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Determination of the optimal reserve requirement of clean energy systems is one of the main challenges
of system scheduling. Electric vehicles (EVs) could reduce public transportation emission due to fossil
fuels in the cities, although power systems confront uncertainties in the presence of EVs. Adiabatic com-
pressed air energy storage (A-CAES) also has merits like no fossil fuel consumption, low costs, and fast
start-up. It could provide various applications like energy and reserve to reduce power system costs. This
paper presents a probabilistic method for optimal determining of spinning reserve in the presence of
wind, A-CAES, and EVs for the day-ahead market. The optimal reserve level will determine via simul-
taneously optimizing the total operation cost and total expected energy not supplied. For the A-CAES
facility, we consider air pressure limitations, thermal storage capacity limitations, and power output lim-
itations. Besides, the availability, responsibility, driving patterns, and the variety of electric vehicles are
also considered. The impact of incentive on system cost is analyzed either. Dc power flow is used to
model the transmission flow limits. The problem is formulated as mixed-integer linear programming,.
Finally, the well-known 24 bus test system is used to verify the efficiency of the proposed model. At the
end we found A-CAES is not suitable for participation in the reserve market and it’s better to use them
for peak shaving. It means the participation of A-CAES in peak shaving decreases system cost more than
when it participates in the reserve market. Most of EVs will participate in reserve market and 30 percent
of incentive cost will cause the optimal cost of the system. © 2021 Journal of Energy Management and Technology
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NOMENCLATURE Ip Total incentive cost.
Ug The average speed of wind.
Sets (o Wind turbine cut in speed.
T Set of hourly time intervals. o Wind turbine rated speed.
Mes Set of compressors. Uco Wind turbine cut out speed.
Tgs Set of generators. Poaeq  Wind turbine rated power.
Ngen  Set of thermal units. fes A-CAES efficiency of compression stage.
Msce  Set of driving patterns. fgs A-CAES efficiency of generation stage.
K Specific heat ratio of air.
Parameters R Universal gas constant.
) Level of income($). Teomp,v,i Temperature of compressor v.
- Mean level of income($). Teen,wi Temperature of turbine w.
ep Electricity price ($/MW). Yk Rated pressure ratio of compressor k.
4 Amount of incentive cost (%). Yo, Rated pressure ratio of turbine j.
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Torini  Initial air temperature in the air reservoir.

cp Specific heat capacity of air.

¢ Heat exchanger effectiveness.

Teo1q Temperature of cold TES working.

Thot Temperature of hot TES working.

Qno Initial stored heat in the heat reservoir.
7,A,@ Cost coefficients of thermal units.
COST, Electric vehicle battery cost.

COST; Electric vehicle battery degradation cost.
WCP Wind curtailment penalty price.

life Electric vehicles battery life cycle.

Es Total energy storage of the battery.

DoD EV battery depth of discharge.

QOn Upper limit of thermal storage capacity.
VOLL Value of loss load.

SOCev™" Lower limit of EVs state of charge.
SOCev™* Higher limit of EVs state of charge.
ROCev™" Lower limit of EVs charging rate.
ROCev™* Upper limit of EVs charging rate.

Variables

Puw,average  Average generated power by wind.

Pces ¢ Compressing power of A-CAES at time t.

Pges i Generating power of A-CAES at time t.

Tiles b Mass flow rate in compression stage.

Tigs t Mass flow rate in generating stage.

Pyt Pressure of air reservoir at time t.

Xit Binary variable for compressing (A-CAES).

Ujy Binary variable for committed generation units.

Poct Heat transfer power from heat exchanger during
the compression of A-CAES at time t.

Pogt Heat transfer power from heat exchanger during
the expansion stage of A-CAES at time t.

Qnyt Stored heat in the heat reservoir.

COST* Startup cost of thermal units.

COST"  Shut down cost of thermal units.

COST™  Thermal units cost.

CEgpy Cost of V2G, energy market.

CRgy Cost of V2G, reserve market.

EENS; Expected energy not served (MWh).

pe Wind curtailment at hour t.

Pit Total power provided by thermal unit i at hour t.

Pesce,t V2G power that each driving pattern provides.

pwy Wind power.

PeCsce t Electric vehicles charging power.

pCit A-CAES power usage in the compression stage.

I Load at time t.

1. INTRODUCTION

Today many different facilities can contribute to energy mar-
kets. So scheduling energy and ancillary services has become
one of the most significant concerns of system operators around
the world. Spinning reserve is one of the ancillary services.
The spinning reserve defines as the extra generating capacity
that is provided by online generators. On the other hand, the
spinning reserve is the capacity that is spinning, synchronized,
and helps to balance the system withstand sudden outages of
units [1]. There are deterministic and probabilistic methods to
determine optimal reserve capacity. Probabilistic methods are
more practical due to the stochastic nature of power systems
[2]. On the other side, the existence of green-house gasses in the
atmosphere could have a destructive effect on human health,
the environment, and the economy [3]. Governors try to invest
in renewable generation and clean transportation due to their
merits like no consumption of fossil fuels and no emission. So
wind energy and EV penetration are growing every day. For
example, the US department of power and energy predicts that
wind energy could generate 20% of the world’s electricity by
2030. However, higher wind penetration causes more problems
in power system operation because of the intermittent nature
of wind [3]. Thus power system needs more reserve capacity to
withstand unforeseen fluctuations of wind power plants, and
the day-ahead operation cost increases because additional gen-
erators are committed to providing the extra reserves [1].
Likewise, the popularity of electric vehicles increases every day.
Although electric cars impose more demand on the power sys-
tem, they could contribute as a battery energy storage in the
reserve markets to make the system more reliable in the pres-
ence of renewables and decrease system operation cost [3, 4].
Electric vehicles will be 30 percent of the transportation network
by 2030 [5]. Zhao et al. proposed a model to optimize the day
ahead reserve penetrating electric vehicles in the power system.
The expected energy not supplied and expected energy served
by EVs are two criteria that they used to optimize the spinning
reserve. A three-point grid search base method is employed
here to optimize the problem. The impact of immediate and
smart charging on the power system is analyzed too [1]. Pavic
et al. minimized power system cost penetrating renewables and
electric vehicles in the system. They analyzed the impact of slow
and fast EV charging on the flexibility of the power system either
[6].

Some works maximized the profit of EV aggregators. The min-
imizing of the system cost had not been their concern. Han et
al. proposed a scheduling strategy to maximize EV aggregator
profit in the day ahead and real-time markets. The aggregator
has participated in energy and reserve markets. The impact of
the reserve call-up on aggregator revenue in the real-time mar-
ket analyzed either [7]. Sortomme et al. proposed a scheduling
method to maximize the profit of EV aggregator while minimiz-
ing the cost of charging for EVs. The aggregator has participated
in energy and multiple ancillary services markets like regula-
tion. The power losses are also considered in this reference [8].
Hoogvliet et al. analyzed the potential of electric vehicles in
providing ancillary services such as regulation and reserve in
the Netherland power system with an 8 percent grid power
loss. They used four famous types of EVs in Netherland and
categorized drivers into three groups [9]. Rahmani classified
drivers into three social classes. Then for constant amounts of
incentives, investigates the effect of each level on the hourly
spinning reserve separately. A simulated annealing method is
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applied to optimize the model. The charging cost formulation is
different in normal conditions and contingency [10].

Some papers try to minimize the system cost and increase the
reliability of the system using EVs. Zou et al. presented a multi-
objective virus colony search based on fuzzy decision-making to
minimize the system cost. The purpose is to satisfy the load de-
mand by all generation units applying system constraints. Wind
and EVs are considered as market participants in this reference
[11]. Sadeghian et al. improved the reliability of the distribution
network using electric vehicles and demand response programs.
A particle swarm optimization algorithm is used in this refer-
ence. The loss of load expectation (LOLE) and expected energy
not served (EENS) are used to evaluate the reliability [12].
Other than electric vehicles, different kinds of electric energy
storage systems such as compressed air energy storage (CAES)
[13], pumped hydro storage (PHS) [14], adiabatic compressed
air energy storage (A-CAES) [15], and liquid air energy storage
(LAES) [16], have attracted attention to participate in the power
systems. They support the system to confront the power fluctua-
tions due to renewables. Among all of them, A-CAES has some
principal superiority over others. First of all, A-CAES storages
like CAES could construct where ever we need. Compared to
PHS, CAES and A-CAES have fewer construction constraints,
lower costs, and higher cycle efficiency [17]. In A-CAES, recov-
ered energy during the compression cycle is returned during the
expansion cycle.

A-CAES is emission-free in comparison to CAES either. CAES
uses natural gas to preheat the air stored in the reservoir. But
A-CAES doesn’t have fossil fuel consumption [15]. A-CAES
storages like PHS and CAES is suitable for large-scale storage
applications [18, 19]. In A-CAES, heat extract from the compres-
sion stage and store in a heat reservoir. So A-CAES has one air
and one heat reservoir. It causes A-CAES had been higher effi-
ciency [20, 21]. Several A-CAES systems are under development
around the world. ADELE with 360 MWh storage capability, 90
MW output power, and 70 percent cycle efficiency is one of the
most popular of them. 10 MW /40 MWh A-CAES near Beijing
and 50 MW system in Jiangsu, China, are the other A-CAES
systems under development [15].

Optimal bidding and strategies of CAES using a robust opti-
mization approach are studied in [22]. Nojavan et al. maximized
the profit of the CAES system in the presence of the uncertainty
of prices [22]. Scheduling CAES in the power system is studied
in [23]. Li et al. proposed a scheduling model for a combined
CAES and wind system to increase the profit of the CAES facility
[23]. Daneshi et al. performed a security-constrained unit com-
mitment (SCUC) considering the advantage of energy storage
system (EES) and wind. CAES is the energy storage facility in
this reference. The impact of CAES on locational marginal price,
peak shaving, wind curtailment, and operational cost of the
power system is argued in this reference, either [24]. Ghaljehei
et al. proposed stochastic security-constrained unit commit-
ment considering CAES as EES and high penetration of wind
generation. The voltage security issue of the power system is
considered as a constraint in the second stage of the model [25].
Li et al. developed a joint energy and reserve scheduling model
considering A-CAES, winds, and time-shifting loads. A regu-
lation and contingency reserve capacity model for A-CAES is
represented in this work [15].

The optimal reserve determination in the presence of EVs, A-
CAES, and wind simultaneously is needed to show the effects
of each facility in the power system. In this paper, the opti-
mal scheduling reserve in the day-ahead market by a multistep

iterating algorithm is solved. Opposed other references, for cal-
culating EVs state of charge, we present a stochastic algorithm
that considers EVs willing to participate in the markets based on
their income and system incentive cost. This algorithm considers
availability, the amount of consumption and battery degradation
of EVs. The reserve is determined by a trade-off between ex-
pected energy not served and system cost for different amounts
of spinning reserve. The reserve is calculated during optimiza-
tion problem. Opposed [2], we determine reserve capacity in
the presence of EVs and A-CAES, considering all uncertainties
that EVs have. Finally, the minimum expense of the system has
been satisfied and the effects of these participants in the reserve
market are analyzed. Opposed [7, 8], we don’t consider any
aggregator for EVs. We look at the system as a system operator
to minimize the system cost. However, their goal wasn't reserve
optimization. Opposed [10], we use EENS to show the value
of lost load. We also consider wind uncertainty, battery degra-
dation cost and different groups of EVs based on a stochastic
algorithm. We calculate the optimal incentive cost considering
participation of all groups of people either. (Table 1) shows the
basic differences between this paper and other references that
this article is inspired by.

Table 1. Paper’s highlights in comparison with other papers

Reference  Reserve A-CAES EVs  Social effects Driving patterns  Battery degradation EENS ~ Wind

2 v v v
4 v v

10 v v v

15 v v

29 v v

paper v v v v v v v v

2. FORMULATION AND OPTIMIZATION OF PROBLEM

By increasing EVs in the transportation system, we can use them
for supplying a part of system demand or as an ancillary ser-
vices. The income of the drivers and incentive cost that system
operator recommended, affect drivers decision for participating
in markets. A-CAES is the other facility that can participate in
the markets. These facilities can reduce the system cost by peak
shaving and providing reserve. Reserve decreases load interrup-
tion costs. In the proposed model EVs and A-CAES participate
in energy and reserve markets simultaneously and their effects
on reserve market analyze. In subsection 2.1, the driver’s finan-
cial level is modeled and three scenarios are produced based on
that. In subsection 2.2 driving patterns are modeled based on [4].
Wind is modeled in subsection 2.3. A thermodynamic model of
A-CAES is presented in subsection 2.4.

A. Driver’s financial level

Driver’s financial level is a vital factor for the system operator. It
has a significant effect on the number of drivers who participate
in the markets. The responsibility of each driver depends on
the incentive cost and their income. An expression to model
the income of EV drivers is the Rayleigh probability density
function. Rayleigh probability density function is a specific case
of Weibull distribution (1).

—q1b
al’~1e~% 1>0

f) = )

0 Otherwise
In Rayleigh distribution, the shape parameter is equal to 2 (2).
The mean value of employees and other people’s income in each
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society is known. So the C parameter in Rayleigh distribution
calculates from (3).

2

I 5=
Loeae [1>0

fy=4 @ - @
0  Otherwise

B [e9) . © ] 2 7&
lm—/o lf(l)dl_/o (sz)ezﬂdl_ 2 ¢ @)

To determine the financial level, we take samples from the
Rayleigh distribution function. The social income of each driver
is determined using (4).

low income 1 <l
fin(l) = moderate income 1, <1 <2l 4)
high income 1 >2l,

Each level has different responsiveness to different revenue. So,
the incentive amount has a significant effect on the number
of EVs that participate in the markets. According to [10], the
responsiveness function of each level could calculate from (5).

[
Reslowfincome,ﬁ =100 (@)0'3

Res mod erate—income,8 = 1

¢
ResSpigh—income,9 = 100 exp(lo(m -1)) (5)

B. Driving patterns

Different drivers have different driving patterns. Electric ve-
hicle’s availability and the amount of charge that they could
deliver to the power system are important factors for the system
operator. According to [4], driving pattern scenarios could gen-
erate using multiplication a uniform and a normal distribution.
A required energy scenario for an electric vehicle in hour t is
obtained as (6).

Cligo,t = (Opv,e + Ugy ) X (14 Ngyy) (6)

Where gy sis the most expected driving patterns that have to
be defined initially, applying some forecasting of EV behavior.
Uniform distribution helps to model emergency usage of EVs
when we define dgy ; equal to zero at first hours of the day.

C. Wind speed modeling

Weibull distribution is used to model the behavior of wind speed.
By getting some samples for wind speed from the Weibull dis-
tribution, the probability of each sector between two samples,
is calculated using (7). The average value of each section uses
as the average amount of wind speed to calculate the output of
the wind turbine for that sector by (8). In the end, the average
power of the wind turbine will calculate using (9) for each hour
[26].

sn2
plw) = [ f(o)do @
snl
0 0<v; <0, 00 < Uy
Pw(©) =< Prated X % v < v < 0y ®
Prated U < Vg < Ueo

Py, average = pr(v) x p(w) )
w

We do this 10 times for each hour. Now we have 10 wind data
for every hour. We categorize this data into three groups based
on the mean value of the rated power of turbines and standard
deviation of our data. If the distance between each data and
mean value is smaller than the standard deviation of data, we
put that in the first group. Then if the distance between each
data and mean is greater than the standard deviation and that
data is smaller than mean, we put that in the second group.
Finally, if the distance between each data and mean is greater
than the standard deviation and that data is greater than mean,
we put that in the third group.The probability of each group
is calculated by division of the number of group’s data on the
number of total data.

D. A-CAES model

A thermodynamic model is used in this paper for A-CAES. This
model is combined from CAES model and a heat reservoir model.
The temperature of air reservoir is supposed to be equal to the
ambient temperature. Heat loss of thermal energy storage tank
is neglected. Heat exchanger is ideal. It means that hex effective-
ness is supposed to be equal to 1.

The first step begins with compressing air through a series
of compressors. The relationship between power consumption
and mass flow rate in the compression stage and the relationship
between power generation and mass flow rate in the genera-
tion stage are expressed by (10) and (11), respectively [27]. Air
pressure in the air reservoir at each hour could calculate by
(12). This equation shows the state of charge of A-CAES at each
hour, either [27]. Heat transfer power during the compression
stage, heat transfer power during the expansion stage, and the
amount of heat stored in the heat reservoir calculate by (13-15),
respectively [15].

Nes k-1
2 Tcomp,v,i X ('Yc,’zfi - 1> (10
v=1

Mg t kxR
Pcesp = —=
Ces,t Tes X k—1

X

fgs 1
Z Tgen,w,i X (1 - 'Yg,kw) a1n

w=1

p . kxR
Ses,t :mgs,t ~ | x

Re X Torp X7y /e
Pur,t+1 = Par,t"" L(

L]
Mes,t X Xjp — Mggt X ui,t)
Vit §
12)

Poct e \ N
QG _ Mes,t X Z Tcomp,v,i X Yeo = Mes X Teold (13)
Cp X g v=1

PQ ng571 _a=1
.8t

e = | Ngs X Thot — Ter,t - Z Tgen,w,i X 'Yg,wv
cp X g X Mgs ¢ w=1

(14)

T

T
Qut =Quo+ Y. Poct— Y Pogr (15)
=1 =1
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3. OBJECTIVE FUNCTION

The objective function minimizes the power system operation
cost over the next day and formulated as (16). The first term
accounts for the start-up and shut-down cost of TUs. The second
and third term represents the generation cost of TUs for energy
and reserve market. The fourth and fifth terms represent the
cost of EVs for generating energy and reserve for each scenario
of driving patterns, respectively. The sixth term of the objective
function shows the expected energy not supplied of the system
due to the forced outage rate of TUs and wind. The seventh term
represents the cost of energy that A-CAES provide. Finally, the
last term adds a penalty cost for wind accuracy to the objective
function.

T Ng
min fi(¢}) = £ L [COST?”+COST?M]+

P;; x COSTE, + z ZR,txcos
tlz

Ng

kL

M SCL
ol

T
t=1i
T

CEEV sce,t + Z Z CREV scet+ (16)
=1

=1 t= 1sce 1

)

1sc
VOLL x EENS; + 2 COSTACAES 1
t=1

t=

=

T
Y. VWC x pv*
t=1

The start-up and shut-down cost calculate from (17) and (18),
respectively [10].

COSTZSI? =C" x (1 — ui,t—l) X Ujy 17)

COSTIM = CM g x (1— ) (18)
The fuel cost of each generation unit is supposed to be a
quadratic polynomial function of the power 19. 77,A,and @ are
the fuel cost coefficients [10].

COSTH = i x (pig) + Ai % (piy) + @; (19)

The cost of providing reserve by EVs is composed of two parts,
battery degradation cost, and incentive cost. In modern energy
systems, the probability of spinning reserve usage is low. So
we use an additional cost as electricity price just when electric
vehicles participate in the energy market. According to [1], the
battery degradation cost for each kind of battery calculates from
(20). The cost of energy and reserve that provide by EVs are
presented in (21) and (22), respectively.

COST,
lifEC X ESt x DoD

COST; = (20)

CE¢y = Eop X (Ip X <1go> + COSTy +ep) (21)

[
CRey = Rep X (Ip X (100) + COSTd) (22)

4. PROBLEM CONSTRAINTS

A. Conventional unit constraints

System power balance: This constraint represents that total gen-
erating power must be equal to the total amount of consumption
(23).

Journal of Energy Management and Technology (JEMT) Vol. 6, Issue 1 26
N‘s’ Msce
E pit+ Y. pescet + Pwy = Li+
sce=1 23
MSLL ( )
Y pecsce,t+ ) PCit
sce=1 i=A—CAES

Generation units power constraints: The maximum and mini-
mum power of a unit at every hour are presented in (24) [10].

pmin,i < Pit < pmax,i (24)

Ramp-up and ramp-down rates constraints: The possible rate
of increase and decrease of the unit’s output is presented in (25)
and (26), respectively [10].

Pitr1 — Pip < RU; (25)

pit — Pit—1 < RD; (26)

Min up time and min down time constraints: The minimum
uptime and minimum downtime of each generation unit after
a change in the status of the unit are presented in (27) and (28),
respectively [10].

ontime;; > MUT; (27)

of ftime;; > MDT; (28)

B. Transmission lines constraints

Lines capacity constraints: The maximum power that passes
through lines is expressed by (29) [30].

_ prglax < o < pmax (29)

Transferable power from each bus: The power that each bus
could inject to other busses is expressed by (30). This power is
calculated by submission the power consumption from power
generation at each bus.

Nan
Zpbustt+ Z Pbusscet+Pwhust+Pacaesbu5t
sce=1 30)

7Lbus,t - Z Pechus,sce,t - Pcbus,t = anhus,node,t

sce=1

C. A-CAES constraints

Generating power constraint of A-CAES: The maximum and
minimum power of an A-CAES unit in generation mood at
every hour are presented in (31). u(i,t), is a binary variable that
shows generation mood is working [15].

Pges,min X Uj < Pges,i,t < Pges,max X Ujt (31

Compressing power constraint of A-CAES: The maximum and
minimum power that an A-CAES unit uses to compress air into
the air reservoir is calculated by (32). x; ; is a binary variable that
shows the compression mood is working [15].

Pces,min X Xjt < Pces,i,t < Pcesmax X Xit (32)
Non simultaneity of compressing and generating modes: An A-
CAES unit couldn’t work in generating and compressing mood
simultaneously. This constraint is presented by (33) [15].

Xy +uy; <1 Vi=A-CAES (33)
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Air pressure limitation: Air pressure limitation in the air reser-
voir is presented in (34) [15].

Par,min < Par,t S Pur,max (34)

Capacity of heat reservoir: The maximum thermal capacity of
the heat reservoir is shown by (35) [15].

0<Qnt<Qpy (35)

D. Electric vehicles constraints

Electric vehicles state of charge constraint: The state of charge
range of each electric vehicle is presented by (36) [29].

SOCTIN < SOC,, < SOCHaX (36)

Charging rate constraint: EVs charging rate limitation is pre-
sented by (37) [29].

ROCRIN < ROCyp < ROCHX (37)

Maximum V2G power: The maximum power that each EV could
deliver to the grid is calculated by (38). Pf V7 is the rated power
of battery for each EV [10].

i EV,
Peonsume — SOC;%H‘ b

SOCey — «
100 1000

PEZI + R(’U S (38)

5. CALCULATION OF EXPECTED ENERGY NOT SUP-
PLIED AND RESERVE DETERMINATION METHOD

The expected energy curtailed can obtain from the installed
capacity of generating units and load. The probability of forced
outage rate of each generation units, the amount of demand, and
the spinning reserve capacity that each generation unit provides,
could show the amount of expected energy not served. Forced
outage rate defines as the probability of failure of a generator,
and it is usually measured as a ratio of failure hours to total
service hours. The maximum EENS calculates from the capacity
outage probability table (COPT). The probability of a random
outage event of a single generator can be shown by (39). The
amount of EENS at each hour could be formulated as (40) [2].

r—ultxun(l—u xu) (39)

) it

G
EENSt—{Z Dy +ri4] [rt}}xlér (40)

An ijterative multistep algorithm is proposed in this paper to
determine the optimal reserve capacity. At first, the amount of
spinning reserve capacity is equal to zero. The unit commitment
(UC) problem is solved, the COPT is created, and the maximum
expected energy not served is determined. Then till reserve
capacity is lower than the maximum EENS, it will be added 1
megawatt to the reserve capacity and solve the optimization
problem to minimize the system cost. In each iteration system
cost will update if is it lower than previous iteration. The algo-
rithm is stopped when the mentioned criterion convergence is
achieved. The algorithm is shown in fig. 1. The GAMS software
is used to minimize the system cost. The optimization problem
is solved using MILP by means of CPLEX solver.

Solve the cost based unit
commitment (CBUC) and make COPT

[ EENS s (t) calculation J

&
<

R=1

]
[ Optimization of the problem ]

y
[ EENS (t) calculation ] | R=R+1 I

Yes

No

[ Find min cost between all iterations ]

Fig. 1. Multistep iteration algorithm for reserve determination.

6. SOLVING METHOD

As it can be seen, there are some complicated nonlinear relation-
ships between the equations of this problem. So, the optimal
scheduling problem will be mixed-integer nonlinear program-
ming (MINLP). The MINLP needs a lot of time to find the opti-
mal point, and the performance is affected by the starting points.
Compared to MINLP, mixed-integer linear programming (MILP)
obtain a good result with less computational time and complex-
ity. So we use a piecewise linear approximation for each unit’s
cost curve. For A-CAES, the temperature in the air reservoir is
set to be equal to the initial air temperature [17]. Now equations
(12) and (14) in 2.4 section are linear.

7. CASE STUDY

A. Setting and assumptions

IEEE 24 bus system is used to represent the performance of the
model. Fig. 2 illustrates the diagram of the 24 bus system. The
wind farm is located on bus 3 [15]. A-CAES unit is located near
the wind farm [15]. The branch data for the IEEE RTS 24-bus
network and the generation unit’s data in this network are based
on [28]. Cost coefficients are shown in Table 2. Load data are
shown in Fig. 3, either [28].

For analyzing the impact of A-CAES and EVs, three scenarios
are considered. At first, UC and reserve determination is done
for conventional units considering wind uncertainty. Three data
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Fig. 2. One-line diagram of IEEE 24 bus system.

3000
2400

1800

Load (MW)

1200

600

1 3 5 7 9 11 13 15 17 19 21 23
Time (hour)

Fig. 3. Load power forecast curves [28].

Table 2. Cost coefficients of thermal units

| sampling from Rayleigh distribution |

between O and 1

Generate a random number T ‘

4

Moderate-
< >

| Determine the amount of incentives |

¥

Does it participate?

No

: Generate a random number K
| between 0 and 1
|

Fig. 4. Generating scenario considering income level, uncer-
tainty of EVs participation, type of EVs and driving patterns.

Table 3. Scheduling parameters of A-CAES [15]

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10  GI11 G12

0/04 0/05 0/04 0/04 0/05 0/05 0/06 0/06 0/06 0/08 0/06 0
39/6 39/6 46/5 46/5 58/2 55/7 53/7 69/7 78/9 80/1 85/31 0
@ 382 349 400 405 372 329 332 340 325 315 310 0

produce for wind power. Then in the second scenario, the prob-
lem is solved by penetrating the A-CAES unit to show the impact
of A-CASE participation in the market. The A-CAES parameters
are shown in Table 3 [15]. In the last scenario, EVs are one of
the participants in the reserve market. A scenario-based algo-
rithm is proposed to calculate the state of charge of EVs and the
available power (Fig. 4). Each driver has a different income and
responsiveness to the amount of incentive, as shown in part 1 of
Fig. 4. This issue has effects on the number of EVs participation
in the markets. So, system operators must have this information
for decision making with the least error. Each driver uses dif-
ferent types of EVs. EV categories are according to the number
of EV sales in 2017. The EV brand’s information is in Table 4
[29]. These categories are shown in part 2 of Fig. 4. According
to [4], ten scenarios are produced from three different driving
patterns. Table 5 shows the probability of each of them [4]. These
scenarios are shown in part 3 of Fig. 4.

The system operator needs the EV battery’s characteristics like

Parameters value  parameters value
Max/Min compressing power (MW) 100/60  Air reservoir volume (mA3) 18+10°
Max/Min generating power (MW) 100/40  Cost coefficient ($/MW) 2/5
Number of compressors/turbines 4 Cold /hot TES working temperature (K)  293/363
Compression/expansion ratio 2.75/24 Max/min pressure in air reservoir (bar)  55/40
Efficiency 85% Initial temperature in air reservoir (K) 316
Thermal storage capacity (MJ) 2%10°  Initial pressure in air reservoir (bar) 47/5

Average input temperature of the air reservoir (K) 323 Initial stored heat in heat reservoir (MJ) 1% 10°

Ramp up/ down (MW /h) 40

Table 4. Electric vehicles 2017 sales data [29]

EV brand Selling percentage (%)  Battery capacity (kWh) Maximum charging rate (kW)
Nissan Leaf 25/52 40 11/5

Tesla S 21/81 100 17/2

Tesla X 18/64 100 17/2

Renault Zoe 15 41 20

Other EVs 19/03 25 12/5

cycle life, depth of discharge, and cost of each battery. EV batter-
ies cycle life depends on the depth of discharge. Li-ion batteries
have 1000000 cycle life at 3 percent depth of discharge and 3000
cycle life at 100 percent depth of discharge. In this paper, the EV
batteries have 90 percent depth of discharge and 10000 cycle life.
The cost of each EV battery is calculated based on the battery
capacity. The battery cost is 200 dollars per kilowatt based on
the latest data. The energy cost for EVs charging is equal to the
mean value of generation cost and 70 dollars per megawatt. In
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Table 5. Probability of each scenario [4]

Scenario Probability

0/09
0/05
0/057
0/06
0/077
0/12
0/13
0/083
0/183
0/15

O O NI O O & W N

[y
o

the end, to analyze the impact of the incentive on the system
operating cost, the third scenario is repeated for 10, 20, and 40
percent of the maximum amount of incentive. Results show that
the amount of the incentive has a significant effect on EVs par-
ticipation and system cost. The maximum amount of incentive
cost is 100 dollars. Mean level of people income is equal to 3000
dollars in this study. The total number of electric vehicles (Nv)
in the case study is equal to 10000.

B. Results and analysis
B.1. Case 1:Scheduling of the power system with A-CAES

The amount of spinning reserve and the expected energy not
served in the system considering A-CAES are shown in Fig. 5.
Energy generation, energy consumption, and reserve provision
of the A-CAES are shown in Fig. 6. As it can be seen, A-CAES
helps system to provide more spinning reserve with lower cost.
A-CAES doesn’t participate in the reserve market, but in the en-
ergy market by charging at off-peak periods and discharging at
peak periods decreases the total cost of the system and increases
the total amount of spinning reserve of the power system that
provided by thermal units (Table 6). A-CAES causes that unit
11 turn on at hour 8 instead of 7 and unit 10 turn off at hour
21 instead of 22. In other words, it can shift load from peak to
valley as it can be seen in (Table 7).

Table 6. Power system cost with and without A-CAES

Without A-CAES  With A-CAES
Total cost (M$) 3/251 3/2472
reserve (MW) 2036/36 2187/04

B.2. Case 2:Scheduling of the power system with A-CAES consider-
ing EV participation (10 percent of incentives)
The generation schedules are shown in Fig. 7. G1 and G2 supply
most demand because of their higher capacity and lower cost.
The negative part of the A-CAES curve at the early hours of
the day shows the power consumption of this storage system.
The total spinning reserve and expected energy not supplied by
the system are shown in Fig. 8. EVs decrease the total EENS
of the system by providing additional spinning reserve at peak
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Fig. 5. (a) Optimal spinning reserve and (b) expected energy
not served in the presence of A-CAES at each hour.
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80
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Fig. 6. Energy generation, energy consumption, and reserve
provision of the A-CAES.

periods. Fig. 9 shows the spinning reserve capacity that each
scenario of EV’s provides for the power system by 10 percent
of the total incentive. The ability of electric vehicles to provide
reserve at peak load periods is evident in Fig. 9. Results show
that the presence of EV’s decrease in total system cost (Table 8).
Most of EVs participate in the reserve market because it is more
economical for the system in the proposed model.

B.3. Impact of incentive on EV’s and system cost

To analyze the impact of EVs on system cost, we considered
three amounts of incentive and optimized the problem. Like 10
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Table 7. G10 and G11 scheduling before and after A-CAES
participation

Generation unit Before A-CAES participation

G10 000000011111111111111000
Gl11 000000111111111111111100
Generation unit After A-CAES participation
G10 000000001111111111110000
G11 000000011111111111111100

500

Power (MW)

-100 Time (hour)

-200
—o—G1 G2 G3 —x—G4 —*—G5 —o—G6 —+—G7
—G8 ——G9 ——G10 —a—Gl11 —4—G12 A-CAES EV's

Fig. 7. Generation schedules in the presence of A-CAES and
EVs (10% incentive).
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Fig. 8. (a) Optimal spinning reserve and (b) expected energy
not served in the presence of A-CAES and EVs at each hour.

percent, the presence of EVs and A-CAES could decrease the
total EENS by increasing the reserve.

Fig. 10 shows the number of electric vehicles that participate
in the reserve market in each scenario of driving patterns for
different amounts of incentives. As expected, the EVs number
increases by increasing the incentive cost. The incentive cost

Reserve Capacity (MW)

Time (hour)

——scel - sce2 sce3 sced —*—sce5

—®— sceb —+—sce7 —=—sce8 —=—sce9 —&—scel0

Fig. 9. Spinning reserve capacity that each driving pattern of
EVs provide at each hour after scheduling (10% incentive).
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Fig. 10. Participation of EVs for different amount of incentive
at each scenario.

Table 8. Power system cost of third scenario in the presence of
A-CAES and EVs (10% incentive)

Without EVis With EVis
Total cost (M$) 3/2472 3/2424
reserve (MW) 2187/04 2257 /64

has a significant effect on low-income people’s participation in
the reserve market. Unlike, the impact of the incentive cost on
high-income people is almost negligible. The presence of EVs in
the reserve market could decrease system costs. The total system
cost for all scenarios is shown in Table 9. The total cost of the
power system for the third scenario is shown for three different
amounts of incentive costs. The increase in the incentive up to
20 percent decreases total system cost, but the increase in that
up to 40 percent in addition to the EVs number, increases total
system cost. So the amount of incentive is one of the main factors
for the system operator because incentive costs is important for
minimizing the objective function.

B.4. Impact of incentive on the total system cost

The sensitivity analysis is done to show the impact of incentive
on the system cost. Since we define incentive as an input, we
need this analysis to see the impact of the input on the output.
This sensitivity analyses helps system operator to determine the
optimal incentive cost for electric vehicles. As it can be seen
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Fig. 11. Participation of EVs in reserve market for different
amount of incentives.

Table 9. System cost for different scenarios

Cost (M$) Participants
3/3172 TUs
3/251 TUs + Wind
3/2472 TUs + Wind + A-CAES
3/2424 TUs + Wind + A-CAES +
EV (10%)
3/2415 TUs + Wind + A-CAES +
EV (20%)
3/2418 TUs + Wind + A-CAES +
EV (40%)
3.248
3.247
& 3246
S 3245
3 3244
TL: 3.243
E 3.242
3.241
3.24
3.239
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Incentive

Fig. 12. Total power system cost for different amounts of in-
centives.

in Fig. 12, 30% of incentive cause the minimum system cost.
Minimum system cost will be 3.2395 M$

B.5. Impacts of A-CAES maximum limits on reserve and total cost of
the system

We change the maximum compressing and generating power of
the A-CAES in the same time from 60% to 110% of their amount.
Fig. 13 shows that the amount of system cost will decrease by
applying these changes to such limits of A-CAES. Fig. 14 shows
the total amount of spinning reserve that is scheduled for 24
hour by changing these limits. The incentive cost of system for
EVs is equal to 30% in this part.

3.241

3.2405

3.24

3.2395

System cost ($)

3.239
3.2385

3.238
55% 70% 85% 100% 115%

Fig. 13. Total power system cost for different amounts of maxi-
mum limits of A-CAES.

2300
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2280
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2260

Reserve (MW)

2250
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2220
55% 70% 85% 100% 115%

Fig. 14. Total reserve for different amounts of maximum limits
of A-CAES.

8. CONCLUSION

This paper presents an optimal reserve determination model
for new power and transportation systems. Wind, EVs, and
A-CAES are three emission-free facilities that participate in the
energy and reserve markets simultaneously. The goal is to mini-
mize total system cost as a system operator. The impact of each
facility on the reserve market and total system cost is analyzed.
A new scenario base algorithm is presented to show the EV un-
certainties like electric vehicle participation based on the amount
of income and incentive cost, driving patterns, and different size
of EV batteries. The EENS is the criterion that is used to deter-
mine the optimal reserve of the power system. In the end, it is
found that EVs and A-CAES as emission-free components could
decrease the system cost in addition to the amount of pollution
and increase the system reliability. Since the EV's participation in
reserve market has lower cost for system operator in the present
model, most of the EV capacity is scheduled for reserve market.
We found that A-CAES isn’t suitable for reserve because the
power of A-CAES is scheduled just for the energy market. It
means the participation of A-CAES in peak shaving decreases
system cost more than when it participates in the reserve market.
The efficiency of A-CAES is equal to 73% in this study that shows
the model is practical. The income of EVs had a significant effect
on their willingness for participating in the market. We need
different amounts of incentive for forcing them to participate in
the market. We found the optimal incentive cost for all social
levels is 30% in this case study. The increasing in the capacity
of compressing and generating of A-CAES units could decrease
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the system cost either. This increasing could make system more
reliable to some extent.
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