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Accurate electricity price forecasting gives a capability to make better decisions in the electricity market
environment when this market is complicated due to severe fluctuations. The main purpose of a predic-
tion model is to forecast future prices. For doing this, the predicted variable (as output) and historical data
(as input) should be close to each other. Machine learning is known as one of the most successful ways
of forecasting time series. Extreme learning machine (ELM) is a feed-forward neural network with one
hidden layer. Hence, in this paper, an extreme learning machine has been used for predicting electricity
prices in a medium-term time horizon. The real data of New York City electricity market has been utilized
to simulate and predict the electricity price in four seasons of the year. Finally, the findings are compared
with multi-layer perceptron (MLP) results, which prove the efficiency of the model. © 2020 Journal of Energy

Management and Technology
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1. INTRODUCTION

A. Motivation
In changing from the vertical structure of the power system to
the competitive system in a restructured system, the economic
transactions are traded based on power signals. These signals are
affected by price offering in the electricity market. The majority
of these price signals are produced in the day-ahead market.
It is very important for market actors and influential entities
to understand the severe fluctuations of electricity prices to
increase their incomes. Therefore, market participants try to
predict prices accurately [1].

B. Literature review
There are various methods to recognize and predict the behav-
ior of a complex system such as time series. In many complex
systems, especially nonlinear ones, it is impossible to use clas-
sical methods for prediction and control. These methods have
features such as; intelligence, knowledge, expertise, and abil-
ity to learn and adaptation with the environment [2, 3]. Many
methods have been examined in different time frames.

Different researches have been performed in a short-term
period. Multiple regression in [4, 5], variable time regression in
[6], Box-Jenkis model in [7] and time series CARCH in [8] have
been studied. Computational intelligence methods such as a
neural network in [9, 10] and fuzzy logic in [11] have been used.
In [12], a forecasting strategy has been suggested for real-time

electricity market using publicly available market data. This
study has used high-resolution data along with hourly data as
inputs of two separate forecasting models with different forecast
horizons. An intra-hour has also been considered to provide
accurate updates on price predictions. Reference [13] has pro-
posed a robust short-term price forecasting in the day-ahead
transactions. Accuracy and effectiveness have been improved
using a hybrid method for electricity price forecasting via artifi-
cial neural network and artificial cooperative search algorithm.
An adaptive hybrid model including variational mode decom-
position, self-adaptive particle swarm optimization, seasonal
auto-regressive integrated moving average and deep belief net-
work has also been presented in [14] for a short time horizon.
In addition, a compound method from time series and ANFIS
fuzzy logic has been suggested in [15]. In [16], a compound
method has predicted the market prices according to the pick
prices in a day.

In [17], long-term and medium-term prediction have been
done with a resolution of one hour. Reference [18] has deter-
mined the influence of out data on price prediction accuracy at
a specific time. This article considers a threshold for data and
removes out data for a correct prediction. In [19], one month
prediction has been done for planning. It is obvious that long
time predictions decrease investment costs. A long-term elec-
tricity price forecasting has been presented in [20]. The authors
have used an auto-regression with exogenous variables and its
non-linear counterpart; i.e., an auto-regression with exogenous
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variables and a neural network have predicted 728 days. A
method is presented in [21] using a combination of dual de-
composition and multi-objective optimization that is generally
constituted from data analysis, optimization, evaluation, and
prediction models.

Reference [22] has suggested a hybrid method of autoregres-
sive and Kernel for forecasting the spikes in a real-time market.
The method has been implemented in two stages. In the first
stage, the prices are forecasted using an autoregressive time
varying model, and in the second stage, a kernel regression is
utilized to estimate the price spikes.

Artificial neural networks are modern systems that are used
for computational methods in machine learning and in output
predicting of complex systems. The main idea of these systems
is inspired by biological neural systems for analyzing data, learn-
ing and making knowledge. The key element is to make new
structures for analyzing the system’s information. This system
includes many analytical and continuous elements called neu-
rons. The neurons are coordinated with each other to solve a
problem and transfer information with some synapses [3]. The
extreme machine learning (ELM) network is a kind of single
hidden layer feed-forward neural network that is very fast in
learning and generalizing its ability. This method has widely
been used in recent years in various research areas. For instance,
[23] proposes a hybrid model using extreme learning machines,
aiming to forecast wind speed data, and its effectiveness is ex-
amined by using real-world data. Reference [24] has studied
a carbon price prediction model utilizing a combination of the
time series of a complex network and ELM. The ELM has also
been used in aerospace science by detecting the fault of the air-
craft engine [25]. Moreover, fault diagnosis has been studied in
rotating machinery in [26].

C. Paper contribution
This paper investigates the prediction of medium-term electric-
ity price, while many papers have focused on short-term time
horizon (e.g., see, Refs. [4–7, 9, 10]), on long-term horizon (e.g.,
see, Refs. [19, 20]) or on spike prediction (Ref. [22]). Moreover,
contrary to popular thinking in which many researchers believe
that all the parameters should be trained in feed-forward net-
works ([9, 10, 13]), this paper randomly generates hidden nodes
(input layer weights and biases) and analytically determines the
output weights using ELM. In this paper, the ELM is used to
predict the electricity market prices. The main contribution of
this paper is running and adapting extreme learning machine in
the prediction of medium-term horizon of electricity prices. The
proposed approach has been implemented in New York City
real data, and the results have been compared with the MLP
neural network for evaluating the effectiveness of the proposed
model.

2. CREATING DATA SAMPLE FROM TIME SERIES

It is necessary to make a specific frame of the forecasting model
for analyzing the time series. The output of time series depends
on the previous times. Therefore, the specific times of the past
should be considered and recorded. For predicting time t, a
data-set is created based on times t− 1 to t− 4. Fi. 1 shows how
the data-set is made. The data are normalized first, and then
four inputs are utilized to define the output. At each time t, one
sample (including four inputs) is entered the system and one
output is generated. The main purpose is to design a model that
receives these four inputs and predicts the output. For instance,
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Fig. 1. Converting time series to a specific format for imple-
menting in the forecasting process.

in the first row, t5 is predicted using t1 to t4, and in the second
row, t6 is predicted by t2 to t5. In a similar way, t7 is predicted in
the third row and this process continues until the last time. The
block below the tables in the figure represents the dependency
of each output on the four previous times.

Some of the generated samples are considered to train the
parameters of the model, and the rest are taken into account
for testing purposes. The generated time series are recognized
and predicted using ELM. The input data are normalized in the
interval [-1,1] in order to have an equal effect of different values.
Mean square error (MSE), root mean square error (RMSE) and
mean absolute percentage error (MAPE) are used to assess the
forecasting process accuracy. Mathematical definitions of MSE
and RMSE are given as follows:

MSE =
∑N

i=1(yi − ŷi)
2

N
(1)

RMSE =

√
∑N

i=1(yi − ŷi)2

N
(2)

MAPE =
1
N

N

∑
1
| ŷi − yi

yi
| × 100% (3)

where yi is the electricity price at time i, ŷi is the predicted price
at time i and N is the number of samples.

3. MULTI LAYER PERCEPTRON

For introducing the MLP, the mathematical model of a biological
neuron is depicted in Fig. 2. This model is constituted of inputs,
weights, biases, and a function that yields the output. This figure
shows a three-layer network and can be extended to a multi-
layer structure to make the MLP network as described in Fig. 3.
The MLP is a neural network that includes at least three layers.
The basic form of the MLP consists of an output and a hidden
layer [27] and [28].

By involving kth pattern to the network in an incremental
learning manner, with considering n0 sample and j neuron in



Research Article Journal of Energy Management and Technology (JEMT) Vol. 4, Issue 2 22



0w

 
nx

1x 1w

2w

nw

2x

1

f

Bias

Activator function

Net Output

In
p
u
t sig

n
al

Weights

Fig. 2. Mathematical model of a biological neuron and its com-
ponents.

the first hidden layer, the network net in layer one is calculated
as follows [27]:

net1
j (k) =

n0

∑
i=0

w1
ij(k)xi(k) (4)

where wij1(k) is the weight of input i and neuron j of the first
layer, and xi(k) is the input i of pattern k. The output of layer
one is recalculated by implementing an activator function as
follows:

O1
j (k) = f 1

j (net1
j )(k) (5)

where O1
j (k) is the output of neuron j in the first layer; f (.) is the

transfer function, which changes the environment of inputs into
either linear or non-linear environment. This transfer results in
a better decoupling of input data and making more conceptual
data. There are various activator functions including threshold,
hard limit function, piece-wise linear function, sigmoid function,
linear function, tangent sigmoid, etc.

By comparing the actual target (T) and the forecasted output
by MLP (O2) in stage k, the error function ej(k) is defined as
follows:

ej(k) = (Tj(k)−O2
j (k)) (6)

In this equation, there are m error functions (equal to number of
outputs). Taking into account the mean value, the error function
is represented as follows:

E(k) =
1
m

m

∑
j=1

(ej(k))2 (7)

where E(k) is the mean value of the error. The algorithm of train-
ing middle layers using gradient decent with partial derivatives
is given as follows:

w2(k + 1) = w2(k)− ηw2 ·
∂E

∂w2 (8)

∂E
∂w2 =

∂E
∂e
× ∂e

∂o2 ×
∂o2

∂net2 ×
∂net2

∂w2 =

e(k)(−1)( f 2(net2(k)))(O1(k))
(9)

Therefore, the weights w1 and w2 are also updated as follows:

w2(k + 1) = w2(k) + ηw2 · e(k) · f ′(2)(net2(k)) ·O1(k) (10)
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Fig. 3. MLP network [27].

w1(k + 1) = w1(k) + ηw1 · e(k) · f ′(1)(net1(k)) · xi(k) (11)

where ηw1 and ηw1 are the learning rates.
The main steps of the MLP are summarized as follows:

Step 1: determining input data.
Step 2: normalizing input data.
Step 3: creating a time series.
Step 4: determining input and target for train and test data.
Step 5: calculating the output of the network 1.
Step 6: calculating the output of network 2.
Step 7: calculating error.
Step 8: updating weights (w1 and w2) based on the learning rate
and the error in each epoch.
Step 9: repeating step 5 to 8 until reaching the number of epochs.

4. EXTREME LEARNING MACHINE

Feed-forward neural networks have been used in many fields
due to their properties. A single hidden layer feed-forward
neural network (SLFN) with at most N hidden neurons and
almost any nonlinear activation function can learn N distinct
observations at function approximation problems, where N is
the number of samples per data-set. All the parameters of the
SLNF need to be tuned in almost all traditional learning algo-
rithms. As the number of hidden layers increases, the number
of training parameters and their training time increase. Initial
parameters may also not be well trained. However, in many
gradient-based learning algorithms, the problem is being many
iterative learning steps, converging to a local minimum and
slow learning process. Therefore, there is a need to provide a
fast learning algorithm in SLNFs. Contrary to popular thinking
in which many researchers believe that all the parameters should
be trained in the feed-forward networks, one may generate in-
put weights and first hidden layer biases randomly. Therefore,
an extreme learning machine has been proposed to solve the
mentioned issues [29]. Extreme learning machine algorithms
can be easily implemented. These algorithms also tend to reach
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Fig. 4. ELM network [29].

the smallest training error, obtain the smallest norm of weights
and run extremely fast, compared to the other popular SLFN
learning algorithms. Extreme learning machine has resolved the
problems of descending gradient training based feed-forward
neural networks. Extreme learning machine shows that the
hidden layer can be produced randomly. In order to better un-
derstanding, consider a single layer MLP network in which the
first layer learns. In fact, the ELM is like the MLP network but its
layer is produced randomly, and only the second layer (output
layer) is trained. Assume that the input layer with n dimension
is related to the hidden layer of ELM with dimension S as shown
in Fig. 4, so the output of the network takes the following form:

fN(x) = ∑
i=1

Nβihi(x) = h(x)β (12)

where β = [β1, β2, ..., βN ]T is the weight of the output layers
that connects the hidden layer to the output layer. h(x) =
[g1(x), g2(x), ..., gN(x)] is the output of the hidden layer nodes.
For n training samples, the following equation is defined for the
ELM:

Hβ = T (13)

where T = [t1, ..., tS]
T is the relative labels of target and H =

[hT(x1), ..., hT(xS)]
T is the matrix of the hidden layer. We can

compute beta weight as follows:

β = H†T (14)

where H† is the Moore-Penrose matrix. Fig. 4 shows ELM struc-
ture with related weights. It should be noted that in addition
to the difference in learning, the other difference between ELM
and MLP methods is the utilization of the least squares error
instead of gradient descent to decrease the error in network
training. The training of algorithm in ELM is only done in neu-
ron weights of the output or the second layer. The β parameter
in ELM is equivalent to w2 in MLP. In contrast to the MLP, the
first layer weights w1 is obtained randomly. The weights of the
output/hidden layer in ELM are calculated using the least mean
square (LMS).

The steps of implementing ELM are similar to the MLP which
was mentioned in Section 3. There are just two differences such
that, the hidden layer output matrix H and β are calculated
instead of w2 and w1 is generated randomly.

5. SIMULATION RESULTS

The real data of electricity market of New York City in 2017
have been simulated to evaluate the efficiency of the proposed
model [30]. The data of one month of each season has been
selected to show the ability of the model in dealing with different

0 100 200 300 400 500
-1

-0.5

0

0.5

1
Train Data

Outputs
Targets

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1
R = 0.94119

0 100 200 300 400 500
-1

-0.5

0

0.5
MSE = 0.013097, RMSE = 0.11444

Error

 = 2.0437e-06,  = 0.11457

-0.6 -0.4 -0.2 0 0.2 0.4
0

20

40

60
Error
Error

Fig. 5. Results of training of ELM in February.

patterns. The selected months are February, May, August, and
November. The model is made using four previous data to
predict the current time as mentioned in Section 2. A total of
70% of the data are used for training purposes and the rest for
testing. The number of hidden neurons is considered to be 15,
and tangent sigmoid function is used for the transfer function.
The results related to training and test of February prices are
depicted in Figs.5 and 6. The figures include the output and
target, regression, error value and normal distribution function
of error value. The value of regression of training and test in
February are, respectively, 0.942 and 0.966, demonstrating the
high accuracy of the ELM. Moreover, the value of the error
is very small and the corresponding MSE verifies this issue.
In addition, it can be seen that the target and output are very
close due to the well tracing of the target by output. Similarly,
the values of regressions in other months are greater than 0.93
in both training and testing, which shows the high capability
of the proposed model (see Figs. 7 - 12). Comparing these
figures shows close values for training regression. The regression
values are, respectively, 0.941, 0.938, 0.983 and 0.961, meaning
the best performance in August and the worst in May. Indeed,
the difference in regression values refers to the complexity of the
prices pattern. As a result, the minimum value of the mean error
occurs in August (0.0697) and the maximum error in May (0.123).
Regarding the test results, the regression values for February,
May, August and November are, respectively, 0.965, 0.954, 0.979
and 0.962, showing the acceptable performance of the ELM in
all months. High accuracy of the ELM leads to low values of
the mean errors, which are, respectively, 0.087, 0.123, 0.0793
and 0.0957. Additionally, the targets and outputs are very close
leading to small values of an errors in the figures.

It is obvious that, the efficiency of each model can be analyzed
by comparing to other well-known models. For this purpose,
the forecasting process has been conducted by a multi-layer
perceptron neural network with the data given in Table 1. The
input data are similarly normalized in the interval [-1,1], and
the tangent sigmoid has been taken into account as the activator
function. There are 168 test data (one week) and the rest are the
training data.

The results of forecasting prices in the aforementioned
months are obtained and the test results are shown in Figs. 13 -
16 and Table 2. One week (168 hours and seven days) is depicted
for each month as the test data. For instance, there are six similar
days in February and one different day. All days have been
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predicted with an acceptable accuracy and better performance
of ELM is visible comparing to the MLP. For a better understand-
ing, the picture has been magnified; the overall better prediction
of ELM can then be verified. Concentrating on the sixth day, it
is clear that this day has also been forecasted as well. Regarding
May, it should be noted that more fluctuations are visible in peak
hours in comparison with the other months. This month has
been predicted properly. This means that the values of the target
and output are very close and similar in six days of the week. It
is worth discussing two challenging days of the first day with the
lowest prices and the fourth day with the highest prices in the
week. The presence of two different patterns in one week makes
the prediction more difficult. The proposed ELM can handle this
difficulty by well tracing the target. There is a simple pattern
in August prices while first three days are different compared
to the last four days. All these simplicity and differences have
been forecasted with high accuracy, and comparing it with MLP
verifies this point. The only weakness of the forecasting process
by ELM and MLP in this month is the sharp points, which are
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similar to semi-spike points. There is less difference between
the peak and off-peak hours in November as the cold month of
the year. In most days, there is only one peak per day, which
makes the prediction simple although this is a different pattern
comparing to other months. However, the ELM can predict a
different pattern properly. The superiority of the ELM over MLP
can be seen in the figure, again.

The quantitative comparison of ELM and MLP has been pro-
vided in Table 2. The RMSE and MAPE of the ELM in all months
are lower than those of the MLP. For instance, the RMSE of train-
ing for MLP and ELM are, respectively, 0.1244 and 0.1141, and
these values are 0.1041 and 0.0887 for the test data. However,
the main superiority of ELM is its computational time showing
its high speed.

Here, for showing the dependency of the ELM training on
the previous samples, which were mentioned in Section 2, a
sensitivity analysis is conducted. The results of RMSE with
respect to the four states of t− 1 to t− 6 are given in Table 3. The
best results have been obtained when the four previous samples

Table 1. Characteristics of MLP

number of inputs number of outputs neuron of hidden layers ηw

2 4 1 0.05

epoch normalization interval Train percent training algorithm

100 [-1,1] 0.75 Decent gradient

Fig. 13. Comparing the target and output of ELM and MLP in
February.
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Fig. 14. Comparing the target and output of ELM and MLP in
May.
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Fig. 15. Comparing the target and output of ELM and MLP in
August.
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Fig. 16. Comparing the target and output of ELM and MLP in
November.

(t− 4) are taken into account, while the results of t− 2 to t− 6
are very close showing a saturation in error reduction. On the
contrary, the worst results are obtained when only one of the
previous samples is considered. To select the best number of
samples, the try and error method should be done. It is because
the nature of the input data are different in each time series.
Here, the best is with t− 4 while in another problem the best
result may be with lower or more than four previous samples.

6. CONCLUSION

In this paper, an extreme learning machine was used for
medium-term electricity price forecasting. The electricity mar-
ket price data of the New York City market was used as the
data-set. These data were utilized in both training and testing.
The data, at first, were converted into a specific time series in
which four previous hours were taken into account to predict
the current time. In order to show the capability of the proposed
model, a comparison was made between the proposed model
and the MLP neural network. The lower RMSE in both training
and testing demonstrates the superiority of the ELM. Moreover,
dealing with various patterns in different months verifies the
efficiency of the ELM in facing with every time electricity prices.
In addition, the short computational time shows the high speed
of the ELM.

Table 2. Comparing the results of ELM and MLP

MLP ELM

February

RMSE train 0.1244 0.1141

RMSE test 0.1041 0.0887

MAPE train 94.2 89.73

MAPE test 86.03 84.35

Time (s) 57.61 0.189

May

RMSE train 0.1580 0.1501

RMSE test 0.1329 0.1312

MAPE train 299.8 276.4

MAPE test 178.2 144

Time (s) 59.81 0.196

August

RMSE train 0.0815 0.0652

RMSE test 0.0897 0.0737

MAPE train 70.01 56.39

MAPE test 45.18 40.78

Time (s) 59.54 0.181

November

RMSE train 0.1209 0.1123

RMSE test 0.1041 0.0955

MAPE train 84.7 76.97

MAPE test 106 72.28

Time (s) 58.2 0.207

Table 3. Comparing the results of ELM and MLP

No. samples

Action 1 2 3 4 5 6

February
train 0.138 0.1165 0.1158 0.1141 0.1149 0.1175

test 0.1528 0.1101 0.0994 0.0887 0.0942 0.0977

May
train 0.1699 0.1568 0.1538 0.1501 0.1505 0.1501

test 0.1458 0.1331 0.1339 0.1312 0.1294 0.1344

August Train 0.0.1027 0.0731 0.0718 0.0652 0.0688 0.0689

Test 0.1040 0.0819 0.08 0.0737 0.0781 0.0778

November Train 0.1420 0.1178 0.1176 0.1123 0.1153 0.1133

Test 0.1318 0.1047 0.1092 0.0955 0.1002 0.0986
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