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With the increased use of wind power in power systems, the necessity of revision of conventional deter-
ministic approaches is indisputable. Presenting new and effective methods based on uncertainty model-
ing is greatly emphasized. In this paper, a new method for investigating the robust security constrained-
optimal power flow (RSCOPF) is proposed, which is not only able to comply with security constraints
but also robust to the uncertainty of electrical demand loads and wind power generation. The proposed
approach is based on the definition of uncertain loads and wind power generation and uses the Taguchi
orthogonal array technique (TOAT) , for the first time, a technique which is adopted to solve the RSCOPF
by applying the alternating current power flow (ACPF) and particle swarm optimization (PSO) algorithm.
Also, some security analyses are presented to introduce the most critical lines and generation units whose
loss imposes the highest operating costs on the network. The case study simulation on the IEEE 14-bus
system using MATLAB software demonstrates the ability of the proposed algorithm. © 2020 Journal of Energy

Management and Technology
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NOMENCLATURE

Acronyms
ACO Ant Colony Optimization

ACOPF AC Optimal Power Flow

ACPF AC Power Flow

ADMM Alternating Direction Method of Multipliers

BD Benders Decomposition

CC Corrective Control

CE Cross Entropy

CVaR Conditional value-at-risk

DCOPF DC Optimal Power Flow

DCPF DC Power Flow

DEA Differential Evolution Algorithm

DTR Dynamic Thermal Rating

EP Evolutionary Programming

FAAPO Fuzzy Adaptive Artificial Physics Optimization

GSF Generation Shift Factor

HESS Hybrid Energy Storage Systems

hC-DEEPSO hybrid Canonical DE-Particle Swarm Optimiza-
tion

IGDT Information Gap Decision Theory
IP Interior-Point
LSFs Linear Sensitivity Factors
MBFA Modified Bacteria Foraging Algorithm
MINLP Mixed-Integer Non-Linear Programming
OPF Optimal Power Flow
PC Preventive Control
POPF Probabilistic Optimal Power Flow
PSO Particle Swarm Optimization
RSCOPF Robust Security Constrained Optimal Power Flow
SOC State of Charge
TOAT Taguchi Orthogonal Array Technique
USCOPF Uncertain Security Constrained Optimal Power

Flow
Symbols and parameters
PGi, QGi The output active and reactive powers of unit i
P The bus injection power vector
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P̃ The probabilistic bus injection power vector
PG The vector of generation power
PLoad The load vector
P̃Load The probabilistic load vector
PRes Power generation vector by wind power plants
P̃Res The vector of probabilistic power generation by wind

power plants
PG, PG The vectors of the lower, and upper limits of active

generation power
QG, QG The vectors of the lower, and upper limits of reactive

generation power
Pi The injection power for bus i
|Vi| The per-unit voltage magnitude of bus i
|Vi| ,

∣∣Vi
∣∣ The minimum, and maximum per-unit voltage

magnitude of bus i
PL The power flow of line L between buses i, and j
PLine The vector of the lower limit of transmission power
PLine The vector of the upper limit of transmission power
∆PLine The vector of change in the power flow of lines
∆Pi The change in the injection power of unit i
PLine Power vector of lines
H The vector of generation shift factors
HRes, HLoad, HG Columns of the matrix H
ai, bi, ci The cost coefficients for the i-th unit
hLi The generation shift factors
Yj The performance index
f jL The power flow on line L obtained from the power flow

calculations regarding the experiment j
f ∗L The nominal power flow on line L
Gij, Bij The conductance and susceptance value for line L,

connected between buses i and j
nij The per-unit transformer tap-ratio located at branch i-j
nij, nij The minimum, and maximum per-unit transformer

tap-ratio values at branch i-j
µ The mean value of the probabilistic distribution function
σ The standard deviation value of the probabilistic distribu-

tion function
Pbest The best location of each particle in PSO algorithm
Gbest The best location of Pbest
A1 The average effect of level 1 of factor A on performance

indicators
A2 The average effect of level 2 of factor A on performance

indicators
B1 The average effect of level 1 of factor B on performance

indicators
B2 The average effect of level 2 of factor B on performance

indicators
C1 The average effect of level 1 of factor C on performance

indicators
C2 The average effect of level 2 of factor C on performance

indicators
∆A The main effect of factor A on performance indicators
∆B The main effect of factor B on performance indicators
∆C The main effect of factor C on performance indicators

1. INTRODUCTION

Security and economy are two of the most critical issues in
power system control, and operation. The security of the system
refers to its ability to survive imminent disturbances (contin-
gencies), without interruption in customer service [1]. Also, the
economy of the system refers to optimizing the variable costs
of operating the system. In this context, the SCOPF is another
extended version of the OPF to model the security constraints
from the operation of the power system by considering a set of
postulated contingencies [2]. However, some references such as
[3] have mainly focused on the great importance of voltage sta-
bility limits in modeling the SCOPF problem in the operation of
competitive electricity markets, and have essentially evaluated
and simulated the problem in terms of the voltage constraints.

This problem is a non-convex, nonlinear, and large-scale
mixed-integer non-linear (MINL) optimization problem, includ-
ing both discrete, and continuous variables [4], which is mainly
handled through preventive control (PC), or corrective control
(CC).

In recent years, the increasing growth of electricity consump-
tion and, consequently, the extreme increase in the environmen-
tal pollution caused by the emission of toxic gases in thermal
power plants, have increased the use of renewable energies, as
an effective solution in this field. The application of the wind
and solar resources, because of their numerous benefits, is at the
center of the attention of power system planners, and operators.

Wind energy has many advantages over other forms of en-
ergy, such as no need for fuel, free access to it, no need for water,
the low land area required for installation, and no environmen-
tal pollution tax. In recent years, with the increased use of
renewable energy sources such as wind energy, the presence of
uncertainties in the power system has become more significant.
Deterministic approaches are not able to handle the uncertain
OPF. A review of the literature indicates that there are some stud-
ies regarding the uncertain OPF, which are mainly classified as
probabilistic approaches [5], stochastic methods [6], and robust
techniques [7]. These techniques can also be categorized using
techniques for the realization of the uncertainty of random vari-
ables, i.e., scenario-based approach [8] and interval optimization
[9]. However, modeling different uncertainties, by using the
conditional value-at-risk (CVaR) as a risk measurement tool, is
of great importance [10].

Probabilistic optimal power flow (POPF), by considering the
security constraints in the presence of the uncertain load and
generation, has become an increasingly important topic in main-
taining the reliability of the power system [11]. This concept,
which is known as the uncertain-security constrained optimal
power flow (USCOPF), deals with the SCOPF in the presence of
different uncertainties in the power system. Although various
techniques have been suggested to solve this complex and non-
linear problem, one of the main challenges is to find a solution
that remains resistant to uncertainty, a topic which is known as
the robust security-constrained (RSC) OPF [12].

The literature review shows that there are several studies
conducted on SCOPF. A combination of preventive and correc-
tion control actions has been presented for the secured optimal
power flow (SOPF) in [13].

In Ref. [12], the SCOPF problem has been solved us-
ing a parallel distributed memory structure exploiting frame-
work, BELTISTOS-SC, to accelerate the SCOPF solutions over
other techniques, and based on applying a structure-exploiting
interior-point (IP) method.
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In [14], PC actions have been outlined in the DCSOPF prob-
lem by using the BD. In [15], a contingency partitioning ap-
proach based on the differential evolution algorithm (DEA) has
been proposed for the SCOPF problem, in both preventive and
corrective stages, and the simulation results on the IEEE 118-bus
system have been reported.

In [16], the SCOPF has been investigated in mixed AC/DC
grids considering AC/DC and DC/DC converters, and based
on no-linear models. Also, the case study results on the IEEE
14-bus system are detailed by the authors. Cao et al. [17] have
analyzed the impacts of distributed energy storage systems on
improving the power system reliability using an improved cor-
rective SCOPF. They modeled the current state of charge (SOC)
and the energy capacity in the suggested approach.

In [18], as the supplementary discussion of [13], the authors
analyzed the impacts of hybrid energy storage systems (HESS)
on keeping the power network stable, by applying enhanced
corrective SCOPF. They considered the CC actions in the pro-
posed model, which was solved by using improved Benders
decomposition (BD) technique.

Reference [19], as the supplementary work for the previous
research described in [14], has studied the SCOPF problem based
on the scenario-decomposition approach in multiple microgrids
based on some CC actions under uncertain generation and load
demand. The authors proposed an incentive-based method to
encourage the microgrids to cooperate with the main power grid
for post-contingency recovery.

Reference [20], has presented a robust decomposition-based
method for the generation dispatch of power systems, while
sustaining the transient stability based on stochastic modeling
of wind power generation. The proposed problem was modeled
as an augmented OPF considering differential-algebraic equa-
tions and uncertain variables, and by converting the stability
constraints to approximately-equivalent algebraic formulations.

The SCOPF problems were solved by applying a Hybrid
Canonical DE-Particle Swarm Optimization (hC-DEEPSO) in
[21]. The proposed algorithm was investigated on the IEEE 57-,
118-, and 300-bus standard systems.

An optimization technique based on the cross-entropy (CE)
method has been proposed to solve the stochastic SCOPF prob-
lem in [22]. The solution quality was demonstrated by applying
the suggested approach to the IEEE 57, and 300 buses, as the test
cases.

Solving the SCOPF problem, in the presence of conflicting
contingencies, has been addressed by applying a relaxing tech-
nique, either the set of control variables or operational con-
straints, in [23]. The SCOPF problem was solved by considering
the dynamic thermal rating (DTR) of transmission lines, in a
multi-objective manner, by applying an enhanced version of the
goal attainment technique [24].

To solve the SCOPF, a new fuzzy adaptive artificial physics
optimization (FAAPO) algorithm was adopted in ref. [25], by
considering wind and thermal power generators. The proposed
method was simulated on the IEEE 30-bus and Indian 75-bus
systems.

In [26], to reduce the dimension of the SCOPF problem, each
contingency was partitioned into three regions of internal, exter-
nal, and boundary. For the internal region, the relevant variables
would be more affected by the contingency. The external region
was the rest of the network, and the final region included some
buses at the external region connecting this region to an internal
one. The SCOPF equations were linearized, and the selected
variables and equations in the external region were omitted. Fur-

thermore, the case study simulations on the IEEE 39 and 118
buses were detailed.

Yang et al. [27] addressed a parallel method for solving the
interval DC SCOPF by considering demand uncertainties, and
by applying the interval optimization method. The mentioned
problem was transformed into two deterministic nonlinear pro-
gramming problems and solved by the alternating direction
method of multipliers (ADMM).

The SCOPF by considering critical contingencies, has been
investigated in [28] which aimed to minimize the total genera-
tion cost by applying an interior-point (IP) algorithm. The linear
sensitivity factors (LSFs) by using the Z-bus were modeled in the
proposed technique. Two contingency filtering methods to accel-
erate the iterative solution of the SCOPF, based on considering
preventive actions were demonstrated in [29].

Vaahedi et al. [30] proposed an approach for SCOPF and
VAr planning under normal and post-contingency conditions
considering the static for the security observing voltage profile
and flow constraints. They extended the proposed technique to
model dynamic security. An algorithm for solving the SCOPF
problem by applying evolutionary programming (EP) has been
proposed in [31].

The corrective SCOPF problem was solved by using an iter-
ative approach comprising four modules and by applying BD
[32]. The mentioned modules were considered only as a subset
of potentially binding contingencies among the postulated con-
tingencies, a steady-state security condition, a contingency filter-
ing technique, and an OPF variant to check the post-contingency
state feasibility.

In [33], a global optimization algorithm based on the La-
grangian duality has been proposed to solve the SCOPF problem
by applying two decomposition algorithms based on Benders
cut and the alternating direction method of multipliers.

The SCOPF problem in a large-scale power system was solved
by applying an iterative algorithm, based on the combination
of a contingency filtering scheme, and a network compression
method in ref. [34]. The proposed method was simulated on
a national grid with 2,563 buses and 1,297 contingencies, and
the European transmission network with 9,241 buses and 12,000
contingencies.

The ant colony optimization (ACO) and modified bacteria
foraging algorithm (MBFA) were applied to the SCOPF in the
presence of wind power and incorporated with the thermal
power plants, to minimize the operating cost, maintain a voltage
secure operation, and minimize the system loss [35].

A corrective SCOPF problem based on sparse optimization
techniques considering the DC power flow (DCPF) constraints,
aimed to produce a generation schedule that had a minimal num-
ber of post-contingency corrections, and the minimum amount
of total MW rescheduled was proposed by Phan et al. [36].

A flexible SCOPF, utilizing power router control in the
post-contingency timeframe, and considering the FACTS-based
power routers was proposed in [37]. Moreover, Jahan and Am-
jady [38] proposed a bi-level optimization approach to solve
the SCOPF problem in an AC network, considering the prohib-
ited operating zone, multi-fuel option, and valve loading effect
constraints.

The Lagrangian relaxation, and BD techniques were applied
to the corrective risk-based SCOPF problem in [39]. Both circuit
and system risks were considered in this study. A multi-agent-
based, fully distributed DC SCOPF approach in the presence
of DGs based on solving the first-order optimality conditions
through an iterative process was addressed in [40].
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In ref. [41], a robust DC-OPF technique based on applying
Taguchi’s orthogonal array has been proposed, in which the
probability of load and renewable energies have been mentioned.
The security constraints, or operation contingencies, are not
mentioned in the suggested approach. Also, the simulation
results of the suggested method on some cases up to 2,736 buses
have been addressed.

In [42], a framework to capture previously intractable op-
timization constraints and transform them into an MILP, by
using the neural networks in a deterministic power system, was
presented. The feasible space of optimization problems charac-
terized by different constraints was encoded to a neural network.
The ACOPF was used, and n-1 security and small-signal stability
were mentioned in the suggested model.

Velay et al. [43] introduced a fully distributed method to solve
the DC-SCOPF by considering the automatic primary frequency
response of generators after an incident via the alternating direc-
tion method of multipliers (ADMM).

As the literature review suggests, only a few studies, such as
[14, 19, 20] have addressed the RSCOPF problem. Also, only a
few studies have investigated the impacts of different uncertain-
ties such as uncertain load and wind power plant generation in
the problem. References [14, 19, 20, 25] are good examples for
this category.

One of the objectives of the present study is to investigate the
impacts of uncertain parameters based on the proposed method
and to determine the effect of different contingencies of line
and unit outages on the optimal operation cost (i.e., OPF) for
the secure operation of the power system. Based on this, it is
possible to perform an appropriate PC by classifying the effect
of each contingency.

The main novelties of this work, compared to other works in
this field (especially reference [14]), are as follows:

• Modeling the SCOPF by using the AC power flow (ACPF),
which is solved by applying the PSO algorithm due to the
fast convergence, for the first time for this type of problem

• Modeling the security constraints, directly and completely,
as one of the constraints in the optimization problem, with-
out any simplifications

• Introducing the most critical generation units and transmis-
sion lines, whose loss imposes the highest operating costs
on the network, based on applying the n-1 and n-2 security
criteria

• Modeling the wind power generation and demand load
uncertainties as a package by using the TOAT method in
order to decrease the run-time for solving the RSCSOPF
problem.

The remainder of this paper is organized as follows: The
second section details the objective function and the relevant
constraints regarding the SCOPF problem. In the third section,
the TOAT is investigated. The suggested method’s performance
is addressed in the fourth section by detailed case study simula-
tions on the IEEE 14-bus system. Finally, the last section presents
the main conclusions.

2. FORMULATION OF THE SCOPF

The purpose of OPF is to determine the optimal amount of
generations that minimize the cost of operation, by considering
the relevant constraints and security limits.

A. Objective function
The objective function is the cost of fuel for all generation units
as:

min ∑
i∈ng

(
aiP2

Gi + biPGi + ci

)
(1)

in which, PGi is the output power of unit i. Moreover, ai, bi ,and
ci are the cost coefficients for the i-th unit.

B. The constraints
The most important constraints in the OPF problem are pre-
sented as follows:

b1) Generation and demand load equality constraint The
most critical constraint in the power system is the balance be-
tween generation and load, as expressed in (2):

P = PG − PLoad + PRes (2)

where, P is the bus injection power vector, PG is the vector of
the generation power, PLoad is the demand load vector, and
PRes is the power generation vector by wind power plants. The
probabilistic form of Equation (2) is as follows:

P̃ = PG − P̃Load + P̃Res (3)

where, P̃, P̃Load, and P̃Res denote the probabilistic bus injection
power vector, the probabilistic demand load vector, and the
vector of probabilistic power generation by wind power plants,
respectively.

b2) ACPF model The most crucial subject in the real-power
systems is the ACPF model. Here, without simplification, the
ACPF model is detailed as follows:

Pi = |Vi|
n
∑

j=1

∣∣∣Vj

∣∣∣ (Gij cos ϕij + Bij sin ϕij

)
Qi = |Vi|

n
∑

j=1

∣∣∣Vj

∣∣∣ (Gij cos ϕij − Bij sin ϕij

) (4)

where, Pi represents the injection power for bus i, |Vi| denotes
the voltage magnitude of bus i, Gij, and Bij are the conductance
and susceptance value for line L, connected between buses i and
j, and ϕij indicates the phase angle difference between buses i,
and j.

PL = |Vi| |Vi|
(

Gij cos ϕij + Bij sin ϕij

)
− nijGij |Vi|2 (5)

where PL is the power flow of line L between buses i, and j and
nij is the per-unit transformer tap-ratio located at branch i-j.

Also, the main governing constraints of the ACPF are as:

PG ≤ PG ≤ PG, QG ≤ QG ≤ QG

|Vi| ≤ |Vi| ≤ |Vi|

nij ≤ nij ≤ nij

(6)

The generated active and reactive powers (PG, QG) should be
limited within the relevant minimum (PG, QG) and maximum
(PG, QG) values. The voltage magnitude for each bus (|Vi|)
is limited by the minimum (

∣∣∣Vi

∣∣∣) and maximum (
∣∣Vi

∣∣) values.
Also, the transformer tap-ratio (nij) is limited in the range of the
minimum (nij) and maximum (nij) values.

b3) System security constraints There may be many events in
a power system, a large number of which, or at least the most
probable ones, should be studied and analyzed such that the
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relevant overload conditions are mentioned by operators before
the occurrence of contingencies. The use of the generation shift
factor (GSF) method is one of the effective techniques in this
regard [44]. These coefficients show a relative change in the
transmission line power due to changes in the injectable power
and are approximately calculated by using DCPF. Generally,
these coefficients are calculated as follows:

hLi =
∆Pline

∆Pi
(7)

in which ∆Pline, is the change in the power flow on line L, due
to the change in the injection power of unit i. The GSFs can be
expressed in a general form by using the H-matrix, as follows:

Pline = HP (8)

PLine is the power matrix of the lines. The power flow on all the
lines should be within the allowable range, as follows:

Pline ≤ Pline ≤ Pline (9)

Pline = −Pline (10)

By placing (8) in (9), Equation (11) is obtained, as follows:

− Pline ≤ HP ≤ Pline (11)

By placing Equation (3) in (11):

−PLine − HP̃Res + HP̃Load ≤ HPG

≤ PLine − HP̃Res + HP̃Load

(12)

By selecting the non-zero entries of P̃Res, P̃Load, and PG, in (12),
the H matrix by multiplying each of them is converted into HRes,
HLoad, and HG, respectively.

Equation (12) can be re-written as (13), which is known as the
system security constraint.

−PLine − HResP̃Res + HLoadP̃Load ≤ HGPG

≤ PLine − HResP̃Res + HLoadP̃Load
(13)

3. THE TOAT

A powerful method to convert the uncertain values into de-
terministic ones is the TOAT, which is based on orthogonal
arrays. Using these orthogonal arrays, it is possible to select the
minimum number of uncertainties with minimal experiments.
Generally, the Leyu orthogonal array describes the arrangements
of e experiments with u uncertain parameters, in which each
parameter has y levels [45]. The smallest orthogonal array is
L423, which makes it possible to perform four experiments with
three double-level factors, such as those given in Table 1. In
the TOAT, the word factor refers to a random variable, and the
word level indicates the amount taken up from the probability
distribution.

Taguchi has presented different orthogonal arrays for differ-
ent numbers of factors and levels. The Taguchi orthogonal arrays
for two-level factors are L32231, L16215, L12211, L827, and L423.
For example, if 25 factors are mentioned in the problem, then
the L32231 should be selected, and the remaining six columns
should be ignored. TOAT converts the uncertain parameters
into certain ones in three steps, as follows:

Step one: Determining the number of levels for each factor

Table 1. The Taguchi orthogonal array L423 [22]

Experiment
Level for each factor

Factor A Factor B Factor C

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1

The first step in using the TOAT to solve a probabilistic power
flow problem is to determine the number of levels of each factor.
TOAT with two-level factors requires the least amount of calcula-
tions, while using three-level factors requires a long computing
time. For the same reason, here, the TOAT with two-level factors
is applied.

Step two: Determining the levels of factors
The next step in the TOAT is to determine the levels of factors.

It is always possible to set up two levels of a random variable
by using a probabilistic Gaussian distribution function. Here,
the load demand is modeled as the Gaussian probabilistic dis-
tribution function, and the two levels of the demand load are
assumed as µ + σ (as level one) and µ− σ (as level two). The
µ, and σ describe the mean and standard deviation values of
the Gaussian probabilistic distribution function, in that order.
The wind power generation by a wind plant is modeled using
the Weibull distribution function, and two-level experiments are
assumed to be as µ + σ, and µ− σ.

Step 3: Optimal experiment design
In the last step, an approximate solution to the probabilistic

power flow with the best performance index is obtained. It
should be mentioned that the term optimal does not imply the
optimization methods. An optimal experiment is achieved by
using the following three steps:

1) In the first step, a performance index is defined for each
experiment, as follows:

Yj =
NL

∑
L=1

∣∣∣ f jL − f ∗l
∣∣∣, j = 1, 2, 3, ...., N (14)

where NL denotes the number of branches, N indicates the
number of experiments, f jL represents the power flow on line L
obtained from the power flow calculations regarding experiment
j, and f ∗l indicates the nominal power flow on line L.

2) In the second step, the average effects of the levels of factors
on performance indicators are calculated. For example, in Table
1, including four experiments, the average effects of the levels
of factors are defined as the set of Equations (15), in which the
average effects of different levels of factors on the performance
indicators are defined as:

Ā1 = (Y1 + Y2)/2, Ā2 = (Y3 + Y4)/2

B̄1 = (Y2 + Y4)/2, B̄2 = (Y1 + Y3)/2

C̄1 = (Y2 + Y3)/2, C̄2 = (Y1 + Y4)/2

(15)

3) In the third step, the main effect of each factor on the
performance indicators is defined and is obtained by subtracting
the effect of the second level from the effect of the first one:

∆A = Ā2 − Ā1, ∆B = B̄2 − B̄1,

∆C = C̄2 − C̄1

(16)
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If the main effect of a factor is positive, the second level of
this factor is considered in the optimal experiments. When it is
negative, the first level of this factor is considered in the optimal
experiment.

4. SOLUTION METHOD

In this section, the solution algorithms and the methods which
are used for ACOPF, and handling the RSCOPF problems are
detailed. The ACOPF is solved by PSO, and the other problem
is run by using a mathematical-iterative based approach. Some
brief explanations on these issues are addressed below.

A. ACOPF by PSO
The ACOPF is a non-linear, and complex problem and is usually
solved by applying some heuristic algorithms. Here, the PSO
is employed to solve this problem. In the PSO, each particle is
an m-dimensional vector, where m is the number of optimiza-
tion parameters. Each particle has five properties: position,
position-corresponding to the objective function, velocity, best-
experienced personal, and global positions. The details can be
found in [46]. One of the most challenging issues regarding
the application of heuristic algorithms is setting the algorithm
parameters. As a general principle, tuning the parameters of
heuristic algorithms is a compromise between the run-time and
the accuracy of the solutions, and is performed by using a trial-
and-error procedure. As the number of iterations grows, better
answers are obtained over a longer run-time. However, this
trend will be reversed as the number of iterations decreases.
This is completely true for selecting the swarm size. Here, the
procedure is implemented for different setting parameters in var-
ious cases, and it is concluded that it will be possible to choose
an acceptable and logical compromise between run-time and
accuracy by selecting the setting parameter as: the maximum
number of iterations = 100, population size (swarm size) = 20;
inertia weight = 1, inertia weight damping ratio = 0.99, personal
learning coefficient = 2, and global learning coefficient = 2.

Fig. 1 illustrates a simple flowchart for PSO, which is used
for ACOPF.

B. The solution method of the RSCOPF problem
Fig. 2 depicts the flowchart of solving the RSCOPF problem
for n-1 and n-2 line, and unit contingencies, separately. As an
important note, the RSCOPF is run with the number of lines,
in the case of the n-1 contingency. Also, in the case of the n-2
contingency, the problem is run for a hundred scenarios. Each
scenario simultaneously defines the outage of two lines. These
scenarios are randomly generated according to the Gaussian
probabilistic distribution function. Furthermore, the RSCOPF is
run with the number of generation units (except for the reference
one) in the case of the n-1 contingency. The n-2 contingency is
run only for the outage of units #6 and #8.

5. CASE-STUDY SIMULATION RESULTS

The proposed algorithm is implemented using the MATLAB
software on the IEEE 14-bus system, which contains 11 demand
loads and five power generation units. Two wind power plants
are located in buses 2 and 3. Given that there are 13 random
variables (11 demand loads and two wind power plants), the
Taguchi orthogonal array of L16215, which includes 16 experi-
ments, is used. Levels one and two for wind power plants are
considered to be equal to zero and 40 MW, respectively. Also,
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Fig. 1. A simple flowchart of the PSO.

these levels for demand loads are supposed to be µ + σ and
µ− σ,respectively. The standard deviation is considered to be
15% of the mean value. Here, the mean value for each load is
selected as the standard load value based on the IEEE 14-bus
data [47]. Using the TOAT, the uncertainties are converted into
deterministic ones, and then the optimization problem consid-
ering the security constraints obtained by the Taguchi result is
investigated. Different results are presented below. To solve
the optimization problem, the PSO algorithm is applied due to
its advantages over the other optimization methods. To handle
the constraints, all of them are checked at each step of the algo-
rithm implementation. In the case of the violation of any of the
modeled constraints, the evaluation function or cost function is
selected equal to a very large number. Thus, in selecting the best
solution in each stage as the local best position or global best
position, the relevant cost function will be omitted.

A. Deterministic power flow (DPF)

When the uncertainties are converted into deterministic parame-
ters by the Taguchi model, the results are obtained in the form
of deterministic values, as shown in Figs. 3-7. The base of power
is 100 MW, the maximum number of iterations is 100, and the
accuracy for checking the ACLF convergence is assumed to be
equal to 0.0001.

The performance index of the deterministic power flow is
1.4579, which exceeds the performance indicators derived from
the 16 Taguchi experiments by TOAT.
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Fig. 2. The proposed flowchart for the RSCOPF problem.

 

Fig. 3. The voltage magnitudes for the deterministic power
flow.

B. RSCOPF

The results obtained by applying the deterministic results de-
rived from the Taguchi model are called a robust OPF. These
results with and without the relevant constraints are presented
in Tables 2 and 3, respectively. In addition, the convergence
curve of the PSO algorithm for the RSCOPF is depicted in Fig. 8.

By comparing Tables 2 and 3, it is observed that the optimal
operation cost while neglecting the constraints is less than the

 

Fig. 4. The voltage angles for the deterministic power flow.

 

Fig. 5. The injected power for the deterministic power flow.

 

Fig. 6. The active power for demand loads in the deterministic
power flow.

optimal operation cost while taking into account the constraints.
When there is no constraint, there is a more satisfactory solution
for the problem, and the solution may be smaller due to the cost
reduction.
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Fig. 7. The reactive power for demand loads in the determinis-
tic power flow.

 

Fig. 8. The convergence curve of the PSO algorithm for
RSCOPF.

C. Results of applying 16 Taguchi experiments on OPF by
TOAT

The results of 16 Taguchi experiments on the OPF problem are
given in Table 4.

By comparing the RSCOPF with the costs of the 16 Taguchi
experiment, it is found that the cost of the RSCOPF is smaller
than the other costs. The main reason for this is that it has
the most robust security constraint, which is very likely to be
violated.

D. The result of the n-1 contingency security analysis for
single-line outage

To check the n-1 contingency security, the RSCOPF is run by
considering a single-line outage in each step. The results are pre-
sented in Table 5, in which the costs are ranked in the ascending
order of cost.

Evidently, the most critical lines whose outage will result
in the highest cost increase are at first the line number one
(connected between buses 1 and 2), and then line number two
(connected between buses 1 and 5). Since these lines are both
connected to bus 1, bus 1 or the reference bus is the most critical.
It is necessary to prevent the outage of the lines connected to it
as far as possible.

Table 2. RSCOPF results

Generated Powers (pu)
Cost ($/hr)

PG1 PG2 PG3

1.15 0.385 0.3952 7,227.27

Table 3. Robust OPF while neglecting the constraints

Generated Powers (pu)
Cost ($/hr)

PG1 PG2 PG3

1.55 0.077 0.311 6,934.62

Table 4. Sixteen Taguchi experiments on OPF

Experiment No.
Generated Powers (pu)

Cost ($/hr)
PG1 PG2 PG3

1 1.09 0.778 0.382 7,414

2 1.095 1 0.395 8,405

3 1.454 1 0.399 12,976

4 1.515 1 0.399 13,653

5 1.127 0.46 0.396 7,472

6 1.128 0.638 0.396 8,200

7 1.082 0.978 0.397 9,485

8 1.082 0.978 0.4 9,531

9 1.156 0.635 0.398 8,278

10 1.152 0.687 0.399 8,492

11 1.072 0.852 0.399 9,937

12 1.091 0.896 0.399 10,209

13 1.2 0.288 0.211 7,432

14 1.197 0.306 0.26 7,695

15 1.243 0.236 0.367 7,990

16 1.244 0.284 0.394 8,295

E. The result of the n-2 contingency security analysis for
double-line outages

To check the n-2 contingency security analysis, two lines are
removed from the service at the same time; subsequently. The
RSCOPF is run, accordingly. To do this, 100 random scenarios
describing the simultaneous outage of two lines, are considered.
The results are ranked in the ascending order of cost. As a re-
sult, 20 random scenarios with the highest operating costs are
shown in Table 6. The nature of the line outage uncertainty
is completely different from the wind generation or load de-
mand patterns. The generation and load can be modeled as the
Gaussian probabilistic distribution functions, whereas the line
outage uncertainty cannot be modeled in this way. Therefore, to
handle the line outages’ uncertainty, the random scenarios are
employed.

As can be seen, the most critical line whose outage will result
in the highest cost increase is the line number one (connected
between buses 1 and 2). The preventive action controls should
be performed such that this line is not removed.
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Table 5. The n-1 contingency security analysis for the single-line
outage

No. of the faulted line
(From bus- To bus) Cost ($/hr)

5 (2-5) 7,150.99

4 (2-4) 7,168.57

3 (2-3) 7,205.93

9 (4-9) 7,227.66

8 (4-7) 7,228.36

16 (9-10) 7,228.43

19 (12-13) 7,228.66

15 (7-9) 7,229.59

10 (5-6) 7,229.73

18 (10-11) 7,231.37

17 (9-14) 7,232.22

12 (6-12) 7,233.53

20 (13-14) 7,233.87

11 (6-11) 7,239.25

14 (7-8) 7,240.07

13 (6-13) 7,252.53

6 (3-4) 7,265

7 (4-5) 7,398.91

2 (1-5) 7,617.90

1 (1-2) 9,080.79

F. The result of the n-1 contingency security analysis for
single-unit outage

To check the n-1 contingency security, the RSCOPF is run by
considering a single-unit outage in each step. The results are
given in Table 7, in which the costs are ranked in the ascending
order of cost.

The most critical generation unit whose outage will result in
the highest cost increase is generation unit #6. It is essential to
prevent the outage of this unit as far as possible.

G. The result of the n-2 contingency security analysis for two-
unit outages

To check the n-2 contingency security analysis, two generation
units (except for reference one) are removed from the service at
the same time; then, the RSCOPF is run accordingly. The result
is addressed in Table 8.

The cost function in this case is increased at least to ∼ 40%
more than the highest cost function of the n-1 contingency secu-
rity analysis for the single-line outage. This means that such a
situation should be prevented in the system as far as possible.

H. Discussion
Despite the multiplicity of methods proposed for this purpose,
it is not possible to numerically compare the results due to the
differences in the nature of the proposed methods. However,
to validate the results, the findings of different cases by the
proposed method are compared with each other in Table 9.

By adding the constraints to the problem, the cost function
will be increased by 5%. Also, considering the contingency secu-
rity analysis for line outages reveals that the cost function for the
n-2 case will be increased by at least 6.5% to 26%. Furthermore,

Table 6. The n-2 contingency security analysis for double-line
outages

No. of faulted lines
(From bus- To bus) Cost ($/hr)

2 (1-5) 19 (12-13) 7,616.75

2 (1-5) 18 (10-11) 7,617.59

2 (1-5) 20 (13-14) 7,619.55

2 (1-5) 12 (6-12) 7,620.46

2 (1-5) 15 (7-9) 7,637.56

13 (6-13) 2 (1-5) 7,639.67

3 (2-3) 2 (1-5) 7,653.37

19 (12-13) 13 (6-13) 7,685.78

13 (6-13) 17 (9-14) 7,722.71

12 (6-12) 13 (6-13) 8,244.37

7 (4-5) 3 (2-3) 9,054.87

1 (1-2) 17 (9-14) 9,078.94

4 (2-4) 1 (1-2) 9,081.28

1 (1-2) 6 (3-4) 9,096.28

1 (1-2) 3 (2-3) 9,104.55

18 (10-11) 1 (1-2) 9,637.04

20 (13-14) 1 (1-2) 9,709.03

1 (1-2) 11 (6-11) 10,001.11

7 (4-5) 1 (1-2) 11,155.54

1 (1-2) 10 (5-6) 11,455.35

Table 7. The n-1 contingency security analysis for single-unit
outage

Unit outage PG1 (pu) PG6 (pu) PG8 (pu) Cost ($/hr)

# 6 1.5472 0 0.4 10,075.18

# 8 1.1425 0.8 0 7,301.98

Table 8. The n-2 contingency security analysis for two-unit
outages

Unit outage PG1 (pu) PG6 (pu) PG8 (pu) Cost ($/hr)

# 6 and # 8 1.9775 0 0 13,955.063

mentioning the contingency security analysis for unit outages
demonstrates that the cost function for the n-2 case will be in-
creased by at least 40%. The results indicate the accuracy of the
proposed method.

The main advantages of the TOAT are its easy application,
high speed of uncertain problem solving, and acceptable accu-
racy when compared to the other probabilistic methods, espe-
cially the scenario generation techniques, by limiting the number
of solving the problem. Besides, the required run-time for all of
the other issues such as n-1 and n-2 contingency analysis is the
same for the proposed methods in the field of RSCOPF. Also, the
application of heuristic methods, such as PSO, assists in finding
more accurate and reliable solutions which cannot be handled
by the mathematical-based solutions in most cases. Of course, it
is noteworthy that the online application of this method requires
advanced computational methods such as parallel processing
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Table 9. Comparative analysis for different cases

Item Description Cost ($/hr)

1
ROPF without constraints 6,934.62

RSCOPF 7,227.27

2
n-1 contingency security analysis for single line outage Min: 7,150.99, Max: 9,080.79

n-2 contingency security analysis for double line outages Min: 7,616.75, Max: 11,455.35

3
n-1 contingency security analysis for single unit outage Min: 7,301.9787, Max: 10,075.1815

n-2 contingency security analysis for two unit outages 13,955.06

and the use of high-speed processing tools.

6. CONCLUSION

The application of the TOAT for analyzing load and wind power
uncertainties was discussed. Since the two-level Taguchi method
requires the least amount of OPF calculations compared to the
three-level Taguchi method, only two levels of each factor were
considered in the analysis. By using the TOAT, different uncer-
tainties were changed into traditional deterministic values, and
solving the relevant OPF problem led to the best performance in-
dex. Also, the RSCOPF problem was analyzed completely by ap-
plying the ACPF and by using the PSO algorithm. Finally, based
on (n-1), and (n-2) contingency security analysis, some useful
results were addressed. The TOAT is an economical, quick, sim-
ple, and feasible technique for designing high-quality processes
with less variance for experiments in defining the proper control
factors to achieve optimum results. The main disadvantage of
the TOAT is that the results are only relative and do not exactly
show what parameter has the highest effect on the performance
characteristic value. Some open issues which are currently the
subject of further research include solving the RSCOPF problem
by applying the information gap decision theory (IGDT), and
robust scenario-generation technique. Moreover, modeling the
outage probability of the lines can be an interesting topic in this
regard.
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