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The main mission of modern power systems is to supply the load in the most economical and reliable
methods. One of the most challenging issues in this regard is the Optimal Reactive Power Dispatch
(ORPD), since the crucial focus of planning and operation studies is mainly on only supplying the ac-
tive power. The primary purpose of the ORPD issue, as a complex and nonlinear problem, is to identify
the relevant control variables to minimize some objective functions, i.e. active power losses considering
the system constraints. As the literature review shows, the application of meta-heuristic techniques to
find the optimal solution to the ORPD problem is of great importance in this field. This paper, as a com-
parative case study, attempts to investigate the capability of some powerful meta-heuristic optimization
algorithms to tackle the ORPD problem. The control variables are the generated power by the power
plants, the voltage magnitude of PV buses, the installed capacity of parallel capacitors, and on-load trans-
former tap changers. All the simulations were implemented on the two case study systems, including the
IEEE 30-, and 57-buses. The applied meta-heuristic algorithms to the problem are Orthogonal Crossover
based Differential Evolution (OXDE), Hybrid Grey Wolf Optimization, and Particle Swarm Optimiza-
tion Algorithm (HGWO-PSO), Sine Cosine Algorithm (SCA), and Hybrid PSO and Genetic Algorithm
(HPSO-GA). © 2021 Journal of Energy Management and Technology
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1. INTRODUCTION

Reactive power compensation is a critical task in electrical power
systems because of its main role in optimal reactive power flow
management [1]. However, this issue itself has an undeniable
impact on maintaining the power system stability and secure
power flow. Generally, the ORPD problem is applied to op-
timal management of the reactive power sources in electrical
transmission networks aiming at minimizing power losses and
improving the voltage profile. Therefore, the ORPD problem
plays a crucial impact on the economy and secure operation of
the electric systems. This subject is realized by coordinating
different reactive power sources in the electrical transmission
networks [2].

A. Literature review

OPRD is a complex sophisticated optimization problem includ-
ing nonlinear objective functions with multiple local minima
and in the presence of some discontinuous and nonlinear con-
straints [3]. Generally, solving this problem is proposed in three
main categories including analytical techniques, meta-heuristic
methods, and mathematical programming approaches [4].
In the category of analytical methods, several nonlinear pro-
gramming techniques have been reported in [5] to investigate the
optimal solution to this problem. Moreover, several mathemati-
cal methods have been addressed to solve the OPRD problem
in literature, including the Newton [6], and Interior Point (IP)
[7] methods, Branch and Bound (B&B) [8], Mixed Integer Non-
Linear Programming (MINLP) [9], [10], and Conic programming
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[11]. Although the analytical methods are helpful to design the
future framework of reactive power management, they are time-
consuming and are not recommended for large-scale power
networks [4]. Also, in the case of mathematical methods, in
addition to not guaranteeing the finding of globally optimal
solutions, they suffer from non-continuity and non-derivability
of the objective functions [12], which requires significant simpli-
fications in the formulation of the problem.
To overcome the shortcomings of the previous two category
methods, the third class of optimization algorithms known as
meta-heuristic methods is addressed in the literature. The stages
of exploration and extraction are the main components of evolu-
tionary search algorithms, in a way, their high balance increases
the algorithm’s ability to solve problems. Here, exploration
refers to the universality of the search (i.e., the algorithm re-
quires more search) and the purpose of extracting or efficiency is
to find better answers around an optimal answer. Global explo-
ration leads to new answers. But, extraction applies limited and
significant changes to the current optimal response. At this stage,
the algorithm, considering a solution, applies changes to it dur-
ing execution. In exploration, the algorithm can respond more
flexibly to the required changes by creating a different solution.
This indicates the dependence of exploration on time. The reason
this time is so long is that more search (ie the act of discovering)
must be done. But in extraction, existing solutions are exploited
to achieve more efficient operations. In short, exploration means
ensuring that the search is universal. Also, the purpose of ex-
tracting or better response efficiency around an answer is a local
search. Since several factors affect the determination of these
two factors, each algorithm has different strengths and weak-
nesses according to its behavior compared to other algorithms.
In the following some of the main meta-heuristic based refer-
ences regarding OPRD problem are addressed.
In [13], [14], a class of Genetic Algorithms (GAs) have been em-
ployed to solve the different types of OPRD problems. Also,
the Differential Evaluation (DE) algorithms are implemented
in [15], [16] to explore the OPRD problem aiming at several
objective functions, including minimizing VAR compensation,
improving the voltage stability, and reducing the cost of power
losses. Shahbazi, and Kalantar [17] have suggested the Seeker
Optimization Algorithm (SOA) for solving the OPRD problem to
minimize the voltage deviation and power loss in transmission
networks. In [18] the OPRD problem has been solved by using
evolutionary programming and evolutionary strategies. Also,
the Ant Colony Optimization (ACO) algorithm has been used
to solve the OPRD problem in transmission networks in [19].
In [20], the PSO algorithm has been applied to solve the OPRD
problem. In [21], the Gaussian bare-bones TLBO (GBTLBO)
algorithm has been used to solve this problem. Also, the Ar-
tificial Bee Colony (ABC) algorithm is applied in [22] to deal
with this problem in a deregulated power system. Moreover,
the Gravitational Search Algorithm (GSA) has been practiced in
[23] to determine the optimal solution to this problem. Authors
in [24] have tested the Teaching-Learning Algorithm (TLA) al-
gorithm to handle the OPRD problem considering the power
loss as the objective function of the problem. Furthermore, the
Chemical Reaction Optimization (CRO) method is proposed to
solve the OPRD aiming at minimizing the power loss, voltage
deviation, and maximizing voltage stability in [25]. The OPRD
problem has been solved by the Water Cycle Algorithm (WCA)
in [26], Moth-Flame Optimization (MFO) algorithm [27], Im-
proved Social Spider Optimization (ISSO) [28], Semi Definite
Programming (SDP) [29], Tight Conic Relaxation [30], Modified

Stochastic Fractal Search Algorithm (MSFS) [31], Improved Ant
Lion Optimization algorithm (IALO) [32], Whale Optimization
Algorithm (WOA) [33], Adaptive Chaotic Symbiotic Organisms
Search algorithm (A-CSOS) [34], Hybrid PSO and Gravitational
Search Algorithm (HPSO-GSA) [35], Gaussian bare-bones WCA
(NGBWCA) [36], Fractional-Order Darwinian particle swarm
optimization (FO-DPSO) [37], and the Differential Search Algo-
rithm (DSA) [38].
As a result, a complete comparison of algorithms based on fea-
tures, advantages, disadvantages, factors affecting performance,
and their fields of application is presented in reference [40]. To
summarize, more details in this field will be omitted in this pa-
per and a summary of the algorithms used in the field of ORPD
problem solving will be given and the reference study [40] is
recommended to interested readers. Anyway, some details re-
garding the reviewed papers in this work, are addressed in Table
1.

Table 1. A brief review of some relevant works.
Ref Proposed algorithm Objective function (s) Case study (Bus numbers)

[13] GA Minimizing and maximizing the total cost of
investing in reactive power support and the total
social welfare of the system

6

[14] GA Minimizing active power losses, voltage
deviations, and L-index

6 and 30

[15],[41] DE Total cost of active power losses and installation
of VAR resources

30

[16] DE Minimization of active power losses 30

[17] SOA Minimizing of active power losses and voltage
deviation

30

[18] DE and EP Minimizing of active power losses, voltage
deviation and static voltage stability index

30

[19] ACO Minimization of active power losses 14 and 30

[21] MGBTLBO Minimization of active power losses 14 and 30

[22] ABC Minimizing of active power losses and L-index 30 and 508

[23] GSA Minimizing of active power losses 30, 57 and 118

[24] MTLA Minimizing of active power losses 14, 30 and 118

[25] CRO Minimizing of active power losses, voltage
deviation and L-index

30 and 57

[26] WCA Minimizing of active power losses and voltage
deviation

30

[27] MFO Minimizing of active power losses and voltage
deviation

30, 57 and 118

[28] ISSO Minimizing of active power losses, voltage
deviation and L-index

30 and 118

[29] SDP Minimizing of active power losses 30 and 118

[30] convex relaxations Minimizing of active power losses 3375

[31] MSFS Minimizing of active power losses, voltage
deviation and L-index

30 and 118

[32] IALO Minimizing of active power losses, voltage
deviation and L-index

30, 57 and 118

[33] WOA Minimizing of active power losses 14, 30 and 114

[34] A-CSOS Minimizing of active power losses and voltage
deviation

30

[35] PSOGSA Minimizing of active power losses 30 and 118

[36] NGBWCA Minimizing of active power losses and voltage
deviation

30, 57 and 118

[37] FO-DPSO Minimizing of active power losses and voltage
deviation

30 and 57

[38] DSA Minimizing the
investment cost of shunt compensation devices at
the first level, Minimizing fuel cost at the second
level, and Minimizing load voltage deviation at
the third level

114

[42] GSA Minimizing of active power losses and voltage
deviation

30

B. Innovation and novelty
The ORPD problem is a complex problem with a vast feasible
space, including both continuous and discrete variables. There-
fore, mathematical and analytical methods cannot be a suitable
choice to solve this problem. As a practical alternative, meta-
heuristic algorithms with a random search nature and the ability
to find the optimal pan in a feasible solution space are excellent
candidates for solving this problem.
In all reported cases, different algorithms have been proposed
to solve the OPRD problem using various strategies. One of
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the most challenging issues in this regard is the setting of many
control parameters that have an essential impact on optimal
solutions. This issue is one of the main steps in applying differ-
ent meta-heuristic algorithms. The more the number of setting
parameters in the meta-heuristic algorithm is less, the more it is
easy to be applied to different problems, and the accuracy of the
solutions will be increased. Furthermore, the recognition and ap-
plication of these algorithms are significant. In some cases, there
is no need to change and innovation, and it may be possible to
solve many problems in the simplest possible way by employing
only an algorithm. This subject is essential in modern power
systems to solve complex problems.
ORPD problem as the complex and non-convex problem in
power system operation and control still needs to be tackle ap-
plying more powerful meta-heuristic algorithms. To this end,
this paper, for the first time, reports applying the OXDE, HGWO-
PSO, HPSO-GA, and SCA to the ORPD problem. Moreover, as a
comparative case study, we tried to compare the ability of the
proposed algorithms in solving the ORPD problem in terms of
optimal solutions, convergence, and running time, using simula-
tions on two standard networks of IEEE 30, and 57 buses.
This paper is organized as follows: The second section deals with
the formulation of the ORPD problem. In the third section, the
suggested algorithms are detailed. The fourth section presents
the simulation and numerical results and the conclusions are
described in the fifth section.

2. FORMULATION OF THE ORPD PROBLEM

The main objective function of the ORPD problem is to minimize
the active power losses in the transmission network by Eq. (1)
[43], [44], [3].

MinPLoss (V, δ) =
Nl

∑
k=1

Gk

(
V2

i + V2
j − 2ViVj cos δij

)
(1)

Where Gk is the conductance of line k between the buses i and j.
Nl is the number of transmission lines, Vi is the voltage in the
i-th bus and the voltage angle difference between the i-th and
j-th buses. The main constraints are the equality of active and
reactive powers expressed in Eq. (2) and Eq. (3).

PGi − PDi −Vi

NB

∑
j=1

Vj

(
Gij cos δij + Bij sin δij

)
= 0 (2)

QGi −QDi −Vi ∑
j=1

Vj

(
Gij sin δij − Bij cos δij

)
= 0 (3)

In which, NB is the number of system buses, PGi and QGi are
active and reactive power generated by the i-th bus, QDi power
consumption at bus i, respectively. Gij and Bij, are the real and
imaginary parts of the admittance matrix between buses i and j.
The inequality constraints also include the limitations expressed
in relations Eq. (4) to Eq. (10):

Pmin
Gslack

≤ PGslack ≤ Pmax
Gslack

(4)

Qmin
Gi
≤ QGi ≤ Qmax

Gi
, ∀i ∈ NG (5)

Vmin
Gi
≤ VGi ≤ Vmax

Gi
, ∀i ∈ NG (6)

Tmin
i ≤ Ti ≤ Tmax

i , ∀i ∈ NT (7)

Qmin
Ci
≤ QCi ≤ Qmax

Ci
, ∀i ∈ NC (8)

Vmin
Li
≤ VLi ≤ Vmax

Li
, ∀i ∈ NQ (9)

∣∣Sli

∣∣ ≤ Smax
li

, ∀i ∈ Nl (10)

That, NG, NT, NC, and NQ respectively represent the num-
ber of generators, transformers, reactive power compensation
sources and load buses, PGslack , Pmax

Gslack
, and Pmin

Gslack
represent re-

spectively the active power, the maximum and minimum active
power of the slack generator, QGi , Qmax

Gi
and Qmax

Gi
respectively

represent the amount of reactive power, the maximum and min-
imum reactive power of the generator, VGi , Vmax

Gi
and Vmin

Gi
rep-

resent respectively the amount of generator voltage, maximum
and minimum generator voltage, Ti, Tmax

i and Tmax
i respectively

represents the amount of transformer tap, the maximum and
minimum transformer tap, QCi , Qmax

Ci
and Qmin

Ci
respectively rep-

resent the capacitance, the maximum and minimum size of the
capacitor, VLi , Vmax

Li
and Vmin

Li
respectively represent the load

voltage, maximum and minimum load voltage, Sli
and Smax

li
are also indicates the capacity of the transmission line and its
maximum transmission capacity.

A. Proposed flowchart for solving the ORPD problem

The proposed flowchart for solving the ORPD problem is pre-
sented in Fig. 1.
The main steps of the proposed flowchart for solving ORPD
problem are detailed here. The process starts by determining the
setting parameters for the algorithm (these parameters are differ-
ent based on the type of the algorithm) and the needed data of
case studies are provided in the suitable format. Then the initial
population is formed according to the used parameters in each
study. The test network parameters (i.e. voltage of generators,
transformer tap setting, and capacitor capacity) are updated
as the simulation program progresses. Here, we calculate the
test network losses using AC power flow, and the relevant cost
is calculated accordingly. At this stage, the stopping criteria,
including the number of iteration and the desired conditions,
are checked. If these conditions are met, the algorithm will be
terminated and the result will be printed. Otherwise, the process
returns to update the parameters of the test network.

3. SUGGESTED META-HEURISTIC ALGORITHMS

In this paper, OXDE, HGWO-PSO, HPSO-GA, and SCA opti-
mization algorithms are used to solve the ORPD problem. In this
section, some details regarding these meta-heuristic algorithms
are presented.

A. OXDE algorithm

This algorithm is a method for improving the ability of the DE
algorithm by using a gradual crossover spatial combination
[39]. This algorithm, as in other population-based optimization
algorithms, it consists of two initialization and evaluation steps.
The intersection operator in this algorithm is based on Eq. (11),
a discrete combination of the test vector Ui(t) and the vector of
the parent Xi(t) for producing the child X′i (t).
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Fig. 1. Proposed flowchart for solving the ORPD problem.

X′i (t) =

 Uij(t) if j ∈ J

Xij(t) otherwise
(11)

In which, Xij returns the j-th element of the vector Xij(t) and x
is the set of intersection points that are subject to change and in
this method, by determining the minimum and maximum limits
of the answers, a search range is created as Eq. (12).

li,j = min (ei , gi) +
j− 1

Q− 1
· (max (ei , gi)−min (ei , gi)) , j = 1, . . . , Q

(12)

The difference between the OXDE and DE methods is in the
random selection of ~Xij for this purpose, QOX is applied to ~Xij
in each generation to produce ~vij vector. By doing so, the ability
to search for the optimal answer is strengthened.

B. Hybrid PSO-GA algorithm
The advantages of the PSO algorithm over GA are its simplicity,
comprehensibility, and speed control capability as well as
convergence. In the GA algorithm, the mutation rate and
the probability of intersection affect the convergence of the
algorithm, but cannot like the inertia factor in the PSO, easily
control the convergence rate. Also, the main problem of both
algorithms is the initial population dependence. On the other
hand, by decreasing the inertia factor in the PSO algorithm,
it can be observed that the convergence speed increases. But
the main limitation of the PSO is precocious convergence and
trapping in the local minimum.
To prevention of this problem, the best mass position of the
particles in each iteration must be changed. For this purpose, by
incorporating mutation operators and the intersection of the GA
algorithm in PSO, it can increase diversity among its population
members and reduce the probability of being caught in local
minimums.
The convergence process will also increase in finding the
optimal solution. For this purpose, the HPSO-GA algorithm
uses standard PSO and GA algorithms so that in the early
stages, the PSO algorithm generates an initial population, then
the population is sent to the GA algorithm and by applying
mutation operators and new population intersection probability
(new solutions) as the best population moves to PSO algorithm
to update global solutions. This process will continue until the
stop criterion is completed. Therefore, we can catch advantage
of PSO’s global search (Social thinking) capability along with
the GA’s local search capability. Further explanation of this
method is provided in the reference [45].

C. Hybrid GWO-PSO algorithm
The GWO algorithm is similar to other nature-based algorithms
based on the initial population. In this algorithm, a variety of
gray wolves such as α, β, δ, and ω are used to simulate the wolf
leadership hierarchy, in which three basic steps of hunting, prey
searching, prey siege, and prey attack are performed [46].
Optimization is performed by using the motion of the wolves
α, β, δ. In this algorithm, a wolf is assumed to be the primary
director of the algorithm. It is also assumed that the wolves β
and δ also participate in the main guidance and the rest of the
wolves are considered as followers. Therefore, modeling the
process of hunting surrounds is done in two ways Eq. (13) and
Eq. (14) [46]:

~D =
∣∣∣~C · ~Xp(t)− ~X(t)

∣∣∣ (13)

~X(t + 1) = ~Xp(t)− ~A · ~D (14)

Where ~A and ~C are coefficient vectors, ~Xp Hunting location
vector, and ~X is a Location vector of each wolf and it is also an
iteration number. In these equations, the coefficients ~A and ~C
are calculated as follows:

~A = 2~a ·~r−~a (15)

~C = 2~r2 (16)

Where the components of a decrease linearly over consecutive
iterations from 2 to 0.
After the prey surround processing, given that α, β and δ have
better information about prey position, the hunting process is
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mathematically simulated. α, β and δ are the three best solutions
so far to achieve the optimal solution of performance target.
Wolf ω, β, δ solutions update their locations according to the
locations of α, β and δ. The method of hunting is described in
[46]. Here the wolves α, β and δ have better prey information to
estimate the hunting position (objective function). The rest of
the wolves also randomly update their position around the hunt,
according to information from the wolves α, β and δ. Therefore,
the method of hunting is described as follows [46].

~Dα =
∣∣∣~C1 · ~Xα − ~X

∣∣∣
~Dβ =

∣∣∣~C2 · ~Xβ− ~X
∣∣∣

~Dδ =
∣∣∣~C3 · ~Xδ− ~X

∣∣∣
(17)


~X1 = ~Xα− ~A1 · (D̄α)

~X2 = ~Xβ− ~A2 · (~Dβ)

~X3 = ~Xδ− ~A3 · (~Dδ)

(18)

~X(t + 1) =
~X1 + ~X2 + ~X3

3
(19)

In these relations ~X(1), ~X(2), and ~X(3) are the positions of the
wolves α, β and δ. There is an important point in the GWO
algorithm, that exploration and operation in local optimization
are a powerful algorithm, but dependent or limited in the bal-
ance between exploration and operation. The PSO algorithm
can be used to fix this problem. Because the PSO algorithm is
suitable for global optimization but suffers from local optimiza-
tion. Therefore, to achieve the global optimum without trapping
the local optimum, the HGWO-PSO algorithms are combined.
Therefore, the hunting method in the hybrid algorithm is modi-
fied as follows [47].

~Dα =
∣∣∣~C1 · ~Xα − ~X

∣∣∣− w ∗ ~X
~Dβ =

∣∣∣~C2 · ~Xβ− ~X
∣∣∣− w ∗ ~X

~Dδ =
∣∣∣~C3 · ~Xδ− ~X

∣∣∣− w ∗ ~X

(20)


~X1 = ~Xα− ~A1 ·

(
~Dα

)
~X2 = ~Xβ− ~A2 · (~Dβ)

~X3 = ~Xδ− ~A3 · (~Dδ)

(21)

~vt+1
i = w ∗ (~vt

i + C1 ∗ r1 ∗ (~X1 − ~Xt
i ))

+ C2 ∗ r2 ∗ (~X2 − ~Xt
i )

+ C3 ∗ r3 ∗ (~X3 − ~Xt
i )

(22)

~Xt+1
i = ~vt+1

i + ~Xt
i (23)

w = 0.5 +
( r

2

)
(24)

~vt
i = 0.3 ∗ r (25)

In these relationships, the coefficient w is the weight coefficient,
coefficient ri is the random numbers in the interval between zero
and one, as well as the coefficients Ci of the particle are related
to the social learning coefficient that is considered to be 0.5 [47].

D. SCA algorithm
The SCA algorithm is also a new optimization technique intro-
duced in 2015 [48]. In this algorithm, a mathematical model
based on sinus and cosine functions is used to minimize the
solution. In this algorithm, the particle position is expressed by
Eq. (26) and Eq. (27).

Xt+1
i = Xt

i + r1 × sin (r2)×
∣∣r3Pt

i − Xt
i
∣∣ (26)

Xt+1
i = Xt

i + r1 × cos (r2)×
∣∣r3Pt

i − Xt
i
∣∣ (27)

In these equations, Xi is the position of the particles in the i-th
dimension and j-th repeats. r1, r2 and r3 are random numbers
that represent the position of the particles in the i-th dimension.
These two equations are combined and used in the form of
Eq. (28).

Xt+1
i =

 Xt+1
i = Xt

i + r1 × sin (r2)×
∣∣r3Pt

i − Xt
i
∣∣ , r4 < 0.5

Xt+1
i = Xt

i + r1 × cos (r2)×
∣∣r3Pt

i − Xt
i
∣∣ , r4 ≥ 0.5

(28)
In this equation, r4 is a random number between the interval
[0,1].
According to Eq. (23), there are four main parameters r1 to r4 in
the SCA algorithm:
-r1 determines the dimension of the search space (confine of
answers).
-r2 determines the range of behavior to the optimal response.
-r3 determines the particle weight coefficients in moving towards
the optimum point.
-r4 also determines the amount of displacement between Sin and
Cos in Eq. (28).
As we know, each algorithm must balance the results obtained
to find the optimal point, in this algorithm, Eq. (26) and Eq. (27)
are used to balance Eq. (29).

r1 = a− ta/T (29)

4. SIMULATION AND NUMERICAL RESULTS

A. The standardized network studied
The first system examined is the IEEE 30-bus standard network
[43]. This system consists of 6 power plants, 4 transformers, 41
transmission lines, and 3 capacitor banks. The magnitude of
active and reactive powers produced in this system are 298.23
MW and 139.1 MVAr respectively, and consumed active and
reactive powers are 283.4 MW and 126.2 MVAr respectively. The
amount of active losses in this system is 5.832 MW.
The range of control parameters for this system is presented in
three operation statuses in Table 2 [44].

Table 2. The IEEE 30-bus standard network control parameters
(p.u.)

Case Vmax
G Vmin

G Vmax
PQ Vmin

PQ Tmax
K Tmin

K Qmax
C Qmin

C

1 1.1 0.9 1.05 0.95 1.05 0.95 0.36 -0.12

2 1.1 0.95 1.1 0.95 1.1 0.9 0.3 0

3 1.1 0.95 1.1 0.95 1.1 0.9 0.36 0

The second system examined is the IEEE 57-bus standard net-
work. This system consists of 7 power plants, 15 transformers,
80 transmission lines, and 3 capacitor banks. The amount of
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SCA HGWO-PSO HPSO-GSA OXDE

Case 1 4.7809 4.6098 4.5806 4.5785

Case 2 4.9442 4.6777 4.5924 4.5921

Case 3 4.8890 4.6230 4.5890 4.5780
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Fig. 2. Solution quality across case studies in the IEEE stan-
dard 30-bus network.

 

SCA HGWO-PSO HPSO-GSA OXDE

Case 1 393 493.8 329.4 310.2

Case 2 376.8 453.6 331.2 268.8

Case 3 377.4 431.4 336 306
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Fig. 3. Run-time of applied algorithms in different case studies
for the IEEE standard 30-bus network.

active and reactive power produced in this system is 1278.66
MW and 321.08 MVar, respectively, the amount of active and re-
active power consumption is 1250.8 MW and 336.4 MVar. Also,
the amount of active losses in this system is 27.864 MW. The
range of control parameters for this system is presented in three
operation modes in Table 3 [44].

Table 3. The IEEE standard 57-bus network control parameters
(p.u.)

Vmax
G Vmin

G Vmax
PQ Vmin

PQ Tmax
K Tmin

K Qmax
C Qmin

C

1.06 0.94 1.06 0.94 1.1 0.9 Bus18 = 0.10 0

- 0.95 - - - - Bus25 = 0.059 0

- 0.95 - - - - Bus53 = 0.063 0

B. Simulation results on the IEEE standard networks
B.1. IEEE 30-bus standard network

The best results of the proposed algorithms after 20 independent
runs of the algorithms, including the electrical losses, are sum-
marized in Tables 4-6 and Figs. 2 and 3 for IEEE 30-bus standard
network.
The results for the IEEE 30-bus test system in three different
cases in terms of the time of the objective function value and the
execution time of the algorithm are shown in Figs. 2 and 3.

Fig. 2 shows that the HPSO-GSA and OXDE algorithms in differ-
ent network conditions present almost better results compared
to the other two algorithms, including the SCA, and HGWO-
PSO. This verifies the better performance of HPSO-GSA and
OXDE algorithms in solving the ORPD. As an important note,
the effect of reactive power generation sources on voltage sta-
bility should be detailed in a time domain. The ORPD plays
a significant role in optimizing the performance of the power
system. Since voltage stability is basically dynamic, the long
run-time of the algorithm may lead to longer reactive power pro-
gramming in terms of time, which is not desirable. The longer
the time required to make the necessary calculations to decide
on the optimal performance of reactive power sources, or ORPD,
the lower the possibility of voltage stability, and the system en-
ters the voltage instability conditions. This raises more serious
concerns, especially in larger power systems with more com-
plex structures that increase the run-time. Accordingly, solving
the ORPD problem in the shortest possible time will be very
desirable. This subject requires less run-time of the optimization
problems. Fig. 3 shows the run-time of different algorithms for
solving the ORPD.
Since the heuristic algorithms make possible solving the ORPD
problem in shorter run-time, the solution found should not be
too far from the optimal point. It is therefore suggested that in
cases where the two goals are at odds, a balance will be struck
between the timing and accuracy of the proposed solution.
The longer the reactive power calculations, the greater probabil-
ity of voltage instability. This may be due to the large size of the
network. Therefore, due to the importance of voltage stability,
this time cannot be considered more than a certain range for the
understudy system to achieve a stable operation.
Fig. 3 depicts a brief comparison between the run-time of SCA,
HGWO-PSO, HPSO-GSA, and OXDE algorithms. In all case
studies, the run-time of OXDE algorithm is shorter than the
other algorithms, regardless of the studied network conditions.
This indicates the optimal performance of the OXDE algorithm
in solving the ORPD in terms of run-time. The run-time for other
algorithms is longer, from HPSO-GSA, SCA, to HGWO-PSO re-
spectively. Also, the performance of the HPSO-GSA algorithm
can be considered desirable. Fig. 4 shows the convergence curve
of the proposed algorithms in the IEEE 30-bus network.
Since the real power network is larger and more complicated
than the standard test power network, therefore, the run-time
for the real power network will be more than this amount of
time. To this end, the algorithm with less run-time should be
considered.
As shown in Fig. 3, the results box of the OXDE and HPSO-GA
algorithms with the HGWO-PSO and SCA algorithms are in a
lower position. The results also show that the OXDE algorithm
has less execution time regardless of the case study, which illus-
trates the power of this algorithm to solve this problem. Fig. 4
also shows the convergence diagram of the proposed algorithms
in the second case of the IEEE 30-bus standard network.

B.2. IEEE standard 57-bus network

The best results of the proposed algorithms after 20 independent
runs of the algorithms, including the electrical losses, are sum-
marized in Table 7 and Fig. 5 for the standard network of the
IEEE 57-bus. The performance time of the various algorithms
applied to the ORPD problem is shown in Fig. 6.
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Table 4. Best control variables settings and active power losses for the IEEE 30-bus standard network for case 1 (p.u.)
Variable SGA [3] PSO [3] MAPSO [3] SGA [49] PSO [49] HAS [49] ICA [44] IWO [44] MICA-IWO [44] GWO [50] OXDE HPSO-GA HGWO-PSO SCA

|VG1| 1.0751 1.0725 1.078 1.0512 1.0313 1.0726 1.0785 1.06965 1.07972 1.10 1.10 1.10 1.10 1.10

VG2 1.0646 1.0633 1.0689 1.0421 1.0114 1.0625 1.06943 1.06038 1.07055 1.096149 1.0942 1.094082 1.094062 1.10

VG5 1.0422 1.041 1.0468 1.0322 1.0221 1.0339 1.04698 1.03692 1.04836 1.080036 1.0749 1.074784 1.077258 1.10

VG8 1.0454 1.041 1.0468 0.9815 1.0031 1.0422 1.04714 1.03862 1.04865 1.080444 1.0769 1.076735 1.074705 1.10

VG11 1.0337 1.0648 1.0728 0.9766 0.9744 1.0318 0.03485 1.02973 1.07518 1.093452 1.10 1.078176 1.10 1.10

VG13 1.0548 1.0597 1.0642 1.10 0.9987 1.0681 1.07106 1.05574 1.07072 1.10 1.10 1.10 1.10 1.10

T6-9 0.94 1.03 1.04 0.95 0.97 1.01 1.08 1.05 1.03 1.04 1.03 1.04 1 1.05

T6-10 1.04 0.95 0.95 0.98 1.02 1 0.95 0.96 0.99 0.95 0.95 0.95 0.97 1

T4-12 1.04 0.99 0.99 1.04 1.01 0.99 1 0.97 1 0.95 0.95 0.95 1 0.95

T28-27 1.02 0.97 0.97 1.02 0.99 0.97 0.97 0.97 0.98 0.95 0.96 0.95 0.97 0.95

QC3 0 0 0 0.12 0.17 0.34 -0.06 0.08 -0.07 0.12 0.09364 0.067 0.01 0.06

QC10 0.37 0.16 0.16 -0.1 0.13 0.12 0.36 0.35 0.23 0.3 0.24689 0.34 0.14 0.36

QC24 0.06 0.12 0.12 0.3 0.23 0.1 0.11 0.11 0.12 0.08 0.08807 0.087 0.09 0.06

Ploss 0.0498 0.049262 0.048747 0.049408 0.049239 0.049059 0.048637 0.049344 0.048599 0.045984 0./04578533 0.04580623 0.04609763 0.047809

Table 5. Best control variables settings and active power losses for the IEEE 30-bus standard network for case 2 (p.u.)
Variable RGA [51] CMAES [51] MOPSO [51] NSGA-II [51] MNSGA-II [51] DE [52] PSO [52] ICA [44] IWO [44] MICA-IWO [44] OXDE HPSO-GA HGWO-PSO SCA

VG1 1.0695 1.07167 1.05006 1.07052 1.07319 1.05 1.05 1.06955 1.06435 1.07 1.10 1.10 1.10 1.10

VG2 0.06138 1.06253 1.0439 1.06135 1.0641 1.0446 0.9679 1.05976 1.05455 1.06136 1.09396 1.09396 1.094708 1.10

VG5 1.04038 1.04026 1.02311 1.04023 1.04163 1.0247 1.0262 1.04053 1.03736 1.04406 1.07457 1.0745 1.073695 1.10

VG8 1.04056 1.04041 1.02161 1.0404 1.04225 1.0265 1.0267 1.04536 1.03745 1.04595 1.07647 1.07653 1.080387 1.10

VG11 1.03695 1.03685 1.012 1.03239 1.02028 1.10 1.10 1.09843 1.08534 1.10 1.10 1.088 1.027678 1.10

VG13 1.06025 1.06026 1.04226 1.05991 1.05318 1.10 1.10 1.09839 1.09997 1.10 1.10 1.10 1.081537 1.10

T6-9 0.99 1 1.02 1.02 1.03 1 0.97 1 1 1 1.09 1.072 1/015 1.10

T6-10 0.98 0.92 1.03 0.92 0.92 1.10 1.10 0.92 0.92 0.91 0.9 0.922 1.069 0.90

T4-12 0.98 0.98 0.95 0.98 0.97 1.08 1.06 0.98 1.04 1 0.97 0.969 1.068 1.10

T28-27 0.99 0.99 0.99 0.99 0.99 0.92 0.92 0.96 0.96 0.95 0.96 0.962 1.009 0.982

QC10 0.18 0.19 0.20 0.17 0.18 0.26 0.30 0.05 0.06 0.06 0.2472 0.29031 0.29042 0.1062

QC24 0.06 1 0.09 0.09 0.10 0.10 0.10 0.05 0.05 0.05 0.0895 0.08922 0.09688 0

Ploss 0.04951 0.04945 0.04951 0.04952 0.049454 0.05011 0.05116 0.049444 0.049995 0.049178 0.04592089 0.04592408 0.04603473 0.04944244

Table 6. Best control variables settings and active power losses for the IEEE 30-bus standard network for case 3 (p.u.)
Variable C-PSO [53] CL-PSO [53] LDI-PSO [53] B-DE [53] R-DE [53] SFLA [53] NMSFLA [53] ICA [53] IWO [44] MICA-IWO [44] OXDE HPSO-GA HGWO-PSO SCA

VG1 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10 1.10

VG2 1.10 1.0947 1.0946 1.0946 1.0949 1.0945 1.0945 1.09284 1.09314 1.09272 1.09415 1.09416 1.09439 1.10

VG5 1.0747 1.0755 1.0753 1.0754 1.0707 1.0751 1.0753 1.07541 1.07411 1.07559 1.0749 1.07487 1.07518 1.10

VG8 1.0867 1.0774 1.0773 1.0774 1.073 1.077 1.0773 1.078 1.07789 1.07717 1.0769 1.07692 1.07743 1.10

VG11 1.10 1.10 1.10 1.0999 1.065 1.0949 1.10 1.09145 1.09132 1.09999 1.10 1.07987 1.10 1.10

VG13 1.10 1.10 1.10 1.1.000 1.0961 1.10 1.10 1.09941 1.0998 1.10 1.10 1.10 1.10 1.10

T6-9 0.99 1.08 1.08 1.08 1.05 0.98 1.06 1.03 1.03 1.10 1.07 1.048 1.0168 1.10

T6-10 1.05 0.90 0.90 0.90 0.90 1.03 0.92 1.01 1.01 0.90 0.90 0.934 0.9 0.90

T4-12 0.99 0.96 0.96 0.96 1 0.96 0.95 0.99 1.01 0.96 0.95 0.943 0.9755 1.10

T28-27 0.96 0.96 0.96 0.96 0.97 0.96 0.96 0.98 0.97 0.96 0.95 0.953 0.9685 1.0255

QC3 0.09 0.07 0.07 0.07 0.01 0.08 0.08 0.08 0.08 0.10 0.1035 0.1174 0.1973 0

QC10 0.3 0.25 0.25 0.25 0.26 0.31 0.26 0.34 0.26 0.35 0.2656 0.3411 0 0

QC24 0.08 0.10 0.10 0.10 0.12 0.10 0.10 0.12 0.11 0.12 0.0878 0.0871 0.0946 0.03371

Ploss 0.046801 0.046124 0.046124 0.046124 0.049975 0.046148 0.046118 0.046155 0.046287 0.045984 0.04578174 0.04578982 0.04639018 0.048891

5. RESULTS AND DISCUSSION

As the obtained results indicate, regardless of the dimensions
of the problem (size of the studied network), the OXDE and
HPSO-GA algorithms have been more effective in solving the
ORPD problem. The results show that these two algorithms
are two exploration and extraction factors well utilize these two
algorithms. This means that the evolutionary search algorithms
of two exploration and extraction factors and the balance be-
tween these two factors are very crucial in solving the problem.
In terms of exploration, a global search and the purpose of ex-
traction is also very important to obtain more optimal answers.
Exploration is following the global search, so it offers new so-
lutions but the extraction is looking for modest changes that
apply changes to the current solution. In this way, the algorithm
considers a solution and applies changes to it during the run-
ning process. In the exploration step, the alternative solution

is generated to be able to respond more flexibly to the changes
required by the process. The level of exploration optimality is
time-dependent. It can be stated that the OXDE and HPSO-GA
algorithms in three cases of the IEEE 30-bus standard network
have less runtime for solving the problem. But in terms of time,
the IEEE 57-bus standard network is in second place compared
to other algorithms. The reason is that in some algorithms the
search operation (the discovery operation) is more than extrac-
tion. Applying different meta-heuristic algorithms to ORPD
problem leads to different values of objective functions. This
subject is exactly in the line with the findings of all engineering
optimization algorithms in general and in the field of power
systems planning and operation studies in particular. In other
words, due to the different capabilities and performance of the
optimization algorithms, which are derived from the evolution-
ary nature defined by them in various phases and steps, we
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Table 7. Best control variables settings and active power losses for the IEEE 57-bus standard network (p.u.)
Variable SOA [52] PSO-W [52] PSO-cf [52] L-SaDE [52] ICA [44] IWO [44] MICA-IWO [44] OXDE HPSO-GA HGWO-PSO SCA

VG1 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06 1.06

VG2 1.058 1.0578 1.0586 1.0574 1.05747 1.05912 1.05841 1.05948 1.06 1.0595 1.06

VG3 1.0437 1.04378 1.0464 1.0438 1.04232 1.04716 1.04568 1.04921 1.04958 1.0483 1.06

VG6 1.0352 1.0356 1.0415 0.0364 1.03504 1.03817 1.03969 1.04348 1.04343 1.0452 1.06

VG8 1.0548 1.0546 1.06 0.0537 1.05088 1.05926 1.06 1.05999 1.06 1.06 1.06

VG9 1.0369 1.0396 1.0523 0.0366 1.01917 1.02729 1.02737 1.04503 1.04511 1.0454 1.06

VG12 1.0339 1.0334 1.0371 1.0323 1.02869 1.0374 1.03499 1.0415 1.0412 1.0424 1.06

T4-18 1 0.90 0.98 0.94 0.90 1.05 1.01 0.90 0.90 0.90 1.10

T4-18 0.96 1.02 0.98 1 1.01 1 0.95 0.90 0.90 1.05 0.90

T21-20 1.01 1.01 1.01 1.01 1 1.07 1.02 0.98 0.99 1.09 0.90

T24-26 1.01 1.01 1.01 1.01 1.01 1.02 1.01 0.99 0.99 0.98 0.90

T7-29 0.97 0.97 0.98 0.97 0.97 0.97 0.96 0.90 0.90 0.90 0.90

T34-32 0.97 0.97 0.97 0.97 0.98 0.99 0.98 0.97 0.97 1 1.10

T11-41 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90

T15-45 0.97 0.97 0.97 0.97 0.96 0.96 0.95 0.90 0.90 0.90 0.90

T14-46 0.95 0.95 0.96 0.96 0.94 0.95 0.94 0.90 0.90 0.90 0.90

T10-51 0.96 0.96 0.97 0.96 0.95 0.98 0.95 0.91 0.91 0.92 0.90

T13-49 0.92 0.92 0.93 0.92 0.92 0.93 0.91 0.90 0.90 0.90 0.90

T11-43 0.96 0.96 0.97 0.96 0.95 0.99 0.95 0.90 0.90 0.96 1.07

T40-56 1 1 0.99 1 1 1.01 1 1.01 1.01 1.06 1.10

T39-57 0.96 0.96 0.96 0.96 0.96 1.04 0.97 0.98 0.98 1 1.09

T9-55 0.97 0.97 0.98 0.97 0.96 0.96 0.96 0.90 0.90 0.90 0.90

QC18 0.09984 0.05136 0.09984 0.08112 0.041 0.0442 0.1 0.0999 0.050514 0.016263 0

QC25 0.05904 0.05904 0.05904 0.05808 0.053 0.0433 0.059 0.059 0.059 0.053389 0.059

QC53 0.06288 0.06288 0.06288 0.06192 0.063 0.0615 0.063 0.063 0.063 0.047172 0.063

Ploss 0.2426548 0.2427052 0.2428022 0.2426739 0.244799 0.245939 0.2425684 0.2347065 0.2347658 0.2391005 0.2540635

 

Fig. 4. Example of convergence curves in the IEEE standard
30-bus network.

cannot expect all algorithms lead to exactly similar solutions,
even by increasing the number of iterations to many times or
greatly increasing the time of the simulation. This procedure
was examined by the authors for the studied problem. The re-
sults of multiple simulations showed that even with a very high
number of iterations, the values of the objective function in dif-
ferent algorithms remain different from each other. In general,
and according to the simulation results and studies for deter-
mining the number of iterations, and optimizing parameters, it
can be concluded that the objective function and network are

 

22.5

23

23.5

24

24.5

25

25.5

26

P
O

W
ER

 L
O

SS
ES

 (
M

W
)

Fig. 5. Power losses obtained by different algorithms in three
cases regarding the IEEE 57-bus system.

too paramount for selecting the algorithm. From somewhere,
for more iteration, more improvement cannot be seen in the
results. Therefore, in the ORPD problem which the power loss
minimization is the goal, more iteration does not guarantee the
optimal solution. The fact is that there are some issues regard-
ing applying different meta-heuristic algorithms that should be
discussed or even compared between various algorithms. The
long list of these subjects includes fitness function, parameter
setting/tuning, run-time, convergence criterion, obtained objec-
tive function value (here the power losses), and computational
complexity. Presenting a comprehensive guide for mentioned
items, such as it was addressed in [54] is really behind the scope
of this work. But as a general guide, it can be remarked that
an algorithm would be more desirable to establish an accept-
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Fig. 6. Run-time of different algorithms for IEEE-57 bus sys-
tem.

able compromise between all the mentioned cases. If there is no
time limitation in performing the calculations (similar to various
long-term studies in the field of power system planning), the
optimal algorithm will be determined based on the minimum
power losses. If presenting an optimal or quasi-optimal solution
in the online operation mode of the system is considered, then
an algorithm will be desirable that will solve in a faster time.
In general, it can be said that the closer the study horizon is
from the planning mode to operation, the short run-time of the
algorithm is necessary due to the system operation requirements
to quickly make appropriate decisions regarding changes to the
system to maintain a stable operating condition. This point in
operation studies changes to the importance of finding optimal
solutions regardless of the run-time of the algorithm.

6. CONCLUSION

The ORPD problem is one of the most essential challenging is-
sues in power grids. The purpose of this complex problem is to
provide reactive power resources to manage sufficient reactive
power in the power system. This item can affect the reliable
and economical supply of energy. Today, the design of electrical
power companies is based on the economical principles of the
market and, therefore, in such a competitive market, optimal dis-
tribution can play an important role in restoring reactive power.
The purpose of the ORPD problem is to identify control variables
to minimize the objective function for system constraints. In this
paper, due to the nonlinearity of the problem, meta-heuristic
algorithms such as OXDE, HPSO-GA, HGWO-PSO, and SCA are
considered and are applied on the IEEE 30 and 57 bus standard
networks. Also, 4 implemented algorithms have been compared
with the other 7 evolutionary algorithms in the IEEE 57-bus sys-
tem. Also, these 4 algorithms have been studied and compared
with the other 10 evolutionary algorithms in the IEEE 30-bus
system. Due to the simulation results and evaluations, it has
been illustrated for larger networks the SCA is not able to find
an optimized solution. Therefore, the SCA is not a proper choice
for large and complex networks. To sum up, the results show
that the implemented algorithms are better than the other evolu-
tionary algorithms in terms of accuracy and performance. The
other advantage of using the proposed optimization method is
the quick search of the response, spatial points that increase the
incentive to use it in solving nonlinear optimization problems.
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