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Climate change raises natural disasters, especially high impact low probability (HILP) events like wildfire.
The effect of wildfire on power systems could be investigated based on the flame and smoke of wildfire.
Smoke can affect power system resilience, however, this effect on the power system has not yet been
fully investigated. In this paper, at first, the smoke effect has been examined, and after that power system
resilience has been improved by the optimal placement of distributed generation resources. Since the
smoke effect depends on the direction of the wind, and it has stochastic nature, the wind rose curve has
been used to reduce possible scenarios. It should be noted that the proposed method has been studied on
the IEEE 33-bus distribution system to the multi-objective placement of distributed generation sources.
Since the multi-objective solutions have Pareto set answers, it is provided to find a unique answer by
using the fuzzy method. Also, a new optimization algorithm has been presented for the first time that is
called the handball championship cup algorithm or HCCA algorithm. It is shown that the proposed
methods have good accuracy, and are suitable for improving the power system resilience against the
smoke effect. © 2021 Journal of Energy Management and Technology
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NOMENCLATURE

Erm Electric field strength [v/m]
E0 Electrical field without particles[v/m]
r Distance away from the center of the particle [m]
E1,2 Electric field strength of r direction around the particle

[v/m]
Tc Constant empirical coefficients [k]
Zp Constant related to flame height [m]
Zd Constant related to fuel height [m]
K Empirical constant
Tf l Decrease in temperature with height in the fire plume [k]
D Diameter of particle[m]
Nobj Number of objective functions
Ri Resistance of the ith branch of the test power system [Ω]
Ii Current of the ith branch of the test power system [A]
Nbr Total number of branches of test power system
Ci Price of fuel [$/kWh]
Ps Active power generated at the substation bus of distribu-

tion feeders [kW]
Cs Cost coefficient of the substation bus [$/kW]

CL.SH Cost of blackout damages caused by disconnected from
the network in the studied area [$/kWh]

PL.SH Energy not supply in the mentioned area in the event
of a blackout, or cost of social Effect [kWh]

NDG Number of DGs
N Number of buses
Vi Voltage of the i’th bus bar of the test power system [V]
Vrating Nominal voltage [V]
NOx Emission coefficient [lb/MW]
COx Emission coefficient [lb/MW]
SOx Emission coefficient [lb/MW]
M Number of generator
Vk Voltage of kth bus bar [V]
Vmin Minimum allowed voltage that is equal to 0.95 Per Unit
Vmax Maximum allowed voltage that is equal to 1.05 Per Unit
PG Total generated active power in the test power system

[kW]
Pload Total active power of loads in the test power system

[kW]
Ploss Total active losses in the test power system [kW]
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PDG,i Generated power by the ith distributed generation re-
sources [kW]

PDG,max,min Maximum/Minimum DG Capacity [kW]
∝ Coefficient, that 0 <∝ (i) < 1
fu Utopia point in fuzzy membership function
fn Nadir point in fuzzy membership function
fSN Pseudo nadir point
Ω Feasible region of cost functions
wn Weight coefficient of nth objective function
M Number of answers in Pareto set

1. INTRODUCTION

In light of modern life, an increase in electricity usage is an un-
avoidable fact. It is expected that the world’s power consump-
tion will rise by 53% by 2035 [1] and as a result of that power
grids infrastructure increase very fast in the world. On the other
hand, climate change and human appetite are increasing green-
house gas emissions have increased the natural hazards, hence
power systems could be exposed to high- impact low probability
(HILP) phenomena, that this base of power system resilience
analysis. So identifying the nature of different phenomena can
provide proper planning background to reduce the effects of
events [2, 3]. In natural disasters, designed and planning en-
gineering techniques, and strategies that are used to keep the
stability of the power system in the operating mood. How-
ever many challenges and constraints should be considered to
improve power system resilience [4]. In [5] is expressed that ac-
cording to the National Infrastructure Advisory Council report,
resilience contains robustness, resourcefulness, rapid recovery,
and adaptability. Also, some resilience enhancement methods
like using distribution automation technologies [6], defensive
islanding [7], mobile emergency generator [8], optimal switch
placement in distribution systems [9], and transportable energy
storage systems [10] can be deployed to make power grids more
resilient. In [11] different hardening proceedings, like vegeta-
tion management are integrated into a tri-level optimization
problem for the optimization of the hardening investment and
the projected load shedding cost under extreme weather con-
ditions. In [12] to power grid resilience improvement against
cascading events that are caused by line damages in extreme
weather situations an islanded layout is proposed. In [13] the
main purpose is to specify the causes of widespread blackouts
and finding approaches to enhancement of the system against
extreme weather. In [14] shows that the nature of natural dis-
aster blackouts is different from the nature of internal failures
in electrical systems. So, long time restoration is needed. In
[15] in terms of continuous load distributed generation sources
have been optimized. In [16] smoke effect of three plant species
on electrical insulators has been tested. It shows how the na-
ture of smoke can cause insulation failure. In [17] a test has
been designed to obtain the failure voltage caused by smoke
that is compared in non-smoke and smoke conditions. Also,
the experimental space was tested and analyzed by AC and DC
fields and the effects of those are mentioned. In [18] optimizing
operating power systems against wildfire as resilience, the sce-
nario has been evaluated. However, because of the focus on the
flame and lack of attention to the smoke of wildfire, only one
scenario is provided. In [19] by constructing and installation of
appropriate resiliency sources the resiliency-based power sys-
tem expansion planning can improve the resiliency index. Also,
resiliency sources show the network equipment which is not

disconnected from the power system during natural disasters.
So In weather extreme conditions, they can improve the power
system flexibility and keep it in the operating mood. In [20],
a Monte Carlo simulation method and a fragility model-based
framework for resilience are presented. The remarkable point is
that by using reliability indices such as Loss of Load Frequency,
Expected Energy Not Supplied, and infrastructure indices, the
system resilience against extreme weather situations has been
estimated. In [21] an approach to estimate the damage caused by
wildfire to the distribution system is proposed. But, no strategy
is presented to overcome the threat of the fire. In [22] the effect
of a progressing wildfire online ratings of a power system is pre-
sented, also and an optimal power flow technique is proposed
to reduce line capacities due to the wildfire. In [23] and [24]
a new approach for an optimal distribution system operation
against the flame of wildfire in attendance of microgrids is pre-
sented. Considering resilience it seems that optimal placement
of devices in the power system can increase the satisfaction of
end-users and players of electricity markets [25]. In [26] per-
formance of Microgrids has been improved by using coalition
game theory to optimal placement of distributed generation
sources. In [27] has been tried to find a new index based on
power stability to find the best place of distributed generation
sources. In [28] impact of combination between shunt capacitor
and distributed generations on the placement of DG’s has been
investigated. In [29] and [30] with special attention to power
system constraints, placement of distributed generation sources
has been achieved by using Particle Swarm Optimization and
Genetic Algorithm methods. One of the most inclusive disasters
is large wildfires that can enter serious damages to power grids.
Thus taking necessary arrangements such as using distributed
generation sources at risk points can reduce the consequences of
possible damages.

In this paper by considering that in case of wildfire near the
power system, large volumes of smoke are released, how to in-
crease power system resilience against smoke effect by optimal
placement of distributed generation resources will be investi-
gated. It should be noted that the smoke releasing by wind
has stochastic nature, so the various scenarios arising from this
phenomenon have been investigated and the most optimal de-
cision based on it is adopted. Thus in this paper by using the
wind rose curve as an innovative method, the most effective sce-
narios are identified. Also to analyze multi-objective problems,
many algorithms have been provided so far, but in this paper, a
new algorithm that is based on the handball championship cup
is presented for the first time. The remainder of this paper is
organized as follows:

The second section presents a description of the proposed
methods. The third section makes it possible to show the ability
of proposed methods by numerical analysis. After that in the
fourth section, the results are discussed, and finally, the main
conclusions section is presented.

2. DESCRIPTION OF PROPOSED METHODS

A. Smoke effect
The wildfire has contributed to human civilization in history and
has also had serious damage, therefore, the fire has always been
one of the common issues researched by researchers [31–33].
Fire contains two factors of smoke and flame, which can vary
depending on the material of burning. Uncontrolled vegetation
like cane is one of the most common causes that can happen
near power transmission lines. The event is mostly occurring
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in countries where the rate of vegetation is more, also climate
change of recent years has increased destructive wildfire. In the
case of wildfire both flame and smoke, can be harmful to the
power systems. If the flame reaches a small distance from the
power lines, it may cause serious damage, however, the wildfire
smoke can lead to an insulation failure on the winding path. The
major difference between flame and smoke is that in the event
of wind the spread speed of smoke will be much higher than the
flame and the smoke in a very little time can reach the power
system. The effect of smoke on power system and the possibility
of insulation failure is undeniable.

As shown in Fig. 1, smoke caused by natural resources wild-
fire contains inorganic particles that because of fluidity and the
speed of smoke emission release, this is an effective issue on the
power system performance. The vertical temperature of wildfire
is variable based on the inorganic plume height. Also in Fig. 2,
the influence of natural resources wildfire in the near a power
system is shown. It can be found that the impact of inorganic
particles on the electric field distribution is remarkable, where
E0 is the background electric field strength without inorganic
particles in the gap, and Ex is the electric field strength with
particles in the gap. Also, the electric field appears sharp en-
largement at both ends of the particle, and the closer the distance
between the particle and conductor, the greater the electric field
strength is, and thus it is easy to trigger discharge in the process
of particles near the conductor [16, 17]. The following equations
are considered for the mentioned cases.

Tf l = Tc + K ∗ exp
(

∝ f (z− zd)
2
)

(1)

α f = 1/(2zp(zp − zd)) (2)
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Fig. 1. Temperature of smoke in the height of the flame [16].

Also, for non-uniform fields of suspended particles in smoke
can be written:

Erm = Er1 + Er2 ≈ (1/D3 + 4r3)E0 + 3(D2 + 4r2)E0 (3)

B. Wind rose curve; an innovative approach for scenario re-
duction

Wildfire and smoke propagation in the geospatial environment
is a condition that accompanies uncertainty, that this is more
important for a smoke since smoke emissions are faster and

 

 

 

Fig. 2. Non-uniform fields resulting from suspended particles
in fire smoke [17].

more likely. There are different methods for uncertainty analysis,
such as:

In stochastic programming, based on fuzzy logic, each of the
variables has an uncertainty of a fuzzy membership function.
Usually, this membership function is considered normal. Also,
the cost functions of the optimization issue are also modeled
with a membership function that is often considered to be a
trapezoidal image [34].

Monte Carlo method is one of the most accurate methods of
stochastic analysis [35]. Monte Carlo method with a random
sampling of the distribution function of random variables at-
tempts to resolve the issue by considering the number of existing
uncertainties. The main problem of Monte Carlo is its very heavy
computational load. The accuracy of the Monte Carlo method
is dependent on the number of examples that the distribution
functions choose. The higher the number of samples, the calcu-
lation accuracy, and the computational load will be higher. In
this method, the behavior of the issue will be achieved by con-
sidering the specific input distribution functions. Although the
Monte Carlo method is the strictest stochastic planning method,
the high computational volume of this method has led to a great
deal to solve practical issues. Other methods are designed based
on the concept of Monte Carlo to slow down the balance be-
tween precision and computational load. Two groups of these
methods are random programming based on scenario formation
and other estimated methods. The superiority of each of these
two groups is different depending on the issue studied [36].

In solving stochastic programming issues, it has to be possi-
ble to transform the uncertain issue into a number of definite
issues and then solve it. Somehow the results obtained from the
definitive equivalent stuff reached a random issue response. In
the generation of a scenario, each of the definite states is called a
scenario [37].

The first step in solving stochastic issues modeling the vari-
ables is the uncertainty of the issue. Modeling the distribution
functions of random variables in power grids such as loads are
carried out by continuous distribution functions. Continuous
distribution functions can generate a myriad of different and
different modes for a potential network situation. For example, a
sample point of the load distribution function in a specified hour
can be associated with all parts of the load distribution function
in the next hour. Implies that all gestures may not be possible.
Therefore, in random planning, based on scenario generation,
the distribution function of random variables is distributed.

After the wildfire is used to scatter the smoke into geographic
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characteristics and direction of the wind, since the direction of
the wind is a stochastic nature, therefore, to evaluate the impact
of smoke on the electricity network, the use of computational
methods will be complicated with considering all the possibil-
ities of stochastics. Therefore, in order to reduce the existing
scenarios, the wind rose curve can be used. The wind rose curve
shows how likely the wind direction will occur and it has been
used in many types of research [38–42]. Therefore, using the
possible path of the wind and considering GIS information, it is
possible to estimate the potential location of smoke influence on
the electricity network, for example, the wind rose curve, are in
Fig. 3 [43].

 

 

 

Fig. 3. Wind rose curve.

C. A new multi-objective optimization algorithm: Handball
Championship Cup Algorithm:

Multi-objective optimization based on classic methods (such as
weighted sum, e-constraints, goal programming, etc.) are very
slow because, in every iteration, the algorithm should run equal
to the number of objective functions, but in the Pareto front
method, the framework of the algorithm has been designed
based on domination set, so as general x1 dominate x2 if:

∀i ∈
{

1, 2, . . . , Nobj

}
: fi (X1) ≤ fi (X2) (4)

∃j ∈
{

1, 2, . . . , Nobj

}
: f j (X1) < f j (X2) (5)

Handball is a fast-paced team game that was first played in
Scandinavia and Germany at the end of the 19th century; how-
ever, handball competitions have been changed during decades.
Today, the handball championship cup is held every two years
and 24 teams compete with each other in four categories. At first,
the group competition step is held and after those four teams of
each group go to the knockout stage, and finally, the winner of
all knockout competitions will be champions.

It should be mentioned that after each competition, winner
and loser teams try to recovery and improved themselves for
the next competition, also winner and loser teams have positive
and negative moods respectively. Every team in handball has
a captain that is the best player among all of the players. How

to group and flowchart of the proposed algorithm have been
presented in Figs. 4 and 5, respectively [44].
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Fig. 4. Tournament plans of handball championship cup.

In the initializing step initial data such as network data, num-
ber of distributed generation sources, number of players, stop
criteria and etc. are entered, then each of the players will draw
through randomly in one of the teams.

Teami =
[
Player1, Player2, . . . , Playern

]
(6)

Group (A) = [Team1, Team2, . . . , Teamn] (7)



Research Article Journal of Energy Management and Technology (JEMT) Vol. 5, Issue 3 58

2 
 

2- The flowchart has been drawn in Microsoft Office Word software: 
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Fig. 5. Flowchart of HCCA algorithm.

In the next step, the captain will be selected among team
players.

PlayersCost = Evaluate
(

Teamj

)
(8)

BestPlayers = non− DominatedPlayerso f Teamj (9)

Captainj = random
(

BestPlayerso f Teamj

)
(10)

In intragroup competition, each of them has a tournament
with another teammate and the team wins 4 points. In the next
step, three teams of each group enter the knockout competition.
With the continuation of this process, the winner of the cham-
pionship cup is determined. It should be mentioned after each
competition changing and coaching phases are applied.

In changing (substitute) and coaching steps, after each tourna-
ment, the winning team could eliminate bad players and instead
of them with a copy of good players of loser teams. It should
be noted that the number of copied players could be changed
based on changing factors.

After each tournament winner and loser teams try to analyze
and improve themselves, thus to implement this factor using
different methods is possible because different methods could
change the quality of answers. In this paper, since the captain is
equal to the coach, after each tournament and doing the chang-
ing step, the captain of the team should be found and other
players have been changed by the captain. Thus by using the
coaching phase answers should find global optimum instead of
local optimum by correcting the position of players and applying
stochastic changes.

It should be mentioned, in the changing phase, the maximum
number of players that could be changed is equal to half of each
team player and in the coaching phase, different methods can
be used. In the presented version of the HCCA algorithm, the
coaching phase is inspired by the teacher’s phase in the TLBO
algorithm, that here the captain acts as a teacher. Also, analysis
benchmark functions to show the ability of the HCCA algorithm
has been presented in the appendix section.

D. Fuzzy method
The membership function of the fuzzy method is as follow:

µ fi
=


1 f or fi (X) ≤ f min

i

0 f or fi (X) ≥ f max
i

f max
i − fi(X)

f max
i − f min

i
f or f min

i ≤ fi (X) ≤ f max
i

(11)
In the fuzzy membership function, the continuous value be-

tween 0 and 1 for lower and upper boundaries is calculated. But
before that for calculating the fi−min and fi−max pay-off table
should be established [45].

Before creating the Payoff table matrix, single-objective opti-
mization for each of the cost functions is calculated separately,
after that the best point of each cost function is calculated for
other cost functions in the Payoff table matrix and finally the
best and the worst answer of each objective function is known
as a utopia point ( fU) and nadir point ( fN) as follows:

Φ =



f ∗1 (x̄∗1) · · · fi(x̄∗1) · · · fp(x̄∗1)
...

. . .
...

f1(x̄∗i ) · · · f ∗i (x̄∗i ) · · · fp(x̄∗i )
...

. . .
...

f1(x̄∗p) · · · fi(x̄∗p) · · · f ∗p (x̄∗p)


(12)

f U =
[

f U
1 , ..., f U

i , ..., f U
p

]
=
[

f ∗1 (x̄∗1), ..., f ∗i (x̄∗i ), ..., f ∗p (x̄∗p)
]

(13)

f N =
[

f N
1 , . . . , f N

i , . . . , f N
p

]
(14)

So to minimize the objective functions:

f N
i = max

x̄
fi(x̄) , subjecttox̄ ∈ Ω (15)

f SN =
[

f SN
1 , . . . , f SN

i , . . . , f SN
p

]
(16)

f SN
i = max

{
fi(x̄∗1), ..., f ∗i (x̄∗i ), ..., fi(x̄∗p)

}
(17)



Research Article Journal of Energy Management and Technology (JEMT) Vol. 5, Issue 3 59
 

 

 

f2(x)

f1(x)

Feasible Region

f 
N

      f SN

f 
U

Pareto Set

1

f1(x2*)f1*(x1*)

f2*(x2*)

f2(x1*)

Fig. 6. Utopia point, nadir point, and pseudo nadir point.

Utopia point, nadir point, and pseudo nadir point are shown
in Fig. 6 for two objective functions.

Finally, when utopia points and pseudo nadir points have
been calculated, the total membership function is calculated as
follow:

µk =

p
∑

i=1
wi.µk

i

M
∑

k=1

p
∑

i=1
wi.µk

i

(18)

The system operator could choose the best mode in different
circumstances for the power system by changing wn. For exam-
ple, if in some circumstances security is the most important item
for the operator, the weight coefficient of it could be increased
in comparison with other items. Flowchart of the fuzzy method
has been presented in Fig. 7.

3. NUMERICAL ANALYSIS

To implement the proposed method, the sizing of 8 distributed
generation sources for a 33 buses IEEE standard network [46],
which has already been sitting by sensitivity analysis has been
considered. Characteristics of distributed generation resources
have been presented in Table 1, also four objective functions are
considered such as total cost, emission, voltage deviation, and
losses [47, 48].

A. Objective functions
The cost function of distributed generation resources and so-
cial cost resilience

Cost is one of the most important motivational factors in se-
lecting the type of distributed generation resources by investors.
This issue of initial investment costs started and based on the
type and technology of resources, including fixed and variable
costs, which ultimately cost function for different power plants
is defined as follows:

Cost = (CL.SH × PL.SH) +
NDG

∑
i=1

CDG,i+Csubstation (19)

CDG,i = 1.3× FixedCost + VariableCost (20)
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Fig. 7. Flowchart of the fuzzy method implementation.

FixedCost =

CapitalCost×MaximumCapacityo f DG
(21)
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Table 1. Characteristics of distributed generation resources [47, 48].

DG Type Operation and maintenance costs ($/KWh) Fuel cost ($/kW) Cost of investment ($/kW) Capacity (kW)
Emission coefficient (lb/MW)

COx SOx NOx

Wind turbine 0.2 0 800 100 - - -

Micro turbine 0.5 0.104 700 500 1596 0.008 0.44

Fuel cell 0.7 0.02 3500 200 1108 0.008 1.15

Solar cell 0.3 0 4500 150 - - -

VariableCost =(
FuelCost + OperatingandmaintenanceCost

)
× PDG,i

(22)

CSubstation = Ps × Cs (23)

f 1 = min[Cost] (24)

Where, Ps is the active power generated at the substation
bus of distribution feeders and Cs is the cost coefficient of the
substation bus.

Voltage Deviation
To calculate voltage deviation can write the following for-

mula:

Voltage − Deviation =
N

∑
i=1

∣∣∣Vrating −Vi

∣∣∣
Vrating

× 100 (25)

f 2 = Min[Voltage− Deviation] (26)

Losses
To calculate the amount of losses between the lines of a power

grid the following equation can be used:

Losses =
Nbr

∑
i=1

(Ri ×
∣∣∣I2

i

∣∣∣) (27)

f 3 = min [Losses] (28)

Emission
To calculate the amount of emission, considering atmospheric

pollutants such as sulfur oxides (SOx), carbon oxides (COx) and
nitrogen oxides (NOx) can be evaluated, which is often con-
sidered as a CO2 effect on power plants. The formulation of
emission can be expressed as follow:

EDG,i = (NODG,i
X + SODG,i

2 + CODG,i
2 )× PDG,i (29)

EGrid = (NOGrid
X + SOGrid

2 + COGrid
2 )× Ps (30)

f 4 = min [Emission] (31)

B. Constraints
Important and influential constraints on the analysis of sizing
distributed generation resources in the assumed power grid can
be expressed as follows:

B.1. Voltage constraint

Vmin ≤ |Vk| ≤ Vmax (32)

B.2. Power generation constraint

∑ PG = ∑(Pload + Ploss) (33)

PDG,maxd ≤ PDG,i ≤ PDG,min (34)

B.3. Maximum allowable capacity of each feeder

It must be taken into account that when DG units are considered,
the total DG size for each feeder should be governed by the
following equation:

NDG

∑
i=1

PDG,i ≤ ∝ (i) PLoad

0 <∝ (i) < 1

(35)

Where In this article, the value of ∝ (i) = 0.4 has been calcu-
lated [47].

C. Case study simulation results
To demonstrate the performance of the proposed method, at
first, a region full of straw near 33 buses is assumed, and wind
condition is like Fig. 8, so by using GIS, scenarios, and zones
of the power system that can be damaged by smoke effect in
conditions of fire are recognizable, that is presented in Table 2.
Also based on three calculated scenarios, the sitting of DGs are
presented in Table 3.  
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Fig. 8. Flowchart of proposed method.
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Table 2. Affected zones by smoke.

Zone number Probability
Bus number

Load shedding (kW)
From To

1 18% 30 32 420

2 15% 23 25 930

3 11% 15 18 270

For the first scenario, the acceptable convergence characteris-
tic of objective functions has been shown in Fig. 9. Comparison
between the results of the proposed algorithm with Genetic
and PSO algorithms has been presented in Table 4, it obviously
shows that the results of the HCCA algorithm are better than GA
and PSO algorithms. Also to comparison two by two objective
functions, Pareto front results that are obtained by the proposed
algorithm has been shown in Fig. 10, in addition, three objec-
tive functions comparison has been shown in Fig. 11, so with
regard to recent figures, diversity of calculated results despite
their conflict could be shown.

Since show results of four objective functions impossible,
numerical results could be presented, but in multi-objective
analysis, results are not unique that is called Pareto front answers
as mentioned, so by using a fuzzy method decision-maker could
find the best point between Pareto answers.

In addition to showing different combinations of objective
function various cases have been considered:

Cases I-IV are shown results of single-objective optimization.
Case V: Considering functions f1, f2, and f3.
Case VI: Considering functions f1, f3, and f4.
Case VII: Considering functions f2, f3, and f4.
Case VIII: Considering functions f1, f2, and f4.
Case IX: Considering functions f1, f2, f3, and f4.
According to the structure of the HCCA algorithm and fuzzy
method, combination steps of them presented as follow:
As a result, the analytical table of cases for the first scenario has
been presented in Table 5. Similarly, the results of the second
and third scenarios have been presented in Tables 6 and 7.

4. DISCUSSION

Rising wildfires caused by climate change are a source of a new
concern for power networks. Wide wildfires have two effects,
smoke, and flame. However, the spread of flames can damage
power grids [18], but smoke from a wildfire can show its effect
in a shorter time [16]. So, considering the nature of smoke
effect uncertainty, an appropriate strategy should be considered
to increase the resilience of the power system by the use of
distributed generation sources.

Due to the fluidity of the smoke and the direction of the wind
at different times, identifying the place of its effect on the power
system is uncertain. As shown in the section of simulation, the
wildfire smoke could have spread in different directions that
are depending on the direction of the wind, but considering the
wind rose curve, the most possible directions could be identified
and analyzed. As shown in Table 2, three probabilities have
been analyzed, the first being the 18% probability that in the
GIS system assumed, could outage the bus bars 30 to 32 with
420 kW blackout. Similarly, with a 15% probability, the area
between bus bars 23 to 25 with 930 kW and 11% probability, the
area between bus bars 15 to 18 with 270 kW could be a blackout.
To placement of 8 DGs in the test network, it is decided that in
each of the possible scenarios, the important loads of the smoke-
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Fig. 9. Convergence characteristic of objective functions.

affected area will be provided by one or more DGs. Since the
considered problem has more than one objective function, so the
optimization method with a multi-objective nature should be
used, which is the basis of the HCCA algorithm. To analyze the
results obtained from the optimization of different combinations
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Table 3. DG locations in different scenarios.
Numbr of Scenario Bus NO. for DG1 Bus NO. for DG2 Bus NO. for DG3 Bus NO. for DG4 Bus NO. for DG5 Bus NO. for DG6 Bus NO. for DG7 Bus NO. for DG8

1 23 7 24 31 32 30 17 13

2 24 7 31 13 25 32 17 30

3 23 7 24 31 18 30 32 13

Table 4. Comparison between HCCA, GA and PSO algorithms.

Method
Function

f1 ∗ 106 ($) f2 (pu) f3 (kW) f4 ∗ 104 (lb/MW)

Genetic algorithm 3.1419 109.18 0.971 4.8689

PSO algorithm 1.9817 107.99 0.913 4.849

Proposed algorithm 2.297 107.368 0.888 4.8448

Table 5. Objective function values for the first scenario.
Operational weights

Cases
W1 W2 W3 W4

f4 ∗ 104

(lb/MW)

f3

(kW)

f2

(pu)

f1 ∗ 106

($)

I - - - - 4.6681 1.096 107.016 3.1016

II - - - - 4.8378 0.888 107.368 2.297

III - - - - 4.8448 0.961 96.308 2.5582

IV - - - - 5.2562 0.934 98.517 2.271

0.33 0.33 0.33 - 4.5583 0.95 98.51 -

0.2 4 0.4 - 4.5583 0.95 98.51 -

0.4 0.2 0.4 - 4.5583 0.95 98.51 -
V

0.4 0.4 0.2 - 4.6237 0.92 100.6 -

0.33 - 0.33 0.33 4.5583 - 98.51 2.3547

0.2 - 0.4 0.4 4.5583 - 98.51 2.3547

0.4 - 0.2 0.4 4.5583 - 98.51 2.3547
VI

0.4 - 0.4 0.2 4.5583 - 98.51 2.3547

- 0.33 0.33 0.33 - 0.93 99.44 2.3717

- 0.2 0.4 0.4 - 0.95 98.51 2.3547

- 0.4 0.2 0.4 - 0.93 99.44 2.3717
VII

- 0.4 0.4 0.2 - 0.93 99.44 2.3717

0.33 0.33 - 0.33 4.6918 0.91 - 2.3869

0.2 0.4 - 0.4 4.6918 0.91 - 2.3869

0.4 0.2 - 0.4 4.6918 0.91 - 2.3869
VIII

0.4 0.4 - 0.2 4.6918 0.91 - 2.3869

0.25 0.25 0.25 0.25 4.5583 0.95 98.51 2.3547

0.1 0.3 0.3 0.3 4.5583 0.95 98.51 2.3547

0.3 0.1 0.3 0.3 4.5583 0.95 98.51 2.3547

0.3 0.3 0.1 0.3 4.7054 0.91 101.22 2.3733

IX

0.3 0.3 0.3 0.1 4.5583 0.95 98.51 2.3547

as single-objective, two-objective three-objectives, and finally
four-objective is considered. Table 4 shows that the introduced
algorithm has found more optimal answers than the PSO and GA
algorithms. Also, in the study of multi-objective optimization, a
set of answers in the form of Pareto has been obtained, which
show in Figs. 9 and 10. But the important thing about multi-
objective optimization problems is that at first glance it is not
possible to choose a unique answer between Pareto set results.
In the sample problem, the network planner cannot identify a
single answer from the set of answers obtained, so by combining
the optimization method with the fuzzy method, it is possible
to determine the importance of objective functions based on Wi

Table 6. Objective function values for the second scenario.
Operational weights

Cases
W1 W2 W3 W4

f4 ∗ 104

(lb/MW)

f3

(kW)

f2

(pu)

f1 ∗ 106

($)

I - - - - 4.6733 1.13 108.87 3.1848

II - - - - 4.8831 0.98 120.96 2.7466

III - - - - 5.0074 1.08 105.29 2.9985

IV - - - - 4.7767 1.05 107.01 2.6981

0.33 0.33 0.33 - 4.9966 1.05 105.88 -

0.2 4 0.4 - 4.9966 1.05 105.88 -

0.4 0.2 0.4 - 4.9966 1.05 105.88 -
V

0.4 0.4 0.2 - 4.9196 1.03 108.92 -

0.33 - 0.33 0.33 5.0241 - 105.61 2.9414

0.2 - 0.4 0.4 5.0241 - 105.61 2.9414

0.4 - 0.2 0.4 5.0241 - 105.61 2.9414
VI

0.4 - 0.4 0.2 5.0241 - 105.61 2.9414

- 0.33 0.33 0.33 - 1.05 105.88 2.8162

- 0.2 0.4 0.4 - 1.05 105.88 2.8162

- 0.4 0.2 0.4 - 1.03 108.92 2.7743
VII

- 0.4 0.4 0.2 - 1.05 105.88 2.8162

0.33 0.33 - 0.33 4.8622 1.02 - 2.8026

0.2 0.4 - 0.4 4.8622 1.02 - 2.8026

0.4 0.2 - 0.4 4.8622 1.02 - 2.8026
VIII

0.4 0.4 - 0.2 4.8622 1.02 - 2.8026

0.25 0.25 0.25 0.25 4.9966 1.05 105.88 2.8162

0.1 0.3 0.3 0.3 4.9966 1.05 105.88 2.8162

0.3 0.1 0.3 0.3 4.9966 1.05 105.88 2.8162

0.3 0.3 0.1 0.3 4.9196 1.03 108.92 2.7743

IX

0.3 0.3 0.3 0.1 4.9966 1.05 105.88 2.8162

for the network planner. For example, if losses are important
to the network planner, the coefficient is considered different,
although the sum of the coefficients must be equal to 1. Finally,
in each of the solved scenarios, a unique answer can be selected
from the Pareto set results.

5. CONCLUSIONS

In this paper, the effects of wildfire smoke on the power system
were studied. Wildfires are one of the most pervasive events that
can affect power system resilience. To reduce this effect, a suit-
able solution should be considered. so, the effects of wildfires
smoke on power system have been investigated based on the
wind rose curves on the test power system By solving an exam-
ple, was shown that many scenarios caused by wind uncertainty
can be reduced (for instance three scenarios), and also the opti-
mal placement of distributed generation resources can be very
effective in improving the resilience of power systems. It should
be noted that a new optimization algorithm has been presented
for the first time that is called the handball championship cup
algorithm or HCCA algorithm. Based on the proposed method,
the optimal location of the distributed generation resources is
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Fig. 10. Pareto front results of objective functions.

easily determined. It is shown that the proposed algorithm
has good accuracy, and is suitable for solving the problem of
this paper. Also, the results show the power system resilience
is increased against the wildfire. Some open issues which are
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Fig. 11. Three dimension results of objective functions.

Table 7. Objective function values for the third scenario.
Operational weights

Cases
W1 W2 W3 W4

f4 ∗ 104

(lb/MW)

f3

(kW)

f2

(pu)

f1 ∗ 106

($)

I - - - - 4.8216 1.15 123.27 3.2303

II - - - - 5.0108 0.99 120.46 2.6994

III - - - - 5.0819 1.07 105.38 3.0539

IV - - - - 5.1469 1.01 112.43 2.6658

0.33 0.33 0.33 - 5.0313 1.06 106.38 -

0.2 4 0.4 - 5.0313 1.06 106.38 -

0.4 0.2 0.4 - 5.0313 1.06 106.38 -
V

0.4 0.4 0.2 - 4.879 1.04 110.09 -

0.33 - 0.33 0.33 4.8419 - 106.17 2.9032

0.2 - 0.4 0.4 4.8419 - 106.17 2.9032

0.4 - 0.2 0.4 4.8419 - 106.17 2.9032
VI

0.4 - 0.4 0.2 4.8419 - 106.17 2.9032

- 0.33 0.33 0.33 - 1.06 106.38 2.8186

- 0.2 0.4 0.4 - 1.06 106.38 2.8186

- 0.4 0.2 0.4 - 1.04 110.09 2.7073
VII

- 0.4 0.4 0.2 - 1.06 106.38 2.8186

0.33 0.33 - 0.33 4.7439 1.03 - 2.7411

0.2 0.4 - 0.4 4.7439 1.03 - 2.7411

0.4 0.2 - 0.4 4.7439 1.03 - 2.7411
VIII

0.4 0.4 - 0.2 4.7439 1.03 - 2.7411

0.25 0.25 0.25 0.25 5.0313 1.06 106.38 2.8186

0.1 0.3 0.3 0.3 5.0313 1.06 106.38 2.8186

0.3 0.1 0.3 0.3 5.0313 1.06 106.38 2.8186

0.3 0.3 0.1 0.3 4.879 1.04 110.09 2.7073

IX

0.3 0.3 0.3 0.1 5.0313 1.06 106.38 2.8186

currently the subject of further research include the impact of
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concurrent smoke and flame and resilience analysis of power
system infrastructures against storms by using wind rose curve
could be investigated. Also, the insulation failure calculation
that is caused by wildfire smoke is one of the issues that should
be considered more. Another point is the HCCA algorithm as a
new optimization method that could be used in all optimization
problems.
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6. APPENDIX

To show the performance of the HCCA algorithm, four bench-
mark functions that are presented in the MOPSO algorithm
paper by Coello are presented as follows [49]:

The first test function is:

F1 = −x2 + y (36)

F2 =
1
2

x + y + 1 (37)

0 ≥ 1
6

x + y− 13
2

& 0 ≥ 1
2

x + y− 15
2

(38)

0 ≥ 5x + y− 30 & 0 ≤ x, y ≤ 7 (39)

The second test function is:

F1 =
n−1

∑
i=1

(
−10 exp

(
−0.2

√
x2

i + x2
i+1

))
(40)

F2 =
n

∑
i=1

(
|xi|0.8 + 5 sin (xi)

3
)

(41)

− 5 ≤ x1, x2, x3 ≤ +5 (42)

The third test function is:

Minimize[ f1 (x1, x2)] = x1 (43)

Minimize[ f2 (x1, x2) = g (x1, x2) .h (x1, x2)] (44)

h (x1, x2) =


1−

√
f1(x1,x2)
g(x1,x2)

i f f1 (x1, x2) ≤ g (x1, x2)

0, othervise

(45)

g (x1, x2) = 11 + x2
2 − 10 (cos 2πx2) (46)

0 ≤ x1 ≤ 1& − 30 ≤ x2 ≤ 30 (47)

The fourth test function is:

Minimize[ f1 (x1, x2) = x1] (48)

Minimize[ f2 (x1, x2) =
g (x2)

x1
] (49)

g (x2) = 2.0− exp
{
−
(

x2−0.2
0.004

)2
}

−0.8 exp
{
−
(

x2−0.6
0.4

)2
} (50)

0.1 ≤ x1, x2 ≤ 1 (51)

The comparison between HCCA and MOPSO algorithms for
the first and the second test functions are shown in Figs. 12 and
13 and also numerical results of the comparison between HCCA,
MOPSO, and NSGA-II algorithms for the third and fourth test
functions are presented in Tables 8-11.

Table 8. Results of the generational distance for the third test
function.

GD HCCA MOPSO NSGA-II

Mean 0.0001097 0.000118 0.023046

Std Dev 2.372 ∗ 10−5 2.55 ∗ 10−5 0.045429

Table 9. Computational time (in second) for the third test
function.

Time HCCA MOPSO NSGA-II

Mean 0.104545 0.0721 0.69355

Std Dev 0.011368 0.00784 0.020028
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Fig. 12. Comparison between HCCA and MOPSO algorithms
for the first test function.
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Fig. 13. Comparison between HCCA and MOPSO algorithms
for the second test function.

Table 10. Results of the generational distance for the fourth test
function.

GD HCCA MOPSO NSGA-II

Mean 0.0301116 0.03273 0.044236

Std Dev 0.0557704 0.06062 0.07368

Table 11. Computational time (in second) for the third test
function.

Time HCCA MOPSO NSGA-II

Mean 0.401288 0.27675 1.578

Std Dev 0.079566 0.054873 0.073463
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