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The excitation system is one of the most important components of a power plant. The network operator
awareness of excitation system parameters is vital for accurate and efficient power system dynamic studies
and optimal retuning. In this paper, the use of KFs for estimating generator excitation system parameters
is proposed. The CKF is reformulated and developed for this purpose. A step disturbance in the reference
voltage of the UNITROL 6800 excitation system -manufactured by ABB- is used to confirm the proposed
method. The simulations are established based on a real case in Iran’s grid, and the results are compared
with the metaheuristics such as GA and PSO which have been widely employed in literature since now.
The case studies indicate that the proposed method is more accurate and robust than the optimization
algorithms, not only from mean value point of view but also from statistical point of view. Moreover, it
is much more helpful to identify the parameters whose actual values are needed for optimal retuning. ©
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NOMENCLATURE

Acronyms
PMU Phasor measurement unit
KF Kalman filter
AVR Automatic voltage regulator
CP Cubature point
PSS Power system stabilizer
GA Genetic algorithm
PSO Particle swarm optimization
PRBS Pseudo-random binary sequence
HMI Human-machine interface
EKF Extended Kalman filter
CKF Cubature Kalman filter
UKF Unscented Kalman filter

Matrices and vectors

x(t) The vector of state variables
u(t) The vector of input variables
v(t) The noise vector of the process

y(t) The vector of output variables (vector of measurement)
w(t) The noise vector measurement signals
R, Q Covariance of process and signal noise
I Unit matrix
x The vector of random variables with given mean value and

covariance (CPs vector)
p The error covariance matrix
X The square root error covariance matrix
A Submatrix of square root error covariance matrix
B Submatrix of square root error covariance matrix
_xk The vector of CPs average values
yk The vector of measurement points
_yk Average of sample points of measurement

Pk
xy Cross covariance of CPs

Pk
yy The covariance of sample points of measurement

Kk The gain of CKF

Parameters and functions

f Transition function
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h Transition function
∆t The sample time of signals
k The counter of KF algorithm iterations
n The number of state variables
ξi The i-th weight coefficient
U The standard step function
N The number of samples of measured signals
Vre f AVR reference voltage
Vf Excitation voltage
Vt Generator terminal voltage
Vg Feedbacked generator voltage in AVR
Vl The output signal of lead-lag compensator in AVR
Ka Gain of AVR
Ta Time constant of AVR
Tb Parameter of the lead-lag compensator
Tc Parameter of the lead-lag compensator
Kg The gain of the generator model
Tg Time constant of the generator model
Kr The gain of generator voltage feedback
Tr Time constant of generator voltage feedback
OF Objective function
VReal

gk The k-th sample of the measured generator voltage signal

VSim
gk The k-th sample of the simulated generator voltage signal

xij
m The j-th component of i-th particle’s position in m-th iteration

of PSO
vij

m The j-th component of i-th particle’s velocity in m-th iteration
of PSO

w Inertia weight in PSO
c1 Positive constant as a learning factor in PSO
c2 Positive constant as a learning factor in PSO
rand A random number within (0,1)
xm

pbest,ij The j-th component of i-th previous best particle’s posi-
tion in m-th iteration of PSO

xm
gbest,ij The j-th component of i-th global best particle’s position

in m-th iteration of PSO
rm The mutation rate of GA
rc Crossover rate of GA
Nprn Number of all the parents in GA
Nprt Number of all the particles in PSO

1. INTRODUCTION

In terms of operation and control, the power grid is the largest
and most difficult man-made system. Several hundred gen-
erators send their power to the interconnected transmission
and distribution networks and thousands of electrical loads are
connected to these networks. Therefore, determining stability
margins and knowing how the power system reacts after each
small or large disturbance is the main concern of power grid
researchers, engineers, and operators [1].

During disturbances, numerous studies should be performed
on the power system knowing the probable reactions of the
power system and anticipating necessary measures to avoid crit-
ical situations. These studies need modeling of power systems
and their components such as power plants. Dynamic study and

simulation of power grid largely depend on equipment informa-
tion of power plant components such as a generator, excitation
system, governor, Power System Stabilizer (PSS) and etc. The
use of inaccurate information in the decision-making process has
great undesirable effects on network operation and planning.

Furthermore, the lack of information about the model and its
parameters forces the power engineers to make conservative de-
cisions in power system operation. This can lead to no-optimal
use of equipment and assets [2]. Lack of technical information in
power plant documents, existence of typical information about
a number of parameters, changes in parameters during com-
missioning and operation, and replacement and depreciation
of power plant equipment are sufficient to justify using the pa-
rameters’ estimation and identification methods, which are to
be employed in dynamic studies [3].

In [4–6], the effect of systems models and their parameters are
stated in some power system studies. One of the most important
control systems of a power plant is the excitation system that
so far less attention has been paid to its various identification
aspects. In addition to terminal voltage control under normal
conditions, excitation system has a significant effect on maintain-
ing the unit’s stability in transient conditions. Besides, unlike
the generator parameters, which usually remain unchanged dur-
ing operation time until maintenance is performed, the plant
operator can change excitation system parameters in various
conditions. The network operator awareness of these parameter
changes is vital to the success of dynamic studies. Due to the
development of measuring devices and also introduction of new
and more accurate estimation methods, it would be helpful to
conduct more studies in the identification of excitation systems
parameters. There are different methods to verify the model and
to identify excitation system parameters. One of the most com-
monly used methods is to compare the simulated behavior of the
system with its actual behavior after a disturbance event. Gen-
erally, there are three types of test to identify excitation system
parameters [7, 8]:

• Offline test: In this test, the unit is out of service, and the
excitation system is fed by an external power supply. The
subsystems are separated from each other, and the tests are
performed separately to find the transfer function of each
section. After identification of each subsystem, a complete
model is formed by combining the transfer functions. Then
the model is verified as a closed-loop.

• Open circuit test: In this test, the generator is disconnected
from the grid, and its speed and voltage are set to the nomi-
nal values. Open circuit test usually involves measuring the
parameters of excitation system and generator in steady-
state, dynamic tests of the closed-loop excitation system,
and dynamic tests of limiters (by restricting the range of
limitations).

• Online data-based test: In this test, the generator is con-
nected to the grid and generates different active and re-
active powers. Internal disturbances (such as a change in
reference value of excitation voltage), external disturbances
(such as changing the tap position in transformer or discon-
necting a line), and information captured from grid actual
events can be used in the identification process.

Performing offline and open circuit tests requires disconnect-
ing a unit from the grid, and the power plant owner may lose
the revenue from energy sales. In addition, though these tests
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may have a high risk for damaging equipment, they can be per-
formed during the generator operation, i.e. the conditions which
are desirable for unit operators.

There are several methods to identify the parameters of the
system under test. Among these, the methods based on heuristic
algorithms, e.g. Genetic Algorithm (GA) and Particle Swarm
Optimization (PSO) are used widely in the literature.

In [9–14], optimization methods based on metaheuristics
were used for identification of excitation system parameters.
In [9], the GA is employed for parameter identification of the
excitation system, while an improved adaptive GA is used in
[10]. The GA is also used in [11] for identifying the excitation
system beside the synchronous generator parameters. The au-
thors in [12] employ the GA to identify the parameters of the
excitation system and synchronous generator of a steam power
plant. In addition, the generator’s excitation system is identified
based on PSO algorithm in [13–15]. These metaheuristics are
able to obtain several different sets of parameters, which based
on those parameters the measured and estimated signals are
in close agreement. In this way, the defined error as objective
function is minimized and the algorithm is easily implemented.
However, the purpose of parameters’ identification is to find
the exact parameters that have been set on the system and may
be re-adjusted in the operation period. Therefore, the results of
metaheuristic-based identification are not reliable for optimal
re-tuning the parameters of the Automatic Voltage Regulator
(AVR).

In addition to the employed method, the type of inputs is an
important step in the parameter identification process. This is a
vital step for detecting all available modes in the system. Signals
recorded by measurement devices, as the inputs of identification
algorithms, can be obtained through the different kinds of dis-
turbances. In [16] information of online planned disturbances
(a step input in excitation system reference or a planned unit
outage) and unplanned disturbances are used for parameters’
validation and identification. This reference suggested step test
data to identify the parameters of the excitation system and fre-
quency variation’s data for estimation of turbine and governor
parameters.

In [9, 13, 17], the Pseudo-Random Binary Sequence (PRBS)
signals were used as input in the identification process. PRBS
signals are the most appropriate signals for parameter identifica-
tion. However, due to lack of comprehensive use of the PRBS
generators in practice, and also lack of permission to inject the
signal at the reference voltage point/or other points on the exci-
tation system in private power plants, using of PRBS signals in
excitation system parameter’s identification is very limited.

Nowadays, by the development of Phasor Measurement
Units (PMUs) in power networks, the use of unplanned inputs or
sudden network disturbance’s data on the identification process
attracts more attention. In [17, 18], the identification was done
by the network’s disturbances, which have not caused the unit
instability. The authors stated that the parameter’s identification
in actual conditions is precisely what the network operator and
planner deal with. In [19], the HV side frequency and 3-phase
voltages signals that were measured by PMU are employed for
identification. Amplitude and damping of oscillation have been
considered as an indicative factor between measurement and
simulation values mismatch. Due to several unknown parame-
ters, a sensitivity analysis method was first done to extract the
most effective parameters in the outputs. Then, the parameters
were identified using a trial-and-error method based on the au-
thor’s knowledge about the system. In the research, the least

square error method is employed for optimization. In [16], some
limitations in measurement, sampling rate and optimal location
are announced as PMUs weak points. Furthermore, during a
disturbance, the plant may be unavailable because of overhaul
commitments, and the information will then be lost.

In [20, 21], an online method called Hybrid Simulation is
proposed in which actual measurements and simulation data
are combined to validate and identify the power system model
and parameters. The authors in [17, 22] stated that the major
problem in identification by real events is to create pre-event
conditions for the bulk power system.

Overall the main challenges of excitation parameters identifi-
cation in real conditions are summarized below:

• The actual tests are performed when the generator is con-
nected to the electric grid i.e. online conditions; hence, the
intensity and frequency of test disturbances are limited.

• There are some inaccessible points for signal measurement
(especially in old power plants).

• The hardware-implemented parameters cannot be read via
Human Machine Interface (HMI) even in modern excitation
systems.

• Some parameters may be changed during a several-year
operation; hence, the manufacturer documents are not com-
pletely reliable.

• There are several unknown parameters simultaneously for
identification.

• There may be a number of candidate parameters sets, all of
which minimize the overall error.

Consequently, it is required to use a powerful algorithm to
overcome the above problems. In this paper, it is proposed to
use the Kalman Filter (KF) for generator’s excitation system pa-
rameter identification under online test conditions. The KF is
commonly used for state estimation in power systems; however,
it is reformulated and applied here for the excitation system
parameter’s identification. The proposed methodology is com-
pared with the well-known metaheuristics considering a real
case study in Iran. The novelties of this paper which distinguish
it from the previous works are as follow:

• The KF is reformulated and used for the excitation system
parameter’s identification.

• The correlations between the AVR and exciter parameters
are taken into account considering differential equations in
a robust identification.

• The proposed method is compared with the well-known
metaheuristics using statistical analysis.

The rest of the paper is organized as follows: Section 2 describes
and formulates the proposed method based on Cubature Kalman
Filter (CKF). The excitation system model and metaheuristic-
based methods are presented in Sections 3 and 4, respectively.
The case studies and simulation results are shown and discussed
in Section 5. Finally, the concluding remarks are stated in Section
6.

2. IDENTIFICATION METHOD BASED ON KALMAN FIL-
TER

KF is commonly used for state estimation in the power system
[23–25], while it is used here for the excitation system param-
eter’s identification. In this way, the unknown parameters are
assumed as state variables along with the states of measuring
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signals. This process is carried out by adding the unknown pa-
rameter array to system equations. There are several types of
KFs such as Extended Kalman Filter (EKF), Unscented Kalman
Filter (UKF) and CKF [26], all of which contains the following
steps:

1. Selection of sample points and calculating the weight coef-
ficients;

2. Prediction; and,
3. Correction of estimates.

The main difference between the aforementioned types of KF
is in Step 1. In this paper, the CKF, as the newest version of KFs,
is used for parameter identification. The CKF was proposed in
2009 to step up the UKF performance using spherical-radial cu-
bature rule [27]. The CKF uses an even number of sample points
called Cubature Points (CPs) with equal weights. These points
are uniformly distributed on ellipses centered at the origin.

In order to employ the CKF for identification, it is firstly,
required to define the nonlinear dynamic system equations, as
shown in Eq. (1). x(t) = f [x(t) · u(t) · v(t)]

y(t) = h[x(t) · u(t) · v(t)] + w(t)
(1)

where the covariance of v(t) and w(t) are respectively represented
with Q and R. It is noted that Q covers the modeling error of the
system.

In real conditions, the measurement signals are discrete ar-
rays. Hence, the continuous equations in Eq. (1) are rewritten in
discrete form as follows: xk = xk−1 + f [xk−1 · uk−1 · vk−1]∆t

yk = h [xk · uk · vk] + wk

(2)

Similar to the other types of KFs, the CKF is a recursive
algorithm that predicts the conditional expectation of the states
given all observations up to the current time. The measurement
signals are used to correct the prediction at each time step.

The first step of KF, in fact, contains the initial calculations
required for the next steps. In the beginning (when k=1), the
error covariance is assumed to be an nn unit matrix, according
to Eq. (3).

Pk
xx,n×n = In (3)

In addition, the weight coefficients are calculated using Eq.
(4):

ξi =
1

2n
√

n(−1)U(i−n− 1
2 ), i = 1, 2, . . . , 2n (4)

where the number of weight coefficients is twice of the number
of state variables.

In the prediction process, firstly, the square root error covari-
ance is calculated using the following equation:

Xk
n×2n =

[
Ak

n×n|Bk
n×n

]
(5)

where

Ak
n×n =x̂k

n×1I1×n + ξiP
k
xx,n×n

i = 1, 2, . . . , n
(6)

Bk
n×n =x̂k

n×1I1×n + ξiP
k
xx,n×n

i = n, n + 1, . . . , 2n
(7)

Then, it is required to predict all the candidate state variables
employing the dynamic model, which is obtained from the dis-
crete state equations of the excitation system under study. Here,
the set of state variables is a combination of recorded signals as
well as the controller parameters.

For every state variable, there are 2n candidate states which
are updated through this step. With respect to the predicted
states i.e. updated states, the outputs of the system are deter-
mined using Eq. (8).

xi
k+1 = f

(
xi

k, uk, wk

)
, i = 1, 2, . . . , 2n (8)

Afterward, considering the predicted outputs, it is feasible to
calculate the related mean values and covariance according to
Eqs. (9) and (10), respectively.

x̂k =
1

2n

2n

∑
i=1

xi
k (9)

Pk
xx,n×n =

2n

∑
i=1

1
2n

(
xi

k − x̂k

) (
xi

k − x̂k

)T
+ Qk−1 (10)

Due to the updated error covariance in Eq. (10), the square
root error covariance is recalculated using Eqs. (5)-(7). Subse-
quently, the new measurement points are predictable according
to the following equation:

yi
k = h

(
xi

k, uk, vk

)
(11)

At the end of the prediction step, the mean value and co-
variance of the predicted measurements as well as their cross-
covariance, sample points of state variables and measurements
are estimated using Eqs. (12)-(14).

ŷk =
1

2n

2n

∑
i=0

yi
k (12)

Pk
yy,n×n =

2n

∑
i=1

1
2n

(
yi

k − ŷk

) (
yi

k − ŷk

)T
+ Rk (13)

Pk
xy,n×n =

2n

∑
i=1

1
2n

(
xi

k − x̂k

) (
yi

k − ŷk

)T
(14)

In the correction step, the estimated results can be improved
thanks to the availability of the actual measurements. In this
way, the outputs of Eqs. (13) and (14), i.e. Pk

yy and Pk
xy, are used

to determine the Kalman gain in k-th iteration, as shown in Eq.
(15).

Kk = Pk
xy,n×n

[
Pk

yy,n×n

]−1
(15)

Finally, this gain is employed to update the estimated states
and the covariance matrix, with respect to Eqs. (16) and (17),
respectively.

x̂k+1 = x̂k + Kk [yk − ŷk] (16)

Pk+1
xx,n×n = Pk

xx,n×n −KkPk
yy,n×n [Kk]

T (17)

The prediction and correction steps are consecutively iterated
for N times to converge to the final parameters. Another im-
portant point to note is that process and measurement’s noise,
i.e. Q and R matrices, are calculated by trial and error. Some
researchers believe that, due to the uncertain nature of system
states, the process noise cannot be measured. Therefore, offline
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Fig. 1. The arrangement of combined cycle power plant’s units
under study.

data can be used for calculating the process noise matrix. The
initial values of Pxx matrix is not important because the iterative
process will correct the values of this matrix. In this paper, Q
and R matrices are calculated using the GA. For this purpose,
in addition to estimate unspecified parameters of the excitation
system, measured signals are also re-estimated for total duration
of estimation. The GA calculates the values of Q and R matrices
in a way that measured and estimated signals are consistent
with each other. The GA tries to fit the measured signal and
it is estimated using a least-square error algorithm as a fitness
function. The arrays of Q and R matrices are defined as the
population in GA. At the end of the process, the best values of
Q and R are selected for parameter estimation. Finally, the CKF
algorithm runs again with these optimized values to estimate
the parameters of the excitation system.

3. EXCITATION SYSTEM MODEL

With regard to the reference and the measured voltages, the
excitation system controls the output of the exciter so that, in ad-
dition to maintaining the generator’s terminal voltage; it shows
a proper response in face of transient disturbances. From the
power system point of view, the excitation system should help
control the voltage of the generator efficiently and enhance net-
work stability. In order to improve the system stability, the exci-
tation system must be able to respond quickly to disturbances
and send an appropriate stabilization signal to damp the system
oscillations.

In this paper, the studied power plant has a static excita-
tion system type. In static excitation systems, the supply is
taken from the generator itself through a step-down transformer
whose primary is connected to the generator bus. The secondary
winding supplies power to a controllable rectifier which pro-
vides the necessary field current to the rotor winding of the
synchronous machine. The system has a fast transient response
and provides excellent dynamic performance. This excitation
system is mounted in a gas turbine of a combined-cycle power
plant which is connected to a 230 kV substation through a power
transformer. The rated apparent and active powers of every unit
are 200 (MVA) and 160 (MW), respectively. Fig. 1 shows the
arrangement and load flow of power plant units.

According to available documents in the power plant under
study, the static excitation system namely UNITROL 6800, man-
ufactured by ABB, can be adapted as IEEE ST1A model [28]. The
ST1A model is presented in Fig. 2.

In this type of excitation system, the time constant is very
small and there is no need to use an AVR stabilizer. Therefore,
it can be assumed that TA has a small value, and KF is equal to
zero. Proper selection of TC1 and TB1 make it possible to increase

Fig. 2. ST1A excitation systems model.

 Journal of Energy Management and Technology (JEMT)        Vol. 3, Issue 1         5Research Article 

transient response and provides excellent dynamic performance. 
This excitation system is mounted in a gas turbine of a combined-
cycle power plant which is connected to a 230 kV substation through 
a power transformer. The rated apparent and active powers of every 
unit are 200 (MVA) and 160 (MW), respectively. Fig. 1 shows the 
arrangement and load flow of power plant units. 

Fig. 1. The arrangement of combined cycle power plant’s units 
under study 

According to available documents in the power plant under 
study, the static excitation system namely UNITROL 6800, 
manufactured by ABB, can be adapted as IEEE ST1A model [28]. 
The ST1A model is presented in Fig. 2.  

Fig. 2. ST1A excitation systems model 

In this type of excitation system, the time constant is very small 
and there is no need to use an AVR stabilizer. Therefore, it can be 
assumed that TA has a small value, and KF is equal to zero. Proper 
selection of TC1 and TB1 make it possible to increase the transient 
gain of the system. For this purpose, if needed, TC1 should be 
selected greater than TB1. However, if there is no need for high 
transient gain, it is possible to select these values so that whose 
effects are ignorable. In this paper, these values are assumed zero. 
Since the generator operates in normal operating conditions and 
within the allowable ranges, there are usually no limiter's actions. 

Based on the aforementioned descriptions, the block diagram 
and actual parameters of the excitation system under study are 
presented in Fig. 3 and Table 1, respectively. 

In this paper, three parameters including Ka, Tb, and Ta are 
assumed unknown, which must be estimated. The generator is 

Fig. 3. Transfer function of the system under study 

Table 1. The actual value of parameters of the system under study 

Parameter 𝑇𝑐 𝑇𝑏 𝐾𝑎 𝑇𝑎

Value 
1 

(sec) 

9.1667 

(sec) 
550 

0.017 

(sec) 

Parameter 𝐾𝑓 𝑇𝑓 𝐾𝑟 𝑇𝑟

Value 0 
1 

(sec) 
1 0.02 

considered as a first-order model with a gain and a time constant (i.e. 
Kg and Tg). Vt represents the terminal voltage of the generator, Vg is 
the generator voltage at the input of the excitation system, Vs denotes 
the error of voltage magnitude, Vl and Vf are the input and output 
voltage of the exciter, respectively. 

The system states vector are selected as xk = [Vfk  Vtk  Vgk  Vlk ]. If 
unknown parameters are considered as state variables, these 
parameters can be estimated by KF algorithm, as well. Therefore, the 
final states vector will be xk = [Vfk  Vtk  Vgk  Vlk  Kak  Tak  Tbk].  

According to the block diagram, system equations for 
updating/correction steps are as follows:  

𝑉𝑓𝑘+1
= 𝑉𝑓𝑘

+
Δ𝑡

𝑇𝑎
(𝐾𝑎 . 𝑉𝑙𝑘

− 𝑉𝑓𝑘
) (1) (18) 

𝑉𝑡𝑘+1
= 𝑉𝑡𝑘

+
Δ𝑡

𝑇𝑔
(𝐾𝑔. 𝑉𝑓𝑘

− 𝑉𝑡𝑘
) (1) (19) 

𝑉𝑔𝑘+1
= 𝑉𝑔𝑘

+
Δ𝑡

𝑇𝑟
(𝐾𝑟 . 𝑉𝑡𝑘

− 𝑉𝑔𝑘
) (1) (20) 

𝑉𝑙𝑘+1
= 𝑉𝑙𝑘

+
Δ𝑡

𝑇𝑏
(𝑉𝑟𝑒𝑓𝑘

− 𝑉𝑔𝑘
−

𝑇𝑐

𝑇𝑟
(𝐾𝑟 . 𝑉𝑡𝑘

− 𝑉𝑔𝑘
) − 𝑉𝑙𝑘

)

+
𝑇𝑐

𝑇𝑏
(𝑉𝑟𝑒𝑓𝑘+1

− 𝑉𝑟𝑒𝑓𝑘
)

(1) (21) 

𝐾𝑎𝑘+1
= 𝐾𝑎𝑘 (1) (22) 

𝑇𝑎𝑘+1
= 𝑇𝑎𝑘 (1) (23) 

𝑇𝑏𝑘+1
= 𝑇𝑏𝑘 (1) (24) 

As the controller parameters are fixed, those are the same in (k+1)-
th and k-th step. So Eqs. (22)-(24) are added to transfer function as the 
state of the unknown parameters. 

4. Metaheuristic-based methods

The metaheuristics are iterative optimization algorithms, which
are used to minimize/maximize a predefined objective function. They 
search in candidate solution's space in stochastic manner with respect 
to the feedback of objective function calculation. In the use of 
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𝑅𝑒𝑎𝑙 − 𝑉𝑔𝑘

𝑆𝑖𝑚)
2

}

𝑁

𝑘=1

(1) (25) 

where 𝑉𝑔
𝑆𝑖𝑚  is obtained from transfer function simulation (Fig. 2)

considering the candidate parameters. In the following, the procedure 
of GA and PSO algorithms to manipulate the candidate parameters is 
described. 

4.1. GA 

The GA is a population-based algorithm that starts from an initial 
population containing random candidate parameters. The algorithm is 
based on three main operators mentioned below [29]: 
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Fig. 3. Transfer function of the system under study.

the transient gain of the system. For this purpose, if needed, TC1
should be selected greater than TB1. However, if there is no need
for high transient gain, it is possible to select these values so
that whose effects are ignorable. In this paper, these values are
assumed zero. Since the generator operates in normal operating
conditions and within the allowable ranges, there are usually no
limiter’s actions.

Based on the aforementioned descriptions, the block diagram
and actual parameters of the excitation system under study are
presented in Fig. 3 and Table 1, respectively.

Table 1. The actual value of parameters of the system under
study

Parameter Tc Tb Ka Ta

Value 1 (sec) 9.1667 (sec) 550 0.017 (sec)

Parameter K f Tf Kr Tr

Value 0 1 (sec) 1 0.02

In this paper, three parameters including Ka, Tb, and Ta are
assumed unknown, which must be estimated. The generator is
considered as a first-order model with a gain and a time constant
(i.e. Kg and Tg). Vt represents the terminal voltage of the gen-
erator, Vg is the generator voltage at the input of the excitation
system, Vs denotes the error of voltage magnitude, Vl and Vf are
the input and output voltage of the exciter, respectively.

The system states vector are selected as xk =
[Vf k Vtk Vgk Vlk]. If unknown parameters are consid-
ered as state variables, these parameters can be estimated by
KF algorithm, as well. Therefore, the final states vector will be
xk = [Vf k Vtk Vgk Vlk Kak Tak Tbk].

According to the block diagram, system equations for updat-
ing/correction steps are as follows:

Vfk+1
= Vfk

+
∆t
Ta

(
Ka ·Vlk

−Vfk

)
(18)
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Vtk+1 = Vtk +
∆t
Tg

(
Kg ·Vfk

−Vtk

)
(19)

Vgk+1 = Vgk +
∆t
Tr

(
Kr ·Vtk −Vgk

)
(20)

Vlk+1
= Vlk

+
∆t
Tb

(
Vre fk

−Vgk −
Tc

Tr

(
Kr ·Vtk −Vgk

)
−Vl

+
Tc

Tb

(
Vre fk+1

−Vre fk

) (21)

Kak+1 = Kak (22)

Tak+1 = Tak (23)

Tbk+1
= Tbk

(24)

As the controller parameters are fixed, those are the same in
(k+1)-th and k-th step. So Eqs. (22)-(24) are added to transfer
function as the state of the unknown parameters.

4. METAHEURISTIC-BASED METHODS

The metaheuristics are iterative optimization algorithms, which
are used to minimize/maximize a predefined objective function.
They search in candidate solution’s space in stochastic manner
with respect to the feedback of objective function calculation.
In the use of metaheuristics for excitation system parameters
identification, it is required to minimize the estimation error as
the objective function. In this way, the error of simulated signal
compared with the real recorded signal should be calculated. As
the target signal is recorded in a discrete manner, the error, i.e.
the objective function is defined considering recorded samples,
as follows:

OF =
N

∑
k=1

{
(VReal

gk −VSim
gk )

2}
(25)

where VSim
gk is obtained from transfer function simulation (Fig. 2)

considering the candidate parameters. In the following, the pro-
cedure of GA and PSO algorithms to manipulate the candidate
parameters is described.

A. GA
The GA is a population-based algorithm that starts from an
initial population containing random candidate parameters. The
algorithm is based on three main operators mentioned below
[29]:

1. Crossover;
2. Mutation; and,
3. Selection.

The crossover and mutation operators are used to create off-
spring form the old population i.e. parents. The objective func-
tion of new candidates, which are produced randomly consider-
ing the crossover and mutation rates, is calculated using Eq. (25).
Then the new candidates are compared with the old solutions,
so that, the most suitable solutions are selected to move to the
next iteration. This process is iterated until the GA converges
to a global or near-global optimum. The performance of GA is
shown in Fig. 4. More details about GA can be found in [30]
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5. Case studies and results

Iran's power grid is employed to evaluate the proposed algorithm.
This grid has been simulated on the DIgSILENT software. Since 
generator parameters do not usually change during the operation time, 
their values are assumed as reported by the manufacturer. The PSS is 
considered to be off and the unit is connected to the grid, and the 
experiments are performed online. Online identification process 
usually uses the information obtained from programmed disturbances 
or unplanned disturbances (network events). Changes in the reference 
voltage of the excitation system and changes in the transformer tap 
position are examples of programmed disturbances. On the other hand, 
the neighboring unit's trip is considered as an unplanned disturbance.  

Change in reference voltage is one of the most common 
disturbances, which is employed for parameters identification. As 
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conditions or in all power plants, but in all systems, it is commonly 
possible to make a sudden change in the reference voltage. It should 
be noted that it is impossible to make step changes in the reference 
voltage in some old systems, and the change should be applied as a 
ramp with a high slope. In this paper, the standard step function is used 
for change in reference voltage. According to the test procedure, the 
2% step change (increasing/decreasing) is applied to the reference 
voltage of AVR and the voltage of the generator is recorded as 
presented in Fig. 6. 
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B. PSO
Similar to GA, the PSO is a population-based algorithm. Con-
sidering an initial population that is produced randomly, the
candidate solutions are moved in the search space with a spec-
ified velocity. In every iteration, the position of particles i.e.
candidate solutions is changed according to Eq. (26).

xm+1
ij = xm

ij + vm+1
ij (26)

The velocity of every particle i.e. candidate solution is up-
dated with respect to its inertia, its own position, its previous
best position and the global best position of population, as fol-
lows:

vm+1
ij = w× vm

ij + c1 × rand×
(

xm
pbest,ij − xm

ij

)
+

c2 × rand×
(

xm
gbest,j − xm

ij

)
(27)

where the xm
pbest and xm

gbest are determined considering the objec-
tive function shown in Eq. (25). The constants c1, c2 and w are
specified with respect to the literature. The performance of PSO
is represented in Fig. ??. More details about PSO can be found
in [30].

The parameters of metaheuristics are initially set considering
the recommendations in [29, 30], and then they are improved
with trial and error. The final employed parameters of GA and
PSO are shown in Table 2.

5. CASE STUDIES AND RESULTS

Iran’s power grid is employed to evaluate the proposed algo-
rithm. This grid has been simulated on the DIgSILENT software.
Since generator parameters do not usually change during the
operation time, their values are assumed as reported by the
manufacturer. The PSS is considered to be off and the unit is
connected to the grid, and the experiments are performed on-
line. Online identification process usually uses the information
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Table 2. Parameters of metaheuristics for identification
Parameter Value

rm 0.33

rc 0.5

Nprn 10

W 0.98

C1 2

C2 9

Nprt 10

Fig. 6. The recorded signal i.e. Vg in power plant.

obtained from programmed disturbances or unplanned distur-
bances (network events). Changes in the reference voltage of
the excitation system and changes in the transformer tap posi-
tion are examples of programmed disturbances. On the other
hand, the neighboring unit’s trip is considered as an unplanned
disturbance.

Change in reference voltage is one of the most common dis-
turbances, which is employed for parameters identification. As
mentioned before, it may be impossible to inject PRBS signal
in all conditions or in all power plants, but in all systems, it is
commonly possible to make a sudden change in the reference
voltage. It should be noted that it is impossible to make step
changes in the reference voltage in some old systems, and the
change should be applied as a ramp with a high slope. In this
paper, the standard step function is used for change in reference
voltage. According to the test procedure, the 2% step change
(increasing/decreasing) is applied to the reference voltage of
AVR and the voltage of the generator is recorded as presented
in Fig. ??.

In order to record the accessible signal, a laptop was con-
nected to the system using a Rj45 cable and the signal is recorded
with the sample rate of 416.67 (Hz). This signal is employed to
estimate the excitation parameters using CKF algorithm, and the
results are shown in Fig. ??. As can be seen, the main correction
of parameters is established during step change in reference volt-
age, and finally, the estimation is converged in steady-state of
the step response. In this case, the proposed method is capable
to estimate the excitation parameters with the average error of
7.09%.

In order to specify the advantages of the proposed method,
it is compared with the conventional methods in the literature,
i.e. GA and PSO algorithms. The results of these metaheuristics
for parameter identification are shown in Table 3, where the GA
and PSO are run several times for the real case studied.

The GA and PSO give a wide range of different parameters
in each run; so, it is not possible to achieve the real parameters.
However, the proposed method is capable to obtain near actual
parameters in only one run. The reason is that the GA and
PSO, which are based on stochastic search, do not take into
account the relations among the parameters; while the CKF
considers the differential equations and parameter correlations
in its identification procedure. Hence, the average error of CKF
is much less than the average error of the GA and PSO, as shown
in Fig. ??.

Table 3. The extracted parameters using GA and PSO in 17 runs
GA PSO

Ka Tb Ta Ka Tb Ta

136.8 4.3009 0.0011 556.1 18.2691 0.0019

105.5 3.274 0.0126 264.7 8.8441 0.0012

119.9 3.8835 0.004 523.5 17.3416 0.0014

375.4 12.5498 0.001 265.4 8.6834 0.0019

109 3.3453 0.0024 258.6 8.3454 0.0034

109.8 3.5256 0.001 263.2 8.7499 0.0006

153.7 5.0935 0.0011 263.3 8.6954 0.0029

174.3 5.6551 0.001 258.4 8.5228 0.0027

139.5 4.3598 0.0014 241.1 7.3964 0.0043

142.7 4.5699 0.0001 601.5 19.9965 0.0109

234.5 7.7378 0.0001 218.2 7.3402 0.012

196.9 6.5824 0.0001 271.7 9.0749 0.0001

180.2 5.889 0.0001 270.9 8.7437 0.0001

472.6 15.6211 0.0001 276.4 8.9418 0.0001

234.4 7.809 0.0003 276.1 9.29 0.0001

154.1 5.14 0.0001 248.7 8.1727 0.0044

182.8 6.1185 0.0001 261.3 8.9936 0.0022

In addition to the average error, the statistical properties of
the GA, PSO and CKF are compared in Fig. ??, where the box
plots are used for clarification. As can be seen, the CKF is more
precise than the GA and PSO, not only from mean value point
of view, but also from variance and skewness perspective.

It is notable that the real parameters may not be obtained
using GA and PSO, even if the objective function i.e. defined
error in metaheuristics, is reached to zero. The reason is that the
search space usually contains several global optimums which re-
sult in zero errors with different parameters, as shown typically
in Fig. ??. As the overall error minimization is the alone index
of optimization algorithms to identify the parameters, this issue
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Fig. 7. Estimation trajectory of CKF in the real case for parame-
ters (a) Ka, (b) Tb, and (c) Ta.
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Fig. 9. The statistical presentation of the GA, PSO and CKF
detailed results.

is more serious when the number of unknown parameters is
increased, and the search space becomes more complex. Hence,
it is necessary to develop the structure-based methods such as
KFs for parameter’s identification in real conditions.
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Fig. 10. A typical search space of GA and PSO for parameter
identification.

6. CONCLUSIONS

In this paper, it is proposed to use KFs for identifying the excita-
tion system parameters. In this way, the newest version of KFs,
i.e. the CKF, is developed to handle the problem of parameter
identification. In this situation, the unknown fixed parameters
are taken into account as state variables. Consequently, the
differential equations of transfer function are considered and
rewritten to be used as a part of CKF formulation. As a real case
study, the reference voltage step disturbance applied to UNI-
TROL 6800 excitation system manufactured by ABB of a power
plant in Iran electric grid is employed to verify the proposed al-
gorithm. The simulation results show that the proposed method
is capable to identify the unknown parameters with high accu-
racy. The advantage of the proposed method is that it results
in a unique solution which is much more accurate than the con-
ventionally used algorithms in literature e.g. GA and PSO. The
case studied based on real recorded signals confirms that the
proposed method is applicable. Unlike the metaheuristics, it is
not based on stochastic variables, so it is robust especially when
the actual value of parameters is required for the purpose of
returning.
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