a matching degree between wind energy
and EV charging demand.

Variations in operating conditions are inevitable in power sys-
tems. Contingency conditions are probable due to the sudden
increase in electrical load and unscheduled outages of transmis-
sion lines or generators [14]. Spinning reserve (SR) requirements
must be sufficient for network reliability, risk response, and secu-
rity considerations [15, 16]. As an important subject, the authors
of[15] insisted on a compromise between cost and reliability
to supply the SR. In this study, the value of lost load for each
prioritized customer was determined and then the SR capacity
was calculated to minimize the total cost by considering the
PEVs. Moreover, Wu et al. [16] suggested a deterministic two-
phase mixed integer programming (TPMIP) strategy to solve
the non-convex economic dispatch (ED) problem considering
different constraints containing the SR requirements. It should
be mentioned that the scheduled load shedding is a technique
to ensure system reliability.

Neglecting the intermittency of renewable energy and the un-
certainty of electricity market prices as well as the load, brings
a high risk to the power system. Stochastic programming is
necessary to cope with the uncertainties involved in obtaining
a realistic solution. To deal with uncertainties in a stochastic
framework, some approaches including chance-constrained pro-
gramming [17] and a variety of scenario-based methods are
applied. The scenarios are all the discrete probable states of the
problem, considering all the uncertain variables. In [18], the
impacts of uncertainties of market price, the error of forecasted
load, photovoltaic (PV), and wind turbine (WT) generation on
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the optimal operation management of MGs were investigated in
a stochastic framework. By using scenario generation and reduc-
ing them to some deterministic problems with different probabil-
ities, the problem was solved using the adaptive modified firefly
algorithm (AMFA). In addition, a fuzzy multi-objective (MO) op-
timization model considering the uncontrollable sources as the
negative loads was proposed in [19]. The stochastic optimal man-
agement problem was solved by chaotic binary particle swarm
optimization (CBPSO). The stochastic optimal operation of an
MG consisting of the fuel cell units with proton exchange mem-
brane for generating power and heat simultaneously (PEMFC-
CHP), PV, and WT was suggested in [20], by considering the
uncertainties of market prices, solar radiation, and wind speed.
The mixed-integer nonlinear programming (MINP) framework
was considered for storing hydrogen strategy and the modi-
fied teaching-learning-based optimization (MTLBO) algorithm
was applied to solve the optimal management problem on a
modified 33-bus test case. Moreover, an MO day-ahead energy
management was suggested in [21] to minimize the operation
cost and maximize the reliability in an MG, considering renew-
able energy resources, micro-CHP units, energy storage system,
and auxiliary boiler. The DR requirements were modeled by
load shifting contracts, and the problem was solved by particle
swarm optimization (PSO) algorithm.

However, in these studies, the results were obtained sepa-
rately for each possible scenario and were eventually aggregated.
This aggregation approach was utilized in [22] as well. Such a
solution is not an optimal and realistic solution for the stochas-
tic problem. Optimal scheduling of an energy storage system
(ESS) and loss minimization were realized in day-ahead scenario-
based stochastic scheduling frameworks which were presented
in [23], and [24], respectively. This concept was modeled in [23]
as an MO optimization problem in a MILP framework, by mod-
eling the load curtailment in unscheduled islanding conditions.
For solving the mentioned problem, the non-dominated sorting
genetic algorithm II (NSGA-II) was implemented. Moreover,
an MG containing WT, PV, controllable loads, distributed gen-
erators, and distributed energy storage devices (DESDs) were
investigated in [24] by using a modified IEEE 37-bus test feeder
in an MINLP framework and implementing CPLEX Optimizer
12.2.

By applying the proposed formulations in the mentioned
studies, the problem constraints are simultaneously considered
for all the scenarios. Nevertheless, a day-ahead decision about
the generation amounts of dispatchable distributed energy re-
sources is not made in the relevant formulations.

In [23], a scenario generation and a reduction technique for
uncertain variables were implemented for the next 24 hours.
Moreover, in [25], each probable scenario for each uncertain
variable including the relevant status of that variable at all the
hours of the next day was investigated.

A scenario-based approach was presented in [26] to cope
with uncertainties in PV cell power generations. This approach
utilized the previous year’s historically recorded irradiance data
to generate describing scenarios based on autoregressive and
moving average methods. An MO stochastic programming ap-
proach for MG was presented in [27] to decrease environmental
emissions generated by power resources, in addition to the unit’s
operation cost. The e-constraint method was utilized to solve the
MO optimization problem. In [28], a linear programming-based
stochastic approach for MGs under uncertainties was presented.
In [28], the MG itself was considered a responsible load for the
upstream network. The corresponding demand response (DR)

formulations and approaches were described.

Even in diverse scenario-based probabilistic techniques, es-
pecially in those presented in recent years, the obtained results
are subject to risk. Hence, MG stochastic scheduling must be
equipped with a risk management scheme.

The main disadvantage of ignoring risks in the optimal man-
agement of MGs is that the optimal solutions may lead to the
maximum expected value of the objective function (cost or profit)
and experiencing very low values in some unfavorable scenar-
ios [29]. To obtain results close to real-world conditions, the
risk should be modeled in the problem. There are some usual
risk measures that can be applied to stochastic programming
problems in power systems. The most important risk measures
addressed in the literature include variance, shortfall probability,
expected shortage, value-at-risk (VaR), and conditional value-
at-risk (CVaR) [29]. Moreover, the set of properties that risk
measures should fulfill are translation invariance, subadditivity,
positive homogeneity, and monotonicity [30].

Risk measures have been extensively investigated and some
properties for each one are addressed in the literature. VaR is
one of the most popular measures for risk management, but it
has a few undesirable mathematical properties such as a lack of
sub-additivity and convexity. Moreover, this measure is difficult
to optimize when it is calculated from scenarios. CVaR has some
advantages over VaR. For instance, it is transition-equivariant,
convex, positively homogeneous, and has a stochastic domi-
nance of order 1 [31]. In addition, one of the drawbacks of the
variance method when applied as a risk measure is its symmet-
ric nature which weighs over- and under-performance equally
[32].

A. Motivation and the main technical contributions of this
work

The main motivations and innovations of this work can be cate-
gorized as follows:

1) There is a need for a comprehensive stochastic program-
ming approach considering all the dispatchable and non-
dispatchable resources available to simultaneously solve the
unit commitment (UC) and economic dispatch (ED) prob-
lems. In this study, the day-ahead stochastic scheduling
problem in an MG with uncertain load, fluctuating electric-
ity power price, and intermittent renewable energy sources,
considering V2G technology, load curtailment cost, and SR
requirements is investigated to improve the MG reliabil-
ity. This problem contains the UC problem in addition to
the ED of resources while considering all the governing
uncertainties. A mixed-integer non-linear programming
(MINLP) scenario-based stochastic problem is employed in
this work. To break down this structure, the optimal deci-
sions are made on two different levels. Stochastic optimal
dispatch of resources is a separate sub-problem.

2) The scenarios are generated independently and screened
for each variable in each hour of the day, which makes them
more reliable and precise.

3

~

The Latin hypercube sampling (LHS) method is utilized to
generate the scenarios. This method takes less CPU time.
Moreover, by taking samples from entire distributions of
random variables, it produces more precise and reliable esti-
mates than those produced by Monte-Carlo simulation with
the same size [33]. In addition, the backward reduction tech-
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nique is utilized to eliminate similar and low-probability
scenarios.

4) The high performance of covariance matrix adaptation evo-
lution strategy (CMAES) as a powerful optimization ap-
proach is applied to such a large-scale, non-linear, and non-
convex problem.

5) To control the risk of obtaining non-desirable results,
decision-making under managed risk is implemented and
the results are described.

The remainder of this paper is organized as follows: the
formulation of the problem and concepts of the proposed ap-
proaches are presented in section 2. Section 3 details the solution
methods, as well as the case study simulation results. Finally,
Section 4 presents the main findings of this paper.

2. MATHEMATICAL FORMULATIONS AND METHODS

In this section, the basic formulation of the proposed methods is
described in detail.

A. Two-stage stochastic programming

The extensive form of the two-stage stochastic programming
formulation is a linear problem as follows [29]:

ns
textmin |cTx + Z (s (q(s)) y(S) )
s=1
S.T.:
Ax =d,
TE)x + Wy = m),vs @

x> O,y(s) >0,Vs.

where is the vector of first-stage deterministic decision vari-
ables and is the vector of second-stage uncertain decision vari-
ables. As expressed by (1), the constraints are considered for all
possible scenarios.

B. Risk-neutral problem description for MG

The optimal schedule of dispatchable and non-dispatchable
power generation units in MG should minimize the power pro-
duction cost while satisfying the load, SR requirements, and
physical constraints of each generation unit considering all the
uncertainties.

All market agents must cope with non-dispatchable power
producers such as solar or wind power plants with intermit-
tency and a time-dependent nature [29]. Therefore, Pyt and Ppy
are received by MG completely. Hence, they are not decision
variables and are considered in the problem constraints.

The planning period is divided into hourly intervals, and
the optimization problem formulation is written for only a one-
hour period. Hence, power and energy values are similar for all
intervals.

For each time period ( h), the MG optimization problem
considering constraints is as follows:

) SUCq - ug(h) - (1 —ug(h—1))
Y | +SDCq- (1 —ug(h)) -ug(h—1) |+

g=1
+ug(h) - bg(h) - Pe(h)
. NE
MUY [be(l) - Pe()] + bre () - Poy (1) + ®
. b (1)) Py (1)
Z 7-((5) . N,
= + % by(h) - P(0)")
=1

S.T.: (egs. (4) to (9)).
1) Power Balance:

NG NE
Y ug(h) - Pg(h) + L Pao(h) + Py (h)®) +
g=1 e=1 I

Np Ny
Y Py(h)® — ¥ Pi(h)®) + Pog (), ¥s.
d =1

Realizing reliability aspects entails considering the ability of
the operating units to generate more power than the demanded
value. Therefore, the SR power, Psg (1), is considered a constant
percentage of the sum of the power at each period (h) .

2) Generation Constraints:

pmin

8
3) ESS Constraints:

tg(h) < Py(h) < PP™ - ug(h),g =1,..,Ng.  (5)

pPMn < P,(h) < PM 1 =1,..., Ng. (6)

Positive P, denotes discharging state and its negative value
shows charging state of ESS.
4) PEV Constraints:

PEEY < Ppev(h) < PRV (7)
5) Network Power Exchange:
pmin < py(h)®) < pmax s, ®)
6) Load Curtailment Cost and Constraints:

LCC(h) = bPg(h)
0 < Py(h) < PMX(h),1=1,...,Np

)

LCC describes the load curtailment cost which was identified
as a demand response program in [14]. This capability could
improve MGs’ reliability.

C. The price elasticity of supply

Price elasticity of supply is defined as the supply sensitivity
concerning the price [34]. It simply clarifies how responsive the
quantity supplied to a given change in the price is. At the hth
time period, that is:

bo(h) AP(h)

W =Ry 200

Price elasticity always has a positive value, because a price
increase encourages the supply to generate and offer more elec-
tricity to consumers.

. (10)
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Monte-Carlo simulation

Latin hypercube sampling

CDF

Fig. 1. Monte-carlo simulation vs. LHS

Based on the price elasticity of supply, an economic model of
the pre-studied responsive fleet of EVs capable of operating in
the V2G mode operation is derived in this paper. Considering a
change in bpgy, E4. (10) will be:

E(h) = bpey, (h)  Ppev(h) — Ppey, (h)

= . 11
Ppgy,(h) bpey(h) — bpgy, (h) an

For a given elasticity value and the initial state of bpgy, and
Ppgy,, Eq. (11) can be used to find Pppy for a presented price,
bpey , according to (12):

bpey (h) — bpey, (h)

Ppev (h) = Ppey, (W){1+ E(h) - bpey, (h)

b2

Moreover, it could be used to find the correct offered price
to lead PEVs, as a power supply, to provide the needed power
accessed for the MG.

Ppgy () — Ppey, (h)
E(h) - Ppgy, (h)

bpev (h) = bpey, (M) {1+ .o a3)

By combining (13) with the cost function in (3), could be
considered a decision variable. The function thereupon will be
non-linear.

This idea could be utilized for specific hours of the day based
on network policies (e.g., at peak hours). A central system oper-
ator as an interface between the suppliers and the customers is
responsible for the decisions about all the resources and loads in
MG.

D. Scenario generation

LHS is utilized to generate scenarios. The main difference be-
tween this method and the Monte-Carlo simulation is in the sam-
pling method. The first method divides the probability space
into equal parts as the number of samples, and then takes one
random sample from each part. The second method searches all
the probability space as the same and takes the needed samples.
As shown in Fig. 1, LHS leads to better sampling and more
realistic results, by better covering the probabilities. The star
sign shows random samples. The error from the forecast values
is considered a normal distribution with a mean equal to 0 and
predefined variances. These scenarios are generated in MATLAB
using the ‘lhsnorm’ function based on historically recorded data
for uncertain variables.

E. Scenario reduction

A backward reduction algorithm by the Kantorovich distance
(KD) [35] is utilized for scenario reduction. We assume that all
scenarios have a common root in a one-stage tree if the branch-
ing occurs only after the root node. This procedure is applied
iteratively by deleting a single scenario in each step and then
changing the probabilities of the other ones until a decided num-
ber of scenarios remain. Let nTdenotes the number of stages of
the optimization problem and ngdescribe the number of scenar-
ios. It is assumed that all scenarios have a common root in a
one-stage tree where branching occurs only after the root node.
Scenario g(f), i €{1,..,ng}is defined as a sequence of nodes of
the tree.

eD = (o, ", i), i =1, ms (19)
(0

1o = 1, Vi denotes the root of all scenarios, and 17; denotes
the leaf of scenario i within the scenario tree on stage j, j €
)
i
is given. Each node on stage j has n;’ parameters. The probability
(@
]
Thus, the probability for all scenarios

{1, ..., nr}. For each nodey;’, a vector P].(i) c R"Ip of parameters

to get from stage j to stage j + 1 within scenario i , from 7; 'to

(i) (i)
i+ T+
¢ () is given by:

1, is denoted by

B S B

— 0
L ]/j+1 - 1 (15)
j=

(
Ty

',

The distance between the two scenarios ¢ () and ¢ (1) is defined
as:

1/2
a(e®,60) = (z <P§”P£’>>2> 16)

k=0

The algorithm for deleting scenarios is described in the fol-
lowing. This procedure is applied iteratively, deleting one sce-
nario in each step and consequently changing the probabilities
of other scenarios, until a given number of scenarios remains.

a) Determine the number of scenarios to be deleted: Remove
scenario (;"S*, s € 1,..., ns satisfying:

) min{d(@® FNY = mi (m) . in[d (&), #m)
T Sr;l;p{ (&, ¢ N} me?ﬁfns}{” ,{Q}i‘[ (&, "N}
17)

According to the defined distance, scenarios that are
near to the others will be deleted. In addition, scenarios that
have a small probability are more likely to be deleted than others.

b) Change the number of scenarios: ng = ng — 1
¢) Change the probability of the scenariod (%), that is the nearest
to &7

®) #6)Y) = mi (s) z(s7)
d((j & )—gr;lsr}d((j & ) (18)
set ”(<)5,)1 = 71((;)1 + ”éf;)

This has to be done, as the sum of all the probabilities of the re-
mained scenarios should equal 1, and the only branching occurs
at stage 0 at the root node.

d) Continue with step a) as long as ng > N. Otherwise, STOP.
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(Upper-level problem)

Minimize f(Xuwp,Xio)

Xlo [ Xup J
(Lower-level problem)

Consider xup and
calculate xio
(Xup: fixed, Xio)

Fig. 2. Two-level problem structure.

F. Two-level optimization framework
A two-level optimization problem is expressed as follows:

minf (xup, xlo)
ST.:

(19)
(xup, xlo) € X,

xlo € S(xup).

As Fig. 2 illustrates, f(xup,xj,) is the upper-level objective
function, X is the feasible joint region between these sets of vari-
ables, S(xup) and is the set of a lower-level problem [36].

In conformity with the two-level problem depicted in Fig.
2, xyp decision variables are ug(h),g = 1,..,N;. More-
over, xj, decision variables are Pg(h),g =1,..,Ng;Pe(h),e =
1,...,Ng;Py (1)), s =1, .., n5;P (h) ), 1 =1,..,Np, s = 1,..., 5.

In the following, the lower-level problem is described as a
two-stage stochastic model. Here, the decision variables are:

1) The first-stage (here-and-now) decision variables, i.e., x
vectors, include Pg(h),¢ = 1,...,Ng and Py (h),e = 1,..., NE.
The moment of making the first-stage decisions is one day
ahead.

2) The second-stage (wait-and-see) decision variables, uncer-
tainty vectors, contain Py (h) and Py (h),] =1, ..., Nr.

The UC decisions, ug(h),g = 1,.., Ng are made one day
ahead, similar to the first-stage decision variables. It should be
noted that deciding about second-stage variables in practice is
delayed up to the next day when uncertainties are disclosed.
Moreover, when making a decision about the first-stage vari-
ables and UC, all the possible states of second-stage variables
are considered with related probabilities.

It should be mentioned that f(x,p, x;,) is a upper-level ob-
jective function. In the lower-level optimization problem,x;
is considered as a fixed variable (for a feasible case) and the
problem is solved once. By solving the problem,x;, is obtained
and its value enters the upper-level problem, which is solved
once. This procedure continued for all possible x,, values. For
the case in which the upper-level optimization problem has the
lowest value among all feasible scenarios,x;, and x,,will be the
solutions of problem.

G. Solving algorithm

In this paper, the differential evolution algorithm (DEA) [37],
PSO algorithm [38], and CMAES [39] (as powerful and robust

evolutionary algorithms) are applied to optimize the cost func-
tion considering all the constraints. Simplicity and fast con-
vergence are the reasons for selecting these algorithms. In
the following, a brief description regarding each of the above-
mentioned algorithms is presented.

G.1. DEA

The DEA includes five main steps known as initialization, mu-
tation, recombination, crossover, and selection [40]. In the ini-
tialization step, the initial values are randomly defined in de-
terministic regions, confined by the upper and lower limits. In
both the recombination and mutation steps, a population of
the number of population (NP) vector trail is generated. In the
crossover phase, a crossover vector of the parameter value will
be organized, which is regenerated on two vectors including the
initial and the mutation vectors. Finally, in the selection stage,
the vectors are distinguished such that they can be used as the
appropriate population for the next iterations [41].

G.2. PSO

PSO is based on the simulation of the natural movement of fishes
and birds to search for food [42]. Two significant parameters
of PSO are the position and velocity updating rules, which are
given by:

x(i+1)=x@{)+ov(i+1)
v(i+1) =w(i)*xv(i) + C1 xrandy * (x(i) — Ppes;)+  (20)
Co x randy * (x(i) — Gpest)

Where, x(i) and v(7) are the location and velocity of ith parti-
cle, and W(i) describes the inertia weight factor. C; and C, are
the exploration and exploitation coefficients in the searching pro-
cess, and they are normally selected in the range of [0-4].rand;
and randpare the random numbers at the range (0, 1).P,s; and
Gpest are the best location of each particle, and the best location
of Py, respectively.

G.3. CMAES

CMAES [39] is a stochastic method for the optimization of non-
linear and non-convex functions. It is an efficient solution for
problems in which applying derivative-based methods is unsuc-
cessful due to rugged search space with multiple discontinuities,
sharp bends, and local optima. That is the state of the edge of
estimation of distribution algorithms (EDA). In these algorithms,
after sampling from the feasible space, a probability function is
generated using the extracted samples, and by sampling from
this probability function and replacing these samples with previ-
ous ones, the initial sampling space is upgraded. This procedure
is performed iteratively to improve the solving procedure. It
adapts two unique principles, maximum likelihood principle,
and two evolution paths by covariance matrix adaptation and
step-size adaptation, and thus is different from the other opti-
mizers.

H. Risk management

The risk-neutral formulation of the proposed stochastic opti-
mization model minimizes the expected value of the cost, corre-
sponding to all the data of the remained scenarios. Decisions in
this approach may encounter unanticipated or low probability
scenarios in reality that could cause vast unexpected changes in
the predicted state. The way of managing risk for this problem
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is to formulate the problem using a term measuring the risk as-
sociated with the cost optimization process. Variance, VaR, and
CVaR are examples of risk measures. The mean-variance model
assumes that a decision can be characterized by two parame-
ters: The expected cost and the variance of this return which,
as a dispersion measure, is used to model the risk faced by the
decision-maker. Therefore, a large variance indicates that there
exists a high risk of experiencing a profit different from the ex-
pected one [29]. In this paper, since risk minimization is related
to the expected cost, the variance model for (1) is utilized as
follows:

(1-p) [ch © 5 Al <q<s>>Ty<s>}
s=1

2

18 5 Al ((q<s>)Ty<s> _ R ) (q<s’>)Ty<s’>)

s'=1 s'=1

(21)

The weighting parameter called the risk aversion factor (B)
lies within the interval [0, 1]. If B = 0, the variance is neglected
and if B = 1, the expected cost is neglected. Application of the
expected cost variance as a risk measure and its applicability
is presented in case study 2. This risk management process
eliminates the concern for high costs resulted from the adverse
effect of unfavorable scenarios. Reliability increase is the result
of reducing the probability of underperforming.

min

3. SIMULATION RESULTS

A. Case study 1; risk-neutral

In this study, a modified IEEE 13-bus distribution test feeder [43]
(Fig. 3) is used to verify the proposed stochastic MG scheduling
approach. The MG consists of micro turbine (MT), fuel cell (FC))
WT, PV, battery energy storage system (BESS), two loads, and
a PEV power station connected to 646, 645, 652, 680, 650, 611,
634, and 675 nodes, respectively. Power losses caused by line
impedance are ignored.

FC and MT are dispatchable power sources, and WT and
PV are non-dispatchable power sources. PEV power station
prepares PEV power exchange with the MG. Load 1 is a complex
of industrial uncertain loads and load 2 is a commercial constant
certain load. This MG is considered in the network-connected
mode and can receive power from the upstream network or send
power to it. More details in this regard are presented in Table 1.

It has been assumed that the MG control center keeps BESS
fully charged as a power security option. The control center
ensures having BESS charged in the upstream network off-peak
periods while the network electricity price is low. The cost of
having BESS fully charged is embedded in bgggg for receiving
PpEss.

It is supposed that for the pre-studied existing fleet of
PEVs for the MG, E(h) = 1.5, and Pppyq values for bppyg =
0.7($/kWHh) are based on Table 2.

Moreover, the penalty costs of load curtailment for load 1 and
load 2 ( bj;and by, respectively) are presented in Fig. 4.

Psr(h) is considered equal to 10% of the load after curtailment:
Pog (h) = 0.1 {T3_ Pa () — T2, Py () }

The electricity price and load vary with the day of the week.
Therefore, as shown in Table 3, actual historically recorded
network electricity prices and load 1 power were extracted from
[44], and [45], respectively. Ten recorded historical data for these
uncertain variables are considered as the ten input scenarios for
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Fig. 3. Single line diagram of the MG.

Table 1. Details of the MG.

Min Max
Bid SuC
Source/Demand power | power
($/kWh) SDC ($)
&W) | (kW)
MT 0.5 15 40 400
EC 0.3 2 10 300
BESS 0.4 0 0 300
PEV B_PEV — 0 400
Utility network | 0.14<Uncertain<0.77 — -300 300
Pyr(Uncertain) — — 0 700
Ppy(Uncertain) — — 0 1400
P41 (Uncertain) — — 0 900
P by — 0 400
Py — — 1000
P by — 0 ‘ 300

Table 2. The values of Ppryyg for bpryg equal to 0.7 ($/kWh).

hour 1 2 3 4 5 6 7 8 9 10 11 12
Ppeyo(kW) | 95 85 80 80 90 | 110 | 160 | 150 | 280 | 310 | 380 | 370
hour 13 14 15 16 17 18 19 20 21 22 23 24
Ppgyo(kW) | 400 | 360 | 380 | 390 | 400 | 370 | 375 | 340 | 270 | 190 | 150 | 120

them.

The day-ahead forecasted values of wind and solar power for
March 20, 2019 were extracted from [45]. Real values for four
uncertain variables on the forecast date were extracted as well.
All these data were extracted every 24 h of the day. Day-ahead
forecasted values of wind and solar power generation for each
hour are considered to follow normal distribution with a mean
equal to the forecasted values and 20% and 10% standard devia-
tions, respectively. Scenario generation and reduction order of
uncertain variables’ input data are presented in Fig. 5. The 81
resulted scenarios were utilized in the stochastic programming
process. The generated scenarios are shown in Fig. 6. Moreover,
the extracted reduced scenarios for each uncertain variable with
values that happened on the next day are shown in one frame in
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Table 3. Date of extracting historically recorded data for uncertain electricity price and load.

Forecast date Wednesday, March 20, 2019
Wednesday | Wednesday | Wednesday Wednesday Wednesday
Recorded data from | Jan 09,2019 | Jan 16,2019 | Jan23,2019 | Jan 30,2019 Feb 06,2019
Wednesday | Wednesday | Wednesday Wednesday Wednesday
Feb 13,2019 | Feb 20,2019 | Feb 27,2019 | March 06, 2019 | March 13,2019

2.7
25
23
2.1
1.9
1.7
1.5
13
1.1

0.9
0.7 = 4 =Load 2; Commercial

0.51 —v— Load 1; Industrial

Load shedding penalty cost ($/kWh)

L L 1 L L 1 1 L L 1 L L 1 1 L L 1 L L 1 1 L L
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time (h)

Fig. 4. Penalty cost of load curtailment

Table 4. Optimization variables in two levels and two stages.

Optimization levels and stages Variables Decision Time

Unrs Urc Day-ahead

Upper-level optimization: "
B P First-stage: Pini Py PnssiPony Day-ahead
Lower-level optimization:

Real-time

Second-stage: Py, Py =12,

Fig. 7.
Decision variables in two levels and stages are classified in Table
4. Tt is supposed that, at the beginning of the scheduling period,
both MT and FC are in the ON status of generation. Table 5
shows the details of the proposed approach and results.
If instead of Ppgy is considered a decision variable in the cost
function (3), by substituting (12) in (3), the same results are
obtained (Table 5).

According to Table 5, Error = (Total cost in reality—The antic-
ipated total cost)/Total cost in reality = 7.4%. In addition, the
total cost values are the upper-level results shown in Fig. 8.

B. Case study 2; under managed risk

In this case study, risk management is implemented for the pre-
vious one. With the increasing complexity of the cost function,
while risk management is considered according to (21), CMAES
is utilized to solve the problem. Applicability and great perfor-
mance of CMAES compared with DEA and PSO are shown in
Fig. 9. The expected cost and variance changes with a change in
risk aversion factor (B) for h = 12 are exhibited in Fig. 10.

As illustrated in Fig. 10, the reduction of variance as risk
aversion increases confirms the effectiveness of the proposed
model. Based on Table 5, for h = 12, there is a 46% difference
between the total cost in real-time and the day-ahead expected
cost.

This difference can be attributed to the unpredicted inevitable
issues occurring in real-time. To better understand the results

of risk management, the optimization problem with risk factor
B = 0.01is run. As a result, for i = 12, the expected total cost
is $121.8605, while in real-time the total cost as the result of im-
plementing decisions is $108.4213. This cost is less than the one
in real-time in case study 1. In addition, this risk aversion ap-
proach takes $17685.5339 total cost for the next day. The efficient
proposed risk management approach, appropriately discards un-
scheduled system states due to unpredicted scenarios; however,
it results in higher costs, as well. It is worth mentioning that risk
management, despite the increase in total cost, increases system
reliability with the flexibility of the resultant schedule to accept
a wider range of unpredictable changes.

4. CONCLUSIONS

In this paper, a stochastic programming approach was presented
for the day-ahead resources optimal scheduling in MG. This
method provides a sketch of reliable and economic utilization of
V2G technology along with load curtailment cost and SR require-
ments. The wind and solar power intermittency, as well as load
and electricity market price uncertainties are modeled in the
problem. In addition, the generated scenarios were reduced for
each uncertain variable at each hour, independently. Utilizing
the price elasticity of supply to introduce V2G technology to the
cost optimization process is a novel issue presented in this paper.
Moreover, load curtailment as a decision variable in the cost
function was considered to help the reliable operation of MG.
Finally, risk management for removing the unfavorable results
of the unanticipated system state was implemented based on the
variance model. The presented model in this work can be gen-
eralized to any number of dispatchable and non-dispatchable
sources and any number of uncertain variables. The results
showed the high efficiency of CMAES in such optimization
problems, where better results were obtained by one-sixth of the
number of iterations, in comparison with the DEA and PSO. The
proposed comprehensive approach was validated by numerical
simulations with real-world data collected for different variables.
Moreover, it was shown that the risk management approach,
appropriately discards unscheduled system states due to un-
predicted scenarios. In the proposed approach, real historically
recorded data and day-ahead forecast values were used as input
data for MG. Day-ahead decisions considering all uncertainties
were implemented the next day. The high performance of MG
with realistic variables in the next day proved the effectiveness
of the proposed approach.
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