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The close attention to the utilization of electric vehicles (EVs) causes the penetration of intelligent park-
ing lots (IPL) to increase. Also, vehicle-to-grid (V2G) strategy next to the grid-to-vehicle (G2V) strategy
improves the profitability of the IPLs. In addition to vehicle charge and discharge management, the IPLs
can gain more profit by installing and accessing loads and resources. In this paper, the IPLs next to the
hydrogen storage system (HSS) containing electrolysis, hydrogen, and fuel cell storage reservoirs are con-
sidered to serve the loads in the upstream grid that is modeled through a scenario approach based on
stochastic optimization. The uncertainties in the electrical load, market price, the arrival and departure
time of vehicle, primary state-of-charge (SOC), and desired car with appropriate SOC are modeled in the
proposed method. According to the uncertainty of the proposed hydrogen storage-based intelligent park-
ing lot values, the financial risks are investigated by the conditional value-at-risk (CVaR) method to get
the risk-neutral and risk-averse methods during the system function. The obtained results demonstrate
that the uncertain parameters significantly impact smart parking operators’ profitability, so considering
uncertainty is a critical issue for parking lots. Risk results also represent that the variation of financial
risk in the higher deviation of uncertain parameters is more than risk variation in lower deviations. ©
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NOMENCLATURE

EV Electrical vehicles
G2V Grid to vehicle
V2G Vehicle to grid
PV Photovoltaics
PHEV Plug-in hybrid electrical vehicles
Sp Stochastic programming
WT Wind turbines
A Initial investment cost
SOC State-of-charge
n Lifetime
MT Microturbine
RES Renewable-energy-resources
HSS Hydrogen stored system
IPL Intelligent parking lots

t Index of of time
v Index of vehicle type
ω Index for scenarios
CV Battery Capacity
CFC Exploitation expense of the fuel cell
CEL Exploitation expense of the electrolyzer

HTANK−FC
t Rate of hyrogen dicharged from the tank to fuel

cell
PTANK−FC

t Hourly tank power
EH2 Hydrogen energy

HEL−TANK
t Compressed hydrogen in tank

PEL−TANK
t Electrolyzer power outcome in t

MTANK
t Hydrogen storagein the tank in t

MTANK
t−∆t Hydrogen storagein the tank in t− ∆t

ηTANK , ηFC Tank and FC efficiencies
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∆t The time period

PIPL−EL
t Power delivered of IPL-to- electrolyzer

ηD
V Discharging efficiency of EV battery

ηC
V Charging of EV battery efficiency

PV,C
t charged power of the battery in EV

PV,D
t Discharged power of the battery in EV

ta
V Approximate arrival time of vehicle

td
V Approximate departure time of vehicle

mG2V Set-up To test electric V-to-G
λt

C Charging rate of the EV in t

UV
t A binary variable in t

SOCtd
V

, SOCta
V

The primary and Final state of charging of EV

λc,V2G
t ,λsell−load

t Charging rate of the V2G EV in t

λd,V2G
t Discharging rate of the V2G EV in t

SOCmax
V Maximum SOC of vehicle

SOCmin
V Minimum SOC of vehicle

Psell−grid
t The rate of energy sold which by IPL

Cω Expense of scenario ω

ηω Auxiliary variable

λsell−load
t Price of sold power to load

SOCV
desired Desired SOC of vehicles

ζ Value of risk
β Coefficient to achieve suitable swap between cost and cal-

culated conditional value at risk.

1. INTRODUCTION

A. motivation
The wide range of electric vehicles (EVs) in the power network
are considerable electric loads that may lead to a challenge in
the system operator. Increasing the electric vehicle penetration
forces the electrical grid operators to equip themselves to
encounter this new challenge. A large penetration of the
EVs has turned them as active players in the power network
system that potentially affects the operation of the optimum
system due to their unreliable behavior. Proper integration
and management of IPLs and storage systems are efficient and
reliable solutions for reducing the negative effects of uncertain
parameters [1, 2]. As well as, the plug-in electric vehicle (PEV)
charger is committed as a quick charger. In addition, smart
electricity networks can provide various auxiliary services to
the grid for allowing bidirectional energy transfer [3, 4]. The
utilization of IPLs can contribute to the vehicle-to-grid (V2G)
technology. All-electric vehicles for supply to power their
electric motors are equipped with batteries. In charging mode,
PEVs can receive energy and in discharging mode, can deliver
energy to the grid. The connection of PEVs in IPLs is in the
form of bidirectional flow. Indisputably, PEVs can be used as a
burden and power source unit from a smart grid vision [5–7].
By planning the battery charging strategy simultaneously, can
investigate the revenue and profit of the smart grid. Further,
this mode of PEVs causes receiving income to PEV’s owners
when their cars are parked [8].
Perhaps, by considering the type of energy conversion, the
electricity storage systems could be categorized into four
sections, including battery, compressed air, electrical and

mechanical systems [9]. Hydrogen storage is a type of chemical
energy storage in which the conversion of electricity into
hydrogen, the state of discharge, and the conversion of
hydrogen into electricity is the state of charge. Electrolysis is
a procedure in which chemical changes occur to break down
water molecules into oxygen and hydrogen as electricity passes
through the article. During this process, the first oxygen and
hydrogen are obtained by electrolysis of water, and then by
the fuel cell’s conversion stage continues. All this reaction
occurs in the electrolytic cell [10, 11]. A major advantage of
the hydrogen system is hydrogen storage in the hours that
electricity consumption and tariffs are less and its conversion
into electricity through the fuel cell at peak times and rising
electricity prices. Hydrogen can be stored in various ways, the
most important of which is compression, which can be stored as
pressurized gas [12].
Currently, the number of electric vehicles is increasing, and
IPLs are considered a charging place, so there is a pressing
need to study. Several samples of the study of connecting
IPLs to the upstream network and charging / discharging of
vehicles are presented [13]. The authors have evaluated the
coordination of the distribution networks and IPLs to reduce
the cost of demand for electric vehicles in the parking lot [14].
In [15, 16] an approach is proposed for controlling and saving
electricity consumption through optimization of vehicle charge
and discharge is presented. The effects of IPL on the security
constrainted unit commitment problem is investigated in [17].
Considering the swapping station of electrical vehicles, the
optimal scheduling of a smart mocrogid is investigated in [18].
In [19], electric vehicle parameters such as the amount of energy
consumed at the time of entry and exit being modeled using
a non-parametric distribution for intelligent parking. In [20],
increasing the revenue and profitability of parking owners
offers a solution taking into account the restriction of electric
vehicle drivers, especially the final SOC of vehicle, when leaving
the parking lot. In terms of uncertainty modeling methods in
similar systems, in [21], IPL with PV generation uncertainty is
offered for random charging and discharging in PEVs. Here, to
solve PV uncertainty, energy management in smart parking is
investigated. Optimization of IPLs management by considering
to price changes in electricity markets in [22] is presented
wherein the parameter is modeled non-linear, using Info-gap
decision theory (IGDT). In [23], the IGDT-based method is
used to model the risk of uncertain parameters in a renewable
microgrid. The robust optimization is another well-known
approach in risk-assessment that in [24] is used to model
the uncertainties of hybrid energy system considering the
power-to-gas technologies. By the combination of the stochastic
optimization and robust optimization approach, in [25] a
hybrid robust/stochastic is proposed to risk modeling of the
multi-energy retailers in several energy markets. Also, in [26]
the hybrid robust/stochastic is used to model electricity market
clearing e in rail transportation system. In [27], optimization of
IPLs considering the indeterminacy upstream grid cost based
demand response program modeling is analyzed. This approach
has increased the strength of IPL toward the inconstancy of
generating station cost. Furthermore, in [28], the CVaR risk as-
sessment approach is used to model the financial risk asocieted
to hydrogen storage-based multi-carrier energy systems in the
risk-constrained stochastic scheduling considering power, gas,
and heating network constraints. Moreover, the risk assesement
of the power-to-hydroge technology has been investigated
in [29]. The CVaR-based framework is proposed in [30] to
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investigate the risk-based operation of the renewable-based
microgrid. Also, the chnance constrainted method is proposed
in [31] for risk investigation of the renewable-based microgrid.

B. novelty and contributions
The IPL’s operators are searching for an effective way to deal
with the uncertainties due to their function’s significant effects.
Therefore an appropriate uncertainty dialing approach would
be welcomed by the IPL operators to utilize in its optimal
operations. Based on the reviewed papers, various methods
are proposed to model IPL’s operation problems’ uncertainty.
A significant lack of researchers in the uncertainty modeling
approaches is a comprehensive approach to model the hole
uncertainties. In other words, most of the techniques are
modeled the financial risk of limited and special uncertain
parameters. Thus, this paper is tried to model all significant
uncertainties, simultaneously, that IPL operator is faced in
its operation. The uncertain parameters are the arriving and
leaving times of the EVs, SOC in the arrival time, desired SOC,
electrical demand, and market price. Furthermore, to model
financial risks of the uncertain parameters, the well-known
and influential CVaR method is required to model the financial
risks of the uncertain parameters appropriately that is not
used previously in the related research. Therefore, considering
all mentioned uncertainties, the model’s financial risks are
investigated by the CVaR method, which is the most popular
and robust approach in linear programming problems. the
novelty of this paper can be summarized as below:

• Considering the V2G and G2V vehicles and the uncertain-
ties related to their stochastic behavior and effects on the IPL
operation, Simultaneously.

• A comprehensive risk analysis of the most uncertain
parameters of the IPL, including the arrival and departure
times, load and market price uncertainties on its operation, and
proposing the risk-based operation strategy in the uncertain
environment.

• Modeling the financial risks by considering the uncertain
parameters in the IPL by using the CVAR method.

2. METHODOLOGY OF THE INTELLIGENT PARKING
LOT PROCEDURE

In this paper, the integration of the IPL and hydrogen storage
is considered to supply the internal loads and power exchange
with the grid to obtain profit. Actually, IPL’s meanwhile pro-
viding the charging of electric vehicles (internal loads), with
accepting the participates in the pool market, transmits the elec-
trical energy to the distribution grids.

A. Hydrogen energy storage

In the electrolysis model, hydrogen is considered then stored
in high-pressure in composite tanks or bottles. The costs of
the discharged hydrogen from the reservoir into the fuel cell
and the cost of its storage are presented in Eq. (1) and Eq. (2),
respectively.

HTANK−FC
t =

PTANK−FC
t

EH2

(1)

HEL−TANK
t =

PEL−TANK
t

EH2

(2)

Here, EH2 indicates the value of hydrogen energy in each kg.
The amount of stored energy in the storage tank obtained from
Eq. (3).

MTANK
t = MTANK

t−∆t + (HEL−TANK
t − HTANK−FC

t × ηTANK)×

∆tHEL−TANK
t =

PEL−TANK
t

EH2
(3)

Where, MTANK
t−∆t and MTANK

t are the mass of hydrogen that
stored in per unit t and t − ∆t, respectively, ∆t shows each
period’s term and is equal to one hour and ηTANK is the tank’s
efficiency [32].

B. Electrolyzer
Hydrogen is an available element with the advantages of
availability, flexibility, and high purity for its widespread appli-
cations. Using electrolyzed water to produce hydrogen needs an
improvement in energy efficiency, safety, operability, durability,
portability, and reduction in installation and operation costs.
Actually, by water electrolysis, the element hydrogen and
oxygen is produced and used for fuel cells [33].
The power output of the electrolyzer system in per unit t can
PEL−TANK

t be calculated using Eq. (4) [34]:

PEL−TANK
t = PIPL−EL

t × ηEL (4)

Where, PIPL−EL
t this power is the electrical energy delivered by

the IPL to the electrolyzer, which is the electrolyzer’s efficiency.

C. Fuel cell
Common environmental effects and high conversion efficiency
are fuel cells’ specifications in converting chemical energy into
electrical energy [35]. The power input of fuel cells can be
obtained of Eq. (5).

PTANK−FC
t =

PFC−IPL
t
ηFC

(5)

The term PFC−IPL
t is the power that the IPL receives from the

Fuel Cell, ηFC which is the fuel cell’s efficiency.

D. V2G mode of EVs
EVs have different capabilities, the main feature of which is
the discharge mode (V2G). In this article, the IPL management
strategy offers discounts and motivates owners of an EV to take
part in the V2G program. [36–38].
The SOC in each PEVs (SOCt

V) in IPL connected mode, depends
on the SOC of a battery in a former time (SOCt−∆t

V ), current of
EVs’ battery charging and discharging mood obtained in Eq. (6)
[39, 40].

SOCt
V = SOCinit

V +(
ηc

vPV,C
t

CV
−

PV,d
t

ηd
v CV

)×∆t ; ta
V < t ≤ td

V (6)

− PEL
MAX ≤ PH

t ≤ PFC
MAX (7)

Here, ηc
v and ηd

v are battery efficiencies, respectively. PV,C
t and

PV,d
t are charged and discharge powers, respectively. While

CV is the rate of battery capacity, td
V and ta

V are the departure
and arrival times, respectively. The IPL in communication with
electric vehicles has the following income and expenses :
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• The payment of sell G2V
• The payment of sell V2G
• The payment of buying V2G
• The payment of using the former charge of the batteries for

the grid
• The cost of failures to provisions of EVs charging penalty

factor
Income from selling electricity to EVs is presented in Eq. (8) [27]:

RPHEV−mG2V
t =

mG2V

∑
V=1

(PV,C
t × λt

C)×UV
t × ∆t (8)

In the bellow constraint (8), the PV,C
t indicates the energy that

flows into the battery. The term λt
C is payment for charging of

EVs, and UV
t is a binary parameter that indicates the connectivity

state of the PEVs. Battery SOC at EVs departing times SOCtd
v

suggests that the EV as a seller or as a buyer of energy, in V2G
mode. The vehicle is the seller if the battery final SOC is lower
than the battery initial SOC, but the buyer is considered more
than the initial SOC.
We can calculate the income through sell energy of vehicles to
grid, in Eq. (9).

RPHEV−mV2G

t =
mV2G

∑
V=1

(SOCtd
v
− SOCta

v
)× CV × λc,V2G

t × ζd
V (9)

Here, SOCta
v

and SOCtd
v

show the initial charging and average

SOC after charging, respectively. λc,V2G
t represents the V2 G’s

charging price per unit t, ζd
V is the departing figures time of the

EV.
The expense of buying power of V2G computed by using
Eq. (10):
If SOCtd

v
< SOCta

v

CPHEV−mV2G
t =

mV2G

∑
V=1

(SOCtd
v
− SOCta

v
)×CV × λd,V2G

t × ζd
V (10)

Here, λd,V2G
t is the V2G discharging cost per unit t. Also, the IPL

management inflicts certain expense constraints for using EVs’
usable capacity every hour. This cost is obtained using Eq. (11)
[41]:

Ccap−V2G
t =

mV2G

∑
V=1

(SOCmax
v − SOCmin

v )× CV × λ
cap,V2G
t ×UV

t

(11)
Here, SOCmin

v and SOCmax
v shows the minimum and maximum

SOC in battery electric vehicles, respectively, also λ
cap,V2G
t is the

rate of the available capacity in per unit t.
The expense of failures to EVs charging (penalty factor) pays
with the manager when SOC is not desirable SOC and its cost is
indicated by Eq. (12).

Cpenalty
t =

mV2G

∑
V=1

(SOCV
desired − SOCtd

V )× CV × λ
penalty
t × ζd

V (12)

Here, λ
penalty
t shows the tariff rate of the penalties.

3. DETERMINISTIC FORMULATION

In this paper a IPL is incorporated with hydrogen-based system
constructure from the Electrolyzer, fuel-cell and tanke to sup-
ply the internal loads with the help of the upstream grid. The
overview of the proposed IPL system is illustrated in Fig. 1.

 

Fig. 1. The overview of the proposed IPL.

A. the objective of the optimization
The economic benefits of the IPL is calculated considering the
distinction between expense and income, through Eq. (13). In
this equation, the terms pbuy−grid

t and psell−grid
t represent the

received and delivered power in the upstream grid. Besides, PL
t

indicates the electrical load in period t , λsell−load
t is the price of

electricity sales by IPLs for load. CFC
t is operating and mainte-

nance costs for fuel cell. CTANK
t is the operation and maintenance

cost of the hydrogen tank. CEL
t is the operation and maintenance

cost of the electrolyzer.
When the power is heading to the upstream grid, psell−grid

t is
equal to power interchanged with the upstream electricity grid
pgrid

t and pbuy−grid
t equal to zero. The power that flowed out of

the upstream electricity grid to the IPL (pbuy−grid
t ) is equivalent

to power interchanged with the upstream electricity grid pgrid
t ,

psell−grid
t is similar to zero [41].

Finally, to get the maximum profit of IPL, equation Eq. (14) can
be considered in the proposed model.

OF = MAX(Pro f it) (14)

B. limitations for IPL
Actually, to increase secure implementation of the intelligent
parking and the objective functions optimize, restrictions (15–21)
have been imposed [42–44].

SOCmin
V ≤ SOCV

t ≤ SOCmax
V (15)

− PV,D
max ≤ PV

t ≤ PV,C
max (16)

− PEL
max ≤ PH

t ≤ PFC
max (17)

MTANK
t ≤ Mmax (18)

MTANK
0 = MTANK

24 (19)

PIPL−EL
t + PL

t + PC
t + Psell−grid

t = PFC−IPL
t + Pbuy−grid

t + Pd
t

(20)
Pgrid

t ; |Pgrid
t | ≤ Pgrid−max (21)

The constraint Eq. (15) shows maximum and minimum SOC
for each EV. It also guarantees that the battery’s charge and
discharge energy are less than the space inside the battery’s
capacity. The amount of energy in batteries and the battery
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pro f it =
t=1

∑
T=24


((Psell−grid

t × λ
grid
t )− (Pbuy−grid

t × λ
grid
t ))× ∆t + (λsell−load

t × PL
t )× ∆t

(RPHEV−mG2V
t + RPHEV−mV2G

t )− (Ccap−V2G
t + CPHEV−mV2G

t + Cpenalty
t )

−(CFC
t + CEL

t + CTANK
t )

 (13)

charger’s maximum capacity is indicated by Eq. (16). The elec-
trolyzer/fuel cell’s full power is described in Eq. (17), maximum
capacity in the hydrogen storage tank is expressed by Eq. (18).
Constraint (19) presents the mass of H2 into the beginning of the
tank and the final utilization that must be the same to meet the
need for hydrogen the next day. Constraint (20), provides the
power balance of IPL, PC

t is the sum of charging and discharg-
ing the energy of PEVs. In Eq. (21), the maximum capacity of
transmission-lines that is connected to the grid is presented.

4. CVAR METHODOLOGY

Recent progress on the uncertainty based optimization prob-
lems is considered a risk management method to measure the
imposed financial risks. In the optimization problem to avoid
undesirable conditions for manufacture and make the right de-
cisions in the face of adverse circumstances in the objective
function, uncertainty is considered [31]. This paper models the
uncertainties by assuming the worst-case scenario with a CVaR
method, which is one of the risk control procedures in stochastic
programming. According to the uncertain parameters, the CVaR
model is used for managing the risk in a stochastic environment
[45]. Among other risk measures, stochastic programming (SP)
for uncertainties with scenarios CVaR method is chosen as a
risk measure because it is strong and benefits such as stability
of calculations and numeric efficiency. CVaR can be formulated
through Eq. (22)-Eq. (24) [46]:

Maxζ − 1
1 + α

ω∈NW

∑ λω × ηω (22)

Subject to:
Pro f itω + ζ ≤ ηω (23)

ηω ≥ 0 (24)

Where Pro f itω is the profit of scenario ω and value at risk ζ . If
ζ is lower than Pro f itω , ηω equal is 0. ηω is auxiliary variable
that allocated for discrepancy relevant to the expense and value
at risk. Based on the formulation as mentioned above, the final
problem formulation of the model can be modeled as below:

ηω ≥ 0 (27)

Subject to:
Constraints (1)-(12) and (15)-(21)

5. CASE STUDY

This paper, models optimal scheduling of EV parking lots by
mixed-integer programming that CPLEX solves in the general
algebraic modeling system (GAMS) optimization tool. In the
proximity of hydrogen storage and load and smart grid, IPL
seeks to maximize its profit. At last, IPL in electric vehicles is
equipped with G2V and V2G.
The results of this paper are represented for two case studies as
below:
Case 1: Without considering the risk imposed from the uncertain

parameters as risk-neutral strategy.
Case 2: Considering the financial risk og the uncertain parame-
ters as risk-averse startegy.

A. Input data
In this paper, the relevant uncertainties to the electrical load, net-
work power, the arriving and leaving times, primary SOC, and
desired terminal SOC of the vehicles are modeled via stochastic
programming and the CVaR strategy, which is used to determine
the possible risk. The simulation is carried out according to the
following data: input data of market and demand price that is
illustrated in Fig. 2. The expected values are provided to gener-
ate dependent scenarios for vehicles arriving and leaving time,
the primary and desired SOC in Table 1. Deterministic-based
input data for IPL, HSS, PHEVs, and predicted PHEVs’ data is
achieved from the reference [47].

Table 1. Information of stochastic parameters to scenario
generation

Stochastic parameter Mean Standard deviation

ta 8 3

td 17 3

SOCinit 30% 10%

SOCdesired 85% 10%

B. Results
Fig. 3 displays the expected profit based on cost versus (β).
When the Beta increases from 0 to 0.3, the amount of profit comes
down from $ 62.7 to $ 44 ($18.7 profit reduction), while from 0.4
to 1 the profit is reduced by about $10. It is observed that the
slope of profit in this amount of Beta is considerably decreased.
As can be seen, the profit sensitivity is much higher in lower
betas. Beta’s increase means that the conditions of uncertainty
worsen, and the closer the Beta to 1, the profit is minimized. In
other words, according to Fig. 3 it can be shown that for β from
0 to 0.3 that refers to the near to risk-neutral strategy, the profit
is reduced with a high slope while the slope of profit reduction
is slightly reduced for β amounts near to risk-averse strategy.
In this paper, due to the uncertainties of existing parameters,

investigating the risk management level with the CVaR index
is introduced in two different risk management strategies: risk-
averse and risk-neutral. The risk-averse approach is the best
possible condition scenario, such as network price, network de-
mand, and vehicle conditions in the parking lot, which reduces
the risk and increases job security. But in risk-neutral, getting
the maximum benefit with the highest risk is considered.
The risk-averse and risk-neutral functions for acquiring power
from the market are indicated in Fig. 4. According to Fig. 4,
the purchased IPL electricity from the grid is performed almost
every hour, but selling power to the grid is carried out dur-
ing a short period. The purchased energy from the market at
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Max :

ω∈Nω
∑
Ω

πω
t=1
∑

T=24


((Psell−grid

t,ω × λ
grid
t,ω )− (Pbuy−grid

t,ω × λ
grid
t,ω ))× ∆t + (λsell−load

t,ω × PL
t,ω)× ∆t+

(RPHEV−mG2V
t,ω + RPHEV−mV2G

t,ω )− (Ccap−V2G
t,ω + CPHEV−mV2G

t,ω + Cpenalty
t,ω )−

(CFC
t,ω + CEL

t,ω + CTANK
t,ω )

× (1− β)+

β×
[

ς− 1
1+α

ω∈NW
∑
Ω

πω × ηω

]
(25)

t=1

∑
T=24


((Psell−grid

t,ω × λ
grid
t,ω )− (Pbuy−grid

t,ω × λ
grid
t,ω ))× ∆t + (λsell−load

t,ω × PL
t,ω)× ∆t

(RPHEV−mG2V
t,ω + RPHEV−mV2G

t,ω )− (Ccap−V2G
t,ω + CPHEV−mV2G

t,ω + Cpenalty
t,ω )

−(CFC
t,ω + CEL

t,ω + CTANK
t,ω )

+ ς ≤ ηω , ∀ω (26)

 

Fig. 2. Electrical load and Market price.

 

Fig. 3. Cost versus β of expected profit.

peak hours, such as 10 and 22, has the highest amount. In the
risk-averse scenario, which is considered the worst scenario, the
purchasing power is notable during off-peak hours when the
price is in the lowest amount. While, in risk-natural, the pur-

 

Fig. 4. Bought power of market.

chasing of power in off-peak hours is less than risk-averse.
Fig. 5 shows charged power of grid-to-vehicle. The amount of
energy the cars are received in the risk-averse and risk-neutral
strategies is zero, and it is indicated during 1 to 4 hours when
the vehicles were out of the parking lot. The figure shows that
the amounts of charged power of G2V in the risk-neutral are
higher than the risk-averse. Because in this case, the vehicles are
in the parking place for a long time, so in risk-neutral, vehicles’
charged power in the early hours of 10-15 is higher. Furthermore,
by comparison of the Figs. 4 and 5 it can be concluded that in
the risk-averse strategy at the high price hours, the purchasing
power from the grid is reduced, and the IPL operator relies more
on the internal resources etc. vehicles and storages.
Fig. 6 is picturing the level of stored hydrogen in the tank. The
hydrogen tank is charged for peak hours and discharged from
15 to 24. As shown in Fig. 6, in the risk-neutral to attainment
more profit, the amount of stored hydrogen in the reservoir at
the same hours is excellent, compared to risk-averse. Besides,
in the risk-neutral, the amount of stored energy in the system is
increased.
Fig. 7 shows the risk-neutral performance and charge and dis-
charge power of EVs in the IPL in risk-averse. Due to the absence
of vehicles from the parking lot in the first hours, the amount
of energy is zero. The cars are also charged from 5 to 1 because
of less price. In addition, The price of the scenarios at 11.am is
increased. The vehicles are discharged, and the IPL performance
is considered as a seller to network. Finally, in the risk-averse,
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Fig. 5. Charged power of grid-to-vehicle.

 

Fig. 6. The level of stored hydrogen in the tank.

 

Fig. 7. Charged and discharged power of V2G.

the vehicle’s discharge is higher than the risk-neutral because of
the risk-averse strategy.

6. CONCLUSION

This work considers PHEVs with the G2V and V2G system and
the CVaR stochastic optimization of IPL and discussed the un-
certainties. Also, a hydrogen system is used as a storage unit

available for the IPL. This work aims to show the impact of risk
and uncertain parameters on the IPL. PHEVs with a G2V and
V2G system are considered in this work, and stochastic opti-
mization for the IPL operation. Thus the uncertain parameters
such as electrical loads, network power, arriving and leaving
time, primary SOC, and desired terminal SOC of theV2G and
G2V vehicles are analyzed in various scenarios. The benefit of
IPL and the risk related to this scenario are investigated using
the CVaR methodology. The IPL is examined by considering
the unexpected scenarios in both risk-averse and risk-neutral
methods. According to results, the profit is significantly raised
in risk-neutral, while the uncertainties and risks are in their
maximum level. In comparison with risk-neutral, the amount
of profit is considerably reduced in risk-averse. Furthermore,
based on the obtained results, the profit reduction versus β from
0 to 0.3 is $18.7, while for the highest beta amounts (from 0.4 to
1) the profit is reduced by $10. Thus, it can be concluded that
the risk reduction slope will be reduced by closing to the worsk
realization of uncertainparameters.
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